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To Isabel 

-Roberto Tamassia 

Preface to the Fourth Edition 

This fourth edition is designed to provide an introduction to data structures and 
algorithms, including their design, analysis, and implementation. In terms of curricula 
based on the IEEE/ACM 2001 Computing Curriculum, this book is appropriate for 
use in the courses CS102 (I/O/B versions), CS103 (I/O/B versions), CS111 (A 
version), and CS112 (A/I/O/F/H versions). We discuss its use for such courses in 
more detail later in this preface. 

The major changes, with respect to the third edition, are the following:  

• Added new chapter on arrays, linked lists, and recursion. 

• Added new chapter on memory management. 

• Full integration with Java 5.0. 

• Better integration with the Java Collections Framework. 

• Better coverage of iterators. 

• Increased coverage of array lists, including the replacement of uses of the class 
java.util.Vector with java.util.ArrayList. 

• Update of all Java APIs to use generic types. 

• Simplified list, binary tree, and priority queue ADTs. 

• Further streamlining of mathematics to the seven most used functions. 

• Expanded and revised exercises, bringing the total number of reinforcement, 
creativity, and project exercises to 670. Added exercises include new projects on 
maintaining a game's high-score list, evaluating postfix and infix expressions, 
minimax game-tree evaluation, processing stock buy and sell orders, scheduling 
CPU jobs, n-body simulation, computing DNA-strand edit distance, and creating 
and solving mazes. 

This book is related to the following books:  

• M.T. Goodrich, R. Tamassia, and D.M. Mount, Data Structures and Algorithms 
in C++, John Wiley & Sons, Inc., 2004. This book has a similar overall structure to 
the present book, but uses C++ as the underlying language (with some modest, but 
necessary pedagogical differences required by this approach). Thus, it could make 
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for a handy companion book in a curriculum that allows for either a Java or C++ 
track in the introductory courses. 

• M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis, and 
Internet Examples, John Wiley & Sons, Inc., 2002. This is a textbook for a more 
advanced algorithms and data structures course, such as CS210 (T/W/C/S versions) 
in the IEEE/ACM 2001 curriculum. 

Use as a Textbook 

The design and analysis of efficient data structures has long been recognized as a 
vital subject in computing, for the study of data structures is part of the core of 
every collegiate computer science and computer engineering major program we are 
familiar with. Typically, the introductory courses are presented as a two- or three-
course sequence. Elementary data structures are often briefly introduced in the first 
programming or introduction to computer science course and this is followed by a 
more in-depth introduction to data structures in the following course(s). 
Furthermore, this course sequence is typically followed at a later point in the 
curriculum by a more in-depth study of data structures and algorithms. We feel that 
the central role of data structure design and analysis in the curriculum is fully 
justified, given the importance of efficient data structures in most software systems, 
including the Web, operating systems, databases, compilers, and scientific 
simulation systems. 

With the emergence of the object-oriented paradigm as the framework of choice for 
building robust and reusable software, we have tried to take a consistent 
objectoriented viewpoint throughout this text. One of the main ideas of the object-
oriented approach is that data should be presented as being encapsulated with the 
methods that access and modify them. That is, rather than simply viewing data as a 
collection of bytes and addresses, we think of data as instances of an abstract data 
type (ADT) that include a repertory of methods for performing operations on the 
data. Likewise, object-oriented solutions are often organized utilizing common 
design patterns, which facilitate software reuse and robustness. Thus, we present 
each data structure using ADTs and their respective implementations and we 
introduce important design patterns as means to organize those implementations 
into classes, methods, and objects. 

For each ADT presented in this book, we provide an associated Java interface. 
Also, concrete data structures realizing the ADTs are provided as Java classes 
implementing the interfaces above. We also give Java implementations of 
fundamental algorithms (such as sorting and graph traversals) and of sample 
applications of data structures (such as HTML tag matching and a photo album). 
Due to space limitations, we sometimes show only code fragments in the book and 
make additional source code available on the companion Web site, 
http://java.datastructures.net. 
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The Java code implementing fundamental data structures in this book is organized 
in a single Java package, net.datastructures. This package forms a coherent library 
of data structures and algorithms in Java specifically designed for educational 
purposes in a way that is complementary with the Java Collections Framework. 

Web Added-Value Education 

This book is accompanied by an extensive Web site: 

http://java.datastructures.net. 

Students are encouraged to use this site along with the book, to help with exercises 
and increase understanding of the subject. Instructors are likewise welcome to use 
the site to help plan, organize, and present their course materials. 

For the Student 

for all readers, and specifically for students, we include:  

• All the Java source code presented in this book. 

• The student version of the net.datastructures package. 

• Slide handouts (four-per-page) in PDF format. 

• A database of hints to all exercises, indexed by problem number. 

• Java animations and interactive applets for data structures and algorithms. 

• Hyperlinks to other data structures and algorithms resources. 

We feel that the Java animations and interactive applets should be of particular 
interest, since they allow readers to interactively "play" with different data 
structures, which leads to better understanding of the different ADTs. In addition, 
the hints should be of considerable use to anyone needing a little help getting 
started on certain exercises. 

For the Instructor 

For instructors using this book, we include the following additional teaching aids:  

• Solutions to over two hundred of the book's exercises. 

• A keyword-searchable database of additional exercises. 

• The complete net.datastructures package. 
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• Additional Java source code. 

• Slides in Powerpoint and PDF (one-per-page) format. 

• Self-contained special-topic supplements, including discussions on convex 
hulls, range trees, and orthogonal segment intersection. 

The slides are fully editable, so as to allow an instructor using this book full 
freedom in customizing his or her presentations. 

A Resource for Teaching Data Structures and Algorithms 

This book contains many Java-code and pseudo-code fragments, and over 670 
exercises, which are divided into roughly 40% reinforcement exercises, 40% 
creativity exercises, and 20% programming projects. 

This book can be used for courses CS102 (I/O/B versions), CS103 (I/O/B versions), 
CS111 (A version), and/or CS112 (A/I/O/F/H versions) in the IEEE/ACM 2001 
Computing Curriculum, with instructional units as outlined in Table 0.1. 

Table 0.1:  Material for Units in the IEEE/ACM 2001 
Computing Curriculum. 

Instructional Unit 

Relevant Material 

PL1. Overview of Programming Languages 

Chapters 1 & 2 

PL2. Virtual Machines 

Sections 14.1.1, 14.1.2, & 14.1.3 

PL3. Introduction to Language Translation 

Section 1.9 

PL4. Declarations and Types 

Sections 1.1, 2.4, & 2.5 

PL5. Abstraction Mechanisms 

Sections 2.4, 5.1, 5.2, 5.3, 6.1.1, 6.2, 6.4, 6.3, 7.1, 7.3.1, 8.1, 9.1, 9.3, 11.6, 
& 13.1 
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PL6. Object-Oriented Programming 

Chapters 1 & 2 and Sections 6.2.2, 6.3, 7.3.7, 8.1.2, & 13.3.1 

PF1. Fundamental Programming Constructs 

Chapters 1 & 2 

PF2. Algorithms and Problem-Solving 

Sections 1.9 & 4.2 

PF3. Fundamental Data Structures 

Sections 3.1, 5.1-3.2, 5.3, , 6.1-6.4, 7.1, 7.3, 8.1, 8.3, 9.1-9.4, 10.1, & 13.1 

PF4. Recursion 

Section 3.5 

SE1. Software Design 

Chapter 2 and Sections 6.2.2, 6.3, 7.3.7, 8.1.2, & 13.3.1 

SE2. Using APIs 

Sections 2.4, 5.1, 5.2, 5.3, 6.1.1, 6.2, 6.4, 6.3, 7.1, 7.3.1, 8.1, 9.1, 9.3, 11.6, 
& 13.1 

AL1. Basic Algorithmic Analysis 

Chapter 4 

AL2. Algorithmic Strategies 

Sections 11.1.1, 11.7.1, 12.2.1, 12.4.2, & 12.5.2 

AL3. Fundamental Computing Algorithms 

Sections 8.1.4, 8.2.3, 8.3.5, 9.2, & 9.3.3, and Chapters 11, 12, & 13 

DS1. Functions, Relations, and Sets 

Sections 4.1, 8.1, & 11.6 

DS3. Proof Techniques 

Sections 4.3, 6.1.4, 7.3.3, 8.3, 10.2, 10.3, 10.4, 10.5, 11.2.1, 11.3, 11.6.2, 
13.1, 13.3.1, 13.4, & 13.5 

 7



DS4. Basics of Counting 

Sections 2.2.3 & 11.1.5 

DS5. Graphs and Trees 

Chapters 7, 8, 10, & 13 

DS6. Discrete Probability 

Appendix A and Sections 9.2.2, 9.4.2, 11.2.1, & 11.7 

Chapter Listing 

The chapters for this course are organized to provide a pedagogical path that starts 
with the basics of Java programming and object-oriented design, moves to concrete 
structures like arrays and linked lists, adds foundational techniques like recursion and 
algorithm analysis, and then presents the fundamental data structures and algorithms, 
concluding with a discussion of memory management (that is, the architectural 
underpinnings of data structures). Specifically, the chapters for this book are 
organized as follows:  

1. Java Programming Basics 

2. Object-Oriented Design 

3. Arrays, Linked Lists, and Recursion 

4. Analysis Tools 

5. Stacks and Queues 

6. Lists and Iterators 

7. Trees 

8. Priority Queues 

9. Maps and Dictionaries 

10. Search Trees 

11. Sorting, Sets, and Selection 

12. Text Processing 

13. Graphs 
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14. Memory 

A. Useful Mathematical Facts 

 

 

Prerequisites 

We have written this book assuming that the reader comes to it with certain 
knowledge.That is, we assume that the reader is at least vaguely familiar with a 
high-level programming language, such as C, C++, or Java, and that he or she 
understands the main constructs from such a high-level language, including:  

• Variables and expressions. 

• Methods (also known as functions or procedures). 

• Decision structures (such as if-statements and switch-statements). 

• Iteration structures (for-loops and while-loops). 

For readers who are familiar with these concepts, but not with how they are 
expressed in Java, we provide a primer on the Java language in Chapter 1. Still, this 
book is primarily a data structures book, not a Java book; hence, it does not provide 
a comprehensive treatment of Java. Nevertheless, we do not assume that the reader 
is necessarily familiar with object-oriented design or with linked structures, such as 
linked lists, for these topics are covered in the core chapters of this book. 

In terms of mathematical background, we assume the reader is somewhat familiar 
with topics from high-school mathematics. Even so, in Chapter 4, we discuss the 
seven most-important functions for algorithm analysis. In fact, sections that use 
something other than one of these seven functions are considered optional, and are 
indicated with a star (�). We give a summary of other useful mathematical facts, 
including elementary probability, in Appendix A. 

About the Authors 

Professors Goodrich and Tamassia are well-recognized researchers in algorithms 
and data structures, having published many papers in this field, with applications to 
Internet computing, information visualization, computer security, and geometric 
computing. They have served as principal investigators in several joint projects 
sponsored by the National Science Foundation, the Army Research Office, and the 
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Defense Advanced Research Projects Agency. They are also active in educational 
technology research, with special emphasis on algorithm visualization systems. 

Michael Goodrich received his Ph.D. in Computer Science from Purdue University 
in 1987. He is currently a professor in the Department of Computer Science at 
University of California, Irvine. Previously, he was a professor at Johns Hopkins 
University. He is an editor for the International Journal of Computational 
Geometry & Applications and Journal of Graph Algorithms and Applications. 

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering from 
the University of Illinois at Urbana-Champaign in 1988. He is currently a professor 
in the Department of Computer Science at Brown University. He is editor-in-chief 
for the Journal of Graph Algorithms and Applications and an editor for 
Computational Geometry: Theory and Applications. He previously served on the 
editorial board of IEEE Transactions on Computers. 

In addition to their research accomplishments, the authors also have extensive 
experience in the classroom. For example, Dr. Goodrich has taught data structures 
and algorithms courses, including Data Structures as a freshman-sophomore level 
course and Introduction to Algorithms as an upper level course. He has earned 
several teaching awards in this capacity. His teaching style is to involve the students 
in lively interactive classroom sessions that bring out the intuition and insights 
behind data structuring and algorithmic techniques. Dr. Tamassia has taught Data 
Structures and Algorithms as an introductory freshman-level course since 1988. 
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1.1  Getting Started: Classes, Types, and Objects 

Building data structures and algorithms requires that we communicate detailed 
instructions to a computer, and an excellent way to perform such communication is 
using a high-level computer language, such as Java. In this chapter, we give a brief 
overview of the Java programming language, assuming the reader is somewhat 
familiar with an existing high-level language. This book does not provide a complete 
description of the Java language, however. There are major aspects of the language 
that are not directly relevant to data structure design, which are not included here, 
such as threads and sockets. For the reader interested in learning more about Java, 
please see the notes at the end of this chapter. We begin with a program that prints 
"Hello Universe!" on the screen, which is shown in a dissected form in Figure 1.1. 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: A "Hello Universe!" program. 
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The main "actors" in a Java program are objects. Objects store data and provide 
methods for accessing and modifying this data. Every object is an instance of a class, 
which defines the type of the object, as well as the kinds of operations that it 
performs. The critical members of a class in Java are the following (classes can also 
contain inner class definitions, but let us defer discussing this concept for now):  

• Data of Java objects are stored in instance variables (also called fields). 
Therefore, if an object from some class is to store data, its class must specify the 
instance variables for such objects. Instance variables can either come from base 
types (such as integers, floating-point numbers, or Booleans) or they can refer to 
objects of other classes. 

• The operations that can act on data, expressing the "messages" objects respond to, 
are called methods, and these consist of constructors, procedures, and functions. 
They define the behavior of objects from that class. 

How Classes Are Declared 

In short, an object is a specific combination of data and the methods that can 
process and communicate that data. Classes define the types for objects; hence, 
objects are sometimes referred to as instances of their defining class, because they 
take on the name of that class as their type. 

An example definition of a Java class is shown in Code Fragment 1.1. 

Code Fragment 1.1:  A Counter class for a simple 
counter, which can be accessed, incremented, and 
decremented. 
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In this example, notice that the class definition is delimited by braces, that is, it 
begins with a "{" and ends with a "} ". In Java, any set of statements between the 
braces "{" and "}" define a program block. 

As with the Universe class, the Counter class is public, which means that any other 
class can create and use a Counter object. The Counter has one instance variable—
an integer called count. This variable is initialized to 0 in the constructor method, 
Counter, which is called when we wish to create a new Counter object (this method 
always has the same name as the class it belongs to). This class also has one 
accessor method, getCount, which returns the current value of the counter. Finally, 
this class has two update methods—a method, incrementCount, which increments 
the counter, and a method, decrementCount, which decrements the counter. 
Admittedly, this is a pretty boring class, but at least it shows us the syntax and 
structure of a Java class. It also shows us that a Java class does not have to have a 
main method (but such a class can do nothing by itself). 

The name of a class, method, or variable in Java is called an identifier, which can be 
any string of characters as long as it begins with a letter and consists of letters, 
numbers, and underscore characters (where "letter" and "number" can be from any 
written language defined in the Unicode character set). We list the exceptions to 
this general rule for Java identifiers in Table 1.1. 

Table 1.1:  A listing of the reserved words in Java. 
These names cannot be used as method or variable 
names in Java. 

Reserved Words 

abstract 
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else 

interface 

switch 

boolean 

extends 

long 

synchronized 

break 

false 

native 

this 

byte 

final 

new 

throw 

case 

finally 

null 

throws 

catch 

float 

package 

transient 

char 

for 
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private 

true 

class 

goto 

protected 

try 

const 

if 

public 

void 

continue 

implements 

return 

volatile 

default 

import 

short 

while 

do 

instanceof 

static 

double 

int 

super 

Class Modifiers 
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Class modifiers are optional keywords that precede the class keyword. We have 
already seen examples that use the public keyword. In general, the different class 
modifiers and their meaning is as follows:  

• The abstract class modifier describes a class that has abstract methods. 
Abstract methods are declared with the abstract keyword and are empty (that 
is, they have no block defining a body of code for this method). A class that has 
nothing but abstract methods and no instance variables is more properly called an 
interface (see Section 2.4), so an abstract class usually has a mixture of 
abstract methods and actual methods. (We discuss abstract classes and their uses 
in Section 2.4.) 

• The final class modifier describes a class that can have no subclasses. 
(We will discuss this concept in the next chapter.) 

• The public class modifier describes a class that can be instantiated or 
extended by anything in the same package or by anything that imports the 
class. (This is explained in more detail in Section 1.8.) Public classes are declared 
in their own separate file called classname. java, where "classname" is the 
name of the class. 

• If the public class modifier is not used, the class is considered friendly. 
This means that it can be used and instantiated by all classes in the same package. 
This is the default class modifier. 

1.1.1  Base Types 

The types of objects are determined by the class they come from. For the sake of 
efficiency and simplicity, Java also has the following base types (also called 
primitive types), which are not objects: 

boolean 

Boolean value: true or false 

char 

16-bit Unicode character 

byte 

8-bit signed two's complement integer 

short 

16-bit signed two's complement integer 
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int 

32-bit signed two's complement integer 

long 

64-bit signed two's complement integer 

float 

32-bit floating-point number (IEEE 754-1985) 

double 

64-bit floating-point number (IEEE 754-1985) 

A variable declared to have one of these types simply stores a value of that type, 
rather than a reference to some object. Integer constants, like 14 or 195, are of type 
int, unless followed immediately by an 'L' or 'l', in which case they are of type long. 
Floating-point constants, like 3.1415 or 2.158e5, are of type double, unless 
followed immediately by an 'F' or 'f', in which case they are of type float. We show 
a simple class in Code Fragment 1.2 that defines a number of base types as local 
variables for the main method. 

Code Fragment 1.2:  A Base class showing 
example uses of base types. 
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Comments 

Note the use of comments in this and other examples. These comments are 
annotations provided for human readers and are not processed by a Java compiler. 
Java allows for two kinds of comments-block comments and inline comments-
which define text ignored by the compiler. Java uses a /* to begin a block 
comment and a */ to close it. Of particular note is a comment that begins with /**, 
for such comments have a special format that allows a program called Javadoc to 
read these comments and automatically generate documentation for Java 
programs. We discuss the syntax and interpretation of Javadoc comments in 
Section 1.9.3. 

In addition to block comments, Java uses a // to begin inline comments and 
ignores everything else on the line. All comments shown in this book will be 
colored blue, so that they are not confused with executable code. For example: 

                                                 

            /* 

                                                            * This is a block comment. 

                                                            */ 
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                                                            // This is an inline comment. 

Output from the Base Class 

Output from an execution of the Base class (main method) is shown in Figure 1.2. 

Figure 1.2:  Output from the Base class. 

 

Even though they themselves do not refer to objects, base-type variables are 
useful in the context of objects, for they often make up the instance variables (or 
fields) inside an object. For example, the Counter class (Code Fragment 1.1) had a 
single instance variable that was of type int. Another nice feature of base types in 
Java is that base-type instance variables are always given an initial value when an 
object containing them is created (either zero, false, or a null character, depending 
on the type). 

1.1.2  Objects 

In Java, a new object is created from a defined class by using the new operator. The 
new operator creates a new object from a specified class and returns a reference to 
that object. In order to create a new object of a certain type, we must immediately 
follow our use of the new operator by a call to a constructor for that type of object. 
We can use any constructor that is included in the class definition, including the 
default constructor (which has no arguments between the parentheses). In Figure 
1.3, we show a number of dissected example uses of the new operator, both to 
simply create new objects and to assign the reference to these objects to a variable. 

Figure 1.3:  Example uses of the new operator. 
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Calling the new operator on a class type causes three events to occur:  

• A new object is dynamically allocated in memory, and all instance 
variables are initialized to standard default values. The default values are null 
for object variables and 0 for all base types except boolean variables (which are 
false by default). 

• The constructor for the new object is called with the parameters specified. 
The constructor fills in meaningful values for the instance variables and performs 
any additional computations that must be done to create this object. 

• After the constructor returns, the new operator returns a reference (that is, 
a memory address) to the newly created object. If the expression is in the form of 
an assignment statement, then this address is stored in the object variable, so the 
object variable refers to this newly created object. 

Number Objects 

We sometimes want to store numbers as objects, but base type numbers are not 
themselves objects, as we have noted. To get around this obstacle, Java defines a 
wrapper class for each numeric base type. We call these classes number classes. 
In Table 1.2, we show the numeric base types and their corresponding number 
class, along with examples of how number objects are created and accessed. Since 
Java 5.0, a creation operation is performed automatically any time we pass a base 
number to a method expecting a corresponding object. Likewise, the 
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corresponding access method is performed automatically any time we wish to 
assign the value of a corresponding Number object to a base number type. 

Table 1.2:  Java number classes. Each class is given 
with its corresponding base type and example 
expressions for creating and accessing such objects. 
For each row, we assume the variable n is declared 
with the corresponding class name. 

Base Type 

Class Name 

Creation Example 

Access Example 

byte 

Byte 

n = new Byte((byte)34); 

n.byteValue( ) 

short 

Short 

n = new Short((short)100); 

n.shortValue( ) 

int 

Integer 

n = new Integer(1045); 

n.intValue( ) 

long 

Long 

n = new Long(10849L); 
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n.longValue( ) 

float 

Float 

n = new Float(3.934F); 

n.floatValue( ) 

double 

Double 

n = new Double(3.934); 

n.doubleValue( ) 

String Objects 

A string is a sequence of characters that comes from some alphabet (the set of all 
possible characters). Each character c that makes up a string s can be referenced 
by its index in the string, which is equal to the number of characters that come 
before c in s (so the first character is at index 0). In Java, the alphabet used to 
define strings is the Unicode international character set, a 16-bit character 
encoding that covers most used written languages. Other programming languages 
tend to use the smaller ASCII character set (which is a proper subset of the 
Unicode alphabet based on a 7-bit encoding). In addition, Java defines a special 
built-in class of objects called String objects. 

     For example, a string P could be 

"hogs and dogs", 

which has length 13 and could have come from someone's Web page. In this case, 
the character at index 2 is 'g' and the character at index 5 is 'a'. Alternately, P 
could be the string "CGTAATAGTTAATCCG", which has length 16 and could 
have come from a scientific application for DNA sequencing, where the alphabet 
is {G, C, A, T}. 

Concatenation 

String processing involves dealing with strings. The primary operation for 
combining strings is called concatenation, which takes a string P and a string Q 
combines them into a new string, denoted P + Q, which consists of all the 
characters of P followed by all the characters of Q. In Java, the "+" operation 
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works exactly like this when acting on two strings. Thus, it is legal (and even 
useful) in Java to write an assignment statement like 

Strings = "kilo" + "meters"; 

This statement defines a variable s that references objects of the String class, 
and assigns it the string "kilometers". (We will discuss assignment statements 
and expressions such as that above in more detail later in this chapter.) Every 
object in Java is assumed to have a built-in method toString() that returns a 
string associated with the object. This description of the String class should be 
sufficient for most uses. We discuss the String class and its "relative" the 
StringBuffer class in more detail in Section 12.1. 

Object References 

As mentioned above, creating a new object involves the use of the new operator 
to allocate the object's memory space and use the object's constructor to initialize 
this space. The location, or address, of this space is then typically assigned to a 
reference variable. Therefore, a reference variable can be viewed as a "pointer" to 
some object. It is as if the variable is a holder for a remote control that can be 
used to control the newly created object (the device). That is, the variable has a 
way of pointing at the object and asking it to do things or give us access to its 
data. We illustrate this concept in Figure 1.4. 

Figure 1.4:  Illustrating the relationship between 
objects and object reference variables. When we 
assign an object reference (that is, memory address) to 
a reference variable, it is as if we are storing that 
object's remote control at that variable. 
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The Dot Operator 

Every object reference variable must refer to some object, unless it is null, in 
which case it points to nothing. Using the remote control analogy, a null reference 
is a remote control holder that is empty. Initially, unless we assign an object 
variable to point to something, it is null. 

There can, in fact, be many references to the same object, and each reference to a 
specific object can be used to call methods on that object. Such a situation would 
correspond to our having many remote controls that all work on the same device. 
Any of the remotes can be used to make a change to the device (like changing a 
channel on a television). Note that if one remote control is used to change the 
device, then the (single) object pointed to by all the remotes changes. Likewise, if 
we use one object reference variable to change the state of the object, then its state 
changes for all the references to it. This behavior comes from the fact that there 
are many references, but they all point to the same object. 

One of the primary uses of an object reference variable is to access the members 
of the class for this object, an instance of its class. That is, an object reference 
variable is useful for accessing the methods and instance variables associated with 
an object. This access is performed with the dot (".") operator. We call a method 
associated with an object by using the reference variable name, following that by 
the dot operator and then the method name and its parameters. 

This calls the method with the specified name for the object referred to by this 
object reference. It can optionally be passed multiple parameters. If there are 
several methods with this same name defined for this object, then the Java 
runtime system uses the one that matches the number of parameters and most 
closely matches their respective types. A method's name combined with the 
number and types of its parameters is called a method's signature, for it takes all 
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of these parts to determine the actual method to perform for a certain method call. 
Consider the following examples: 

          oven.cookDinner(); 

          oven.cookDinner(food); 

          oven.cookDinner(food, seasoning); 

Each of these method calls is actually referring to a different method with the 
same name defined in the class that oven belongs to. Note, however, that the 
signature of a method in Java does not include the type that the method returns, so 
Java does not allow two methods with the same signature to return different types. 

Instance Variables 

Java classes can define instance variables, which are also called fields. These 
variables represent the data associated with the objects of a class. Instance 
variables must have a type, which can either be a base type (such as int, 
float, double) or a reference type (as in our remote control analogy), that 
is, a class, such as String an interface (see Section 2.4), or an array (see Section 
1.5). A base-type instance variable stores the value of that base type, whereas an 
instance variable declared with a class name stores a reference to an object of that 
class. 

Continuing our analogy of visualizing object references as remote controls, 
instance variables are like device parameters that can be read or set from the 
remote control (such as the volume and channel controls on a television remote 
control). Given a reference variable v, which points to some object o, we can 
access any of the instance variables for o that the access rules allow. For example, 
public instance variables are accessible by everyone. Using the dot operator we 
can get the value of any such instance variable, i, just by using v.i in an arithmetic 
expression. Likewise, we can set the value of any such instance variable,i, by 
writing v.i on the left-hand side of the assignment operator ("="). (See Figure 1.5.) 
For example, if gnome refers to a Gnome object that has public instance variables 
name and age, then the following statements are allowed: 

          gnome.name = "Professor Smythe"; 

          gnome.age = 132; 

Also, an object reference does not have to only be a reference variable. It can also 
be any expression that returns an object reference. 

Figure 1.5:  Illustrating the way an object reference 
can be used to get and set instance variables in an 
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object (assuming we are allowed access to those 
variables). 

 

Variable Modifiers 

In some cases, we may not be allowed to directly access some of the instance 
variables for an object. For example, an instance variable declared as private in 
some class is only accessible by the methods defined inside that class. Such 
instance variables are similar to device parameters that cannot be accessed 
directly from a remote control. For example, some devices have internal 
parameters that can only be read or assigned by a factory technician (and a user is 
not allowed to change those parameters without violating the device's warranty). 

When we declare an instance variable, we can optionally define such a variable 
modifier, follow that by the variable's type and the identifier we are going to use 
for that variable. Additionally, we can optionally assign an initial value to the 
variable (using the assignment operator ("="). The rules for a variable name are 
the same as any other Java identifier. The variable type parameter can be either a 
base type, indicating that this variable stores values of this type, or a class name, 
indicating that this variable is a reference to an object from this class. Finally, the 
optional initial value we might assign to an instance variable must match the 
variable's type. For example, we could define a Gnome class, which contains 
several definitions of instance variables, shown in in Code Fragment 1.3. 
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The scope (or visibility) of instance variables can be controlled through the use of 
the following variable modifiers:  

• public: Anyone can access public instance variables. 

• protected: Only methods of the same package or of its subclasses can 
access protected instance variables. 

• private: Only methods of the same class (not methods of a subclass) can 
access private instance variables. 

• If none of the above modifiers are used, the instance variable is considered 
friendly. Friendly instance variables can be accessed by any class in the same 
package. Packages are discussed in more detail in Section 1.8. 

In addition to scope variable modifiers, there are also the following usage 
modifiers:  

• static: The static keyword is used to declare a variable that is associated 
with the class, not with individual instances of that class. Static variables are 
used to store "global" information about a class (for example, a static variable 
could be used to maintain the total number of Gnome objects created). Static 
variables exist even if no instance of their class is created. 

• final: A final instance variable is one that must be assigned an initial 
value, and then can never be assigned a new value after that. If it is a base type, 
then it is a constant (like the MAX_HEIGHT constant in the Gnome class). If 
an object variable is final, then it will always refer to the same object (even if 
that object changes its internal state). 

Code Fragment 1.3:  The Gnome class. 
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Note the uses of instance variables in the Gnome example. The variables age, 
magical, and height are base types, the variable name is a reference to an instance 
of the built-in class String, and the variable gnomeBuddy is a reference to an 
object of the class we are now defining. Our declaration of the instance variable 
MAX_HEIGHT in the Gnome class is taking advantage of these two modifiers to 
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define a "variable" that has a fixed constant value. Indeed, constant values 
associated with a class should always be declared to be both static and final. 

1.1.3  Enum Types 

Since 5.0, Java supports enumerated types, called enums. These are types that are 
only allowed to take on values that come from a specified set of names. They are 
declared inside of a class as follows: 

          modifier enum name { value_name0, value_name1, …, 
value_namen−1 }; 

where the modifier can be blank, public, protected, or private. The name of this 
enum, name, can be any legal Java identifier. Each of the value identifiers, 
valuenamei, is the name of a possible value that variables of this enum type can 
take on. Each of these name values can also be any legal Java identifier, but the 
Java convention is that these should usually be capitalized words. For example, the 
following enumerated type definition might be useful in a program that must deal 
with dates: 

          public enum Day { MON, TUE, WED, THU, FRI, SAT, SUN 
}; 

Once defined, we can use an enum type, such as this, to define other variables, 
much like a class name. But since Java knows all the value names for an 
enumerated type, if we use an enum type in a string expression, Java will 
automatically use its name. Enum types also have a few built-in methods, including 
a method valueOf, which returns the enum value that is the same as a given string. 
We show an example use of an enum type in Code Fragment 1.4. 

 
 
 
 
Code Fragment 1.4:  An example use of an enum 
type. 
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1.2  Methods 

Methods in Java are conceptually similar to functions and procedures in other 
highlevel languages. In general, they are "chunks" of code that can be called on a 
particular object (from some class). Methods can accept parameters as arguments, and 
their behavior depends on the object they belong to and the values of any parameters 
that are passed. Every method in Java is specified in the body of some class. A 
method definition has two parts: the signature, which defines the and parameters for 
a method, and the body, which defines what the method does. 

A method allows a programmer to send a message to an object. The method signature 
specifies how such a message should look and the method body specifies what the 
object will do when it receives such a message. 

Declaring Methods 

The syntax for defining a method is as follows: 

     modifiers type name(type0 parameter0,  …, typen−1 parametern−1) { 

          // method body … 

     } 
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Each of the pieces of this declaration have important uses, which we describe in 
detail in this section. The modifiers part includes the same kinds of scope modifiers 
that can be used for variables, such as public, protected, and static, with similar 
meanings. The type part of the declaration defines the return type of the method. 
The name is the name of the method, which can be any valid Java identifier. The 
list of parameters and their types declares the local variables that correspond to the 
values that are to be passed as arguments to this method. Each type declaration typei 
can be any Java type name and each parameteri can be any Java identifier. This list 
of parameters and their types can be empty, which signifies that there are no values 
to be passed to this method when it is invoked. These parameter variables, as well 
as the instance variables of the class, can be used inside the body of the method. 
Likewise, other methods of this class can be called from inside the body of a 
method. 

When a method of a class is called, it is invoked on a specific instance of that class 
and can change the state of that object (except for a static method, which is 
associated with the class itself). For example, invoking the following method on 
particular gnome changes its name. 

          public void renameGnome (String s) { 

             name = s; // Reassign the name instance variable 
of this gnome. 

          } 

Method Modifiers 

As with instance variables, method modifiers can restrict the scope of a method:  

• public: Anyone can call public methods. 

• protected: Only methods of the same package or of subclasses can call a 
protected method. 

• private: Only methods of the same class (not methods of a subclass) can 
call a private method. 

• If none of the modifiers above are used, then the method is friendly. 
Friendly methods can only be called by objects of classes in the same package. 

The above modifiers may be preceded by additional modifiers:  

• abstract: A method declared as abstract has no code. The signature of 
such a method is followed by a semicolon with no method body. For example: 

     public abstract void setHeight (double newHeight); 
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Abstract methods may only appear within an abstract class. We discuss the 
usefulness of this construct in Section 2.4. 

• final: This is a method that cannot be overridden by a subclass. 

• static: This is a method that is associated with the class itself, and not with 
a particular instance of the class. Static methods can also be used to change the 
state of static variables associated with a class (provided these variables are not 
declared to be final). 

Return Types 

A method definition must specify the type of value the method will return. If the 
method does not return a value, then the keyword void must be used. If the return 
type is void, the method is called a procedure; otherwise, it is called a function. To 
return a value in Java, a method must use the return keyword (and the type 
returned must match the return type of the method). Here is an example of a method 
(from inside the Gnome class) that is a function: 

          public booleanisMagical () { 

               returnmagical; 

          } 

As soon as a return is performed in a Java function, the method ends. 

Java functions can return only one value. To return multiple values in Java, we 
should instead combine all the values we wish to return in a compound object, 
whose instance variables include all the values we want to return, and then return a 
reference to that compound object. In addition, we can change the internal state of 
an object that is passed to a method as another way of "returning" multiple results. 

Parameters 

A method's parameters are defined in a comma-separated list enclosed in 
parentheses after the name of the method. A parameter consists of two parts, the 
parameter type and the parameter name. If a method has no parameters, then only 
an empty pair of parentheses is used. 

All parameters in Java are passed by value, that is, any time we pass a parameter to 
a method, a copy of that parameter is made for use within the method body. So if 
we pass an int variable to a method, then that variable's integer value is copied. 
The method can change the copy but not the original. If we pass an object reference 
as a parameter to a method, then the reference is copied as well. Remember that we 
can have many different variables that all refer to the same object. Changing the 
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internal reference inside a method will not change the reference that was passed in. 
For example, if we pass a Gnome reference g to a method that calls this parameter 
h, then this method can change the reference h to point to a different object, but g 
will still refer to the same object as before. Of course, the method can use the 
reference h to change the internal state of the object, and this will change g's object 
as well (since g and h are currently referring to the same object). 

Constructors 

A constructor is a special kind of method that is used to initialize newly created 
objects. Java has a special way to declare the constructor and a special way to 
invoke the constructor. First, let's look at the syntax for declaring a constructor: 

          modifiers name(type0 parameter0, …, typen−1 parametern−1) { 

               // constructor body … 

          } 

Thus, its syntax is essentially the same as that of any other method, but there are 
some important differences. The name of the constructor, name, must be the same 
as the name of the class it constructs. So, if the class is called Fish, the constructor 
must be called Fish as well. In addition, we don't specify a return type for a 
constructor—its return type is implicitly the same as its name (which is also the 
name of the class). Constructor modifiers, shown above as modifiers, follow the 
same rules as normal methods, except that an abstract, static, or final 
constructor is not allowed. 

Here is an example: 

          publicFish (intw, String n) { 

             weight = w; 

             name = n,; 

          } 

Constructor Definition and Invocation 

The body of a constructor is like a normal method's body, with a couple of minor 
exceptions. The first difference involves a concept known as constructor chaining, 
which is a topic discussed in Section 2.2.3 and is not critical at this point. 

The second difference between a constructor body and that of a regular method is 
that return statements are not allowed in a constructor body. A constructor's body 
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is intended to be used to initialize the data associated with objects of this class so 
that they may be in a stable initial state when first created. 

Constructors are invoked in a unique way: they must be called using the new 
operator. So, upon invocation, a new instance of this class is automatically created 
and its constructor is then called to initialize its instance variables and perform other 
setup tasks. For example, consider the following constructor invocation (which is 
also a declaration for the myFish variable): 

          Fish myFish = new Fish (7, "Wally"); 

A class can have many constructors, but each must have a different signature, that 
is, each must be distinguished by the type and number of the parameters it takes. 

The main Method 

Some Java classes are meant to be used by other classes, others are meant to be 
stand-alone programs. Classes that define stand-alone programs must contain one 
other special kind of method for a class—the main method. When we wish to 
execute a stand-alone Java program, we reference the name of the class that defines 
this program by issuing the following command (in a Windows, Linux, or UNIX 
shell): 

          java Aquarium 

In this case, the Java run-time system looks for a compiled version of the 
Aquarium class, and then invokes the special main method in that class. This 
method must be declared as follows: 

          public static voidmain(String[] args){ 

               // main method body … 

          } 

The arguments passed as the parameter args to the main method are the 
commandline arguments given when the program is called. The args variable is an 
array of String objects, that is, a collection of indexed strings, with the first string 
being args[0], the second being args[1], and so on. (We say more about arrays in 
Section 1.5.) 

Calling a Java Program from the Command Line 

Java programs can be called from the command line using the java command, 
followed by the name of the Java class whose main method we wish to run, plus 
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any optional arguments. For example, we may have defined the Aquarium 
program to take an optional argument that specifies the number of fish in the 
aquarium. We could then invoke the program by typing the following in a shell 
window: 

          java Aquarium 45 

to specify that we want an aquarium with 45 fish in it. In this case, args[0] would 
refer to the string "45". One nice feature of the main method in a class definition is 
that it allows each class to define a stand-alone program, and one of the uses for this 
method is to test all the other methods in a class. Thus, thorough use of the main 
method is an effective tool for debugging collections of Java classes. 

Statement Blocks and Local Variables 

The body of a method is a statement block, which is a sequence of statements and 
declarations to be performed between the braces "{" and "}". Method bodies and 
other statement blocks can themselves have statement blocks nested inside of them. 
In addition to statements that perform some action, like calling the method of some 
object, statement blocks can contain declarations of local variables. These variables 
are declared inside the statement body, usually at the beginning (but between the 
braces "{" and "}"). Local variables are similar to instance variables, but they only 
exist while the statement block is being executed. As soon as control flow exits out 
of that block, all local variables inside it can no longer be referenced. A local 
variable can either be a base type (such as int, float, double) or a 
reference to an instance of some class. Single statements and declarations in Java 
are always terminated by a semicolon, that is, a ";". 

     There are two ways of declaring local variables: 

     type name; 

     type name = initial_value; 

The first declaration simply defines the identifier, name, to be of the specified type. 
The second declaration defines the identifier, its type, and also initializes this 
variable to the specified value. Here are some examples of local variable 
declarations: 

          { 

            double r; 

            Point p1 = new Point (3, 4); 

            Point p2 = new Point (8, 2); 
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            int i = 512; 

            double e = 2.71828; 

          } 

1.3  Expressions 

Variables and constants are used in expressions to define new values and to modify 
variables. In this section, we discuss how expressions work in Java in more detail. 
Expressions involve the use of literals, variables, and operators. Since we have 
already discussed variables, let us briefly focus on literals and then discuss operators 
in some detail. 

1.3.1  Literals 

A literal is any "constant" value that can be used in an assignment or other 
expression. Java allows the following kinds of literals:  

• The null object reference (this is the only object literal, and it is defined 
to be from the general Object class). 

• Boolean: true and false. 

• Integer: The default for an integer like 176, or -52 is that it is of type int, 
which is a 32-bit integer. A long integer literal must end with an "L" or "l," for 
example, 176L or −52l, and defines a 64-bit integer. 

• Floating Point: The default for floating- numbers, such as 3.1415 and 
10035.23, is that they are double. To specify that a literal is a float, it must 
end with an "F" or "f." Floating-point literals in exponential notation are also 
allowed, such as 3.14E2 or .19e10; the base is assumed to be 10. 

• Character: In Java, character constants are assumed to be taken from the 
Unicode alphabet. Typically, a character is defined as an individual symbol 
enclosed in single quotes. For example, 'a' and '?' are character constants. In 
addition, Java defines the following special character constants: 

     '\n' (newline) 

     '\t' (tab) 

     '\b' (backspace) 

     '\r' (return) 
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     '\f' (formfeed) 

     '\\' (backslash) 

     '\'' (single quote) 

     '\"' (double quote). 

• String Lieral: A string literal is a sequence of characters enclosed in 
double quotes, for example, the following is a string literal: 

"dogs cannot climb trees" 

1.3.2  Operators 

Java expressions involve composing literals and variables with operators. We 
survey the operators in Java in this section. 

The Assignment Operator 

The standard assignment operator in Java is "=". It is used to assign a value to an 
instance variable or local variable. Its syntax is as follows: 

          variable = expression 

where variable refers to a variable that is allowed to be referenced by the 
statement block containing this expression. The value of an assignment operation 
is the value of the expression that was assigned. Thus, if i and j are both 
declared as type int, it is correct to have an assignment statement like the 
following: 

i = j = 25;// works because '=' operators are 
evaluated right-to-left 

Arithmetic Operators 

The following are binary arithmetic operators in Java: 

                                                                                          + addition 

                                                                                          − subtraction 

                                                                                          * multiplication 

                                                                                          / division 
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                                                                                          % the modulo operator 

This last operator, modulo, is also known as the "remainder" operator, because it 
is the remainder left after an integer division. We often use "mod" to denote the 
modulo operator, and we define it formally as 

n mod m = r, 

such that 

n = mq + r, 

for an integer q and 0 ≤ r < n. 

Java also provides a unary minus (−), which can be placed in front of an arithm 
etic expression to invert its sign. Parentheses can be used in any expression to 
define the order of evaluation. Java also uses a fairly intuitive operator precedence 
rule to determine the order of evaluation when parentheses are not used. Unlike 
C++, Java does not allow operator overloading. 

Increment and Decrement Operators 

Like C and C++, Java provides increment and decrement operators. Specifically, 
it provides the plus-one increment (++) and decrement (−−) operators. If such an 
operator is used in front of a variable reference, then 1 is added to (or subtracted 
from) the variable and its value is read into the expression. If it is used after a 
variable reference, then the value is first read and then the variable is incremented 
or decremented by 1. So, for example, the code fragment 

          int i = 8; 

          int j = i++; 

          int k = ++i; 

          int m = i−−; 

          int n = 9 + i++; 

assigns 8 to j, 10 to k, 10 to m, 18 to n, and leaves i with value 10. 

Logical Operators 

Java allows for the standard comparison operators between numbers: 

                                                                                           <  less than 
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                                                                                          <= less than or equal to 

                                                                                          == equal to 

                                                                                          !=  not equal to 

                                                                                          >= greater than or equal 
to 

                                                                                           > greater than 

The operators == and != can also be used for object references. The type of the 
result of a comparison is a boolean. 

Operators that operate on boolean values are the following: 

                                                                                          !      not (prefix) 

                                                                                          &&      conditional and 

                                                                                          �      conditional or 

The Boolean operators && and � will not evaluate the second operand (to the 
right) in their expression if it is not needed to determine the value of the 
expression. This feature is useful, for example, for constructing Boolean 
expressions where we first test that a certain condition holds (such as a reference 
not being null), and then test a condition that could have otherwise generated an 
error condition had the prior test not succeeded. 

Bitwise Operators 

Java also provides the following bitwise operators for integers and Booleans: 

                                                                      �   bitwise complement (prefix unary 
operator) 

                                                                      &   bitwise and 

                                                                       |   bitwise or 

                                                                       ^   bitwise exclusive-or 

                                                                     < <   shift bits left, filling in with zeros 

                                                                     > >   shift bits right, filling in with sign 
bit 
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                                                                     >>>   shift bits right, filling in with 
zeros 

Operational Assignment Operators 

Besides the standard assignment operator (=), Java also provides a number of 
other assignment operators that have operational side effects. These other kinds of 
operators are of the following form: 

          variable op = expression 

where op is any binary operator. The above expression is equivalent to 

          variable = variable op expression 

except that if variable contains an expression (for example, an array index), 
the expression is evaluated only once. Thus, the code fragment 

          a [5] = 10; 

          i = 5; 

          a[i++] += 2; 

leaves a [5] with value 12 and i with value 6. 

String Concatenation 

Strings can be composed using the concatenation operator (+), so that the code 

          String rug = "carpet"; 

          String dog = "spot"; 

          String mess = rug + dog; 

          String answer = mess + " will cost me " + 5 + " 
dollars!"; 

would have the effect of making answer refer to the string 

          "carpetspot will cost me 5 dollars!" 

This example also shows how Java converts nonstring constants into strings, 
when they are involved in a string concatenation operation. 
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Operator Precedence 

Operators in Java are given preferences, or precedence, that determine the order in 
which operations are performed when the absence of parentheses brings up 
evaluation ambiguities. For example, we need a way of deciding if the expression, 
"5+2*3," has value 21 or 11 (Java says it is 11). 

We show the precedence of the operators in Java (which, incidentally, is the same 
as in C) in Table 1.3. 

Table 1.3:  The Java precedence rules. Operators in 
Java are evaluated according to the above ordering, if 
parentheses are not used to determine the order of 
evaluation. Operators on the same line are evaluated 
in left-to-right order (except for assignment and prefix 
operations, which are evaluated right-to-left), subject 
to the conditional evaluation rule for Boolean and and 
or operations. The operations are listed from highest 
to lowest precedence (we use exp to denote an atomic 
or parenthesized expression). Without 
parenthesization, higher precedence operators are 
performed before lower precedence operators. 

Operator Precedence 

Type 

Symbols 

1 

postfix ops prefix ops cast 

exp ++ exp −− ++exp −−exp +exp −exp ∼exp !exp (type) exp 

2 

mult./div. 

* / % 
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3 

add./subt. 

+ − 

4 

shift 

<< >> >>> 

5 

comparison 

< <= > >= instanceof 

6 

equality 

== != 

7 

bitwise-and 

& 

8 

bitwise-xor 

^ 

9 

bitwise-or 

| 

10 

and 

&& 

11 
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or 

� 

12 

conditional 

boolean_expression? value_if_true: 
value_if_false 

13 

assignment 

= += −= *= /= %= >>= <<= >>>=&= ^= | = 

We have now discussed almost all of the operators listed in Table 1.3. A notable 
exception is the conditional operator, which involves evaluating a Boolean 
expression and then taking on the appropriate value depending on whether this 
Boolean expression is true or false. (We discuss the use of the instanceof 
operator in the next chapter.) 

1.3.3  Casting and Autoboxing/Unboxing in Expressions 

Casting is an operation that allows us to change the type of a variable. In essence, 
we can take a variable of one type and cast it into an equivalent variable of another 
type. Casting can be useful for doing certain numerical and input/output operations. 

          The syntax for casting an expression to a desired type is as follows: 

          (type) exp 

where type is the type that we would like the expression exp to have. There are two 
fundamental types of casting that can be done in Java. We can either cast with 
respect to the base numerical types or we can cast with respect to objects. here, we 
discuss how to perform casting of numerical and string types, and we discuss object 
casting in Section 2.5.1. For instance, it might be helpful to cast an int to a 
double in order to perform operations like division. 

Ordinary Casting 

When casting from a double to an int, we may lose precision. This means that 
the resulting double value will be rounded down. But we can cast an int to a 
double without this worry. For example, consider the following: 
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          double d1 = 3.2; 

          double d2 = 3.9999; 

          int i1 = (int)d1;                 // i1 has value 3 

          int i2 = (int)d2;                 // i2 has value 3 

          double d3 = (double)i2;   // d3 has value 3.0 

Casting with Operators 

Certain binary operators, like division, will have different results depending on 
the variable types they are used with. We must take care to make sure operations 
perform their computations on values of the intended type. When used with 
integers, division does not keep track of the fractional part, for example. When 
used with doubles, division keeps this part, as is illustrated in the following 
example: 

          int i1 = 3; 

          int i2 = 6; 

          dresult = (double)i1 / (double)i2;// dresult has 
value 0.5 

          dresult = i1 / i2;                                     // dresult has 
value 0.0 

Notice that when i1 and i2 were cast to doubles, regular division for real 
numbers was performed. When i1 and i2 were not cast, the " /" operator 
performed an integer division and the result of i1 / i2 was the int 0. Then, 
JavaJava then did an implicit cast to assign an int value to the double result. 
We discuss implicit casting next. 

Implicit Casting and Autoboxing/Unboxing 

There are cases where Java will perform an implicit cast, according to the type of 
the assignment variable, provided there is no loss of precision. For example: 

          int iresult, i = 3; 

          double dresult, d = 3.2; 

          dresult = i / d;                 // dresult is 0.9375. i was 
cast to a double 
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          iresult = i / d;                 // loss of precision −> 
this is a compilation error 

          iresult = (int) i / d;     // iresult is 0, since the 
fractional part is lost 

Note that since Java will not perform implicit casts where precision is lost, the 
explicit cast in the last line above is required. 

Since Java 5.0, there is a new kind of implicit cast, for going between Number 
objects, like Integer and Float, and their related base types, like int and 
float. Any time a Number object is expected as a parameter to a method, the 
corresponding base type can be passed. In this case, Java will perform an implicit 
cast, called autoboxing, which will convert the base type to its corresponding 
Number object. Likewise, any time a base type is expected in an expression 
involving a Number reference, that Number object is changed to the 
corresponding base type, in an operation called unboxing. 

There are few caveats regarding autoboxing and unboxing, however. One is that if 
a Number reference is null, then trying to unbox it will generate an error, called 
NullPointerException. Second, the operator, "==", is used both to test the 
equality of base type values as well as whether two Number references are 
pointing to the same object. So when testing for equality, try to avoid the implicit 
casts done by autoboxing and unboxing. Finally, implicit casts, of any kind, take 
time, so we should try to minimize our reliance on them if performance is an 
issue. 

Incidentally, there is one situation in Java when only implicit casting is allowed, 
and that is in string concatenation. Any time a string is concatenated with any 
object or base type, that object or base type is automatically converted to a string. 
Explicit casting of an object or base type to a string is not allowed, however. 
Thus, the following assignments are incorrect: 

          String s = (String) 4.5; ;                       // this is 
wrong! 

          String t = "Value = " + (String) 13;// this is 
wrong! 

          String u = 22;                                              // this is wrong! 

To perform a conversion to a string, we must instead use the appropriate 
toString method or perform an implicit cast via the concatenation operation. 

Thus, the following statements are correct: 
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          String s = " " + 4.5;                                 // correct, but 
poor style 

          String t = "Value = " + 13;                    // this is good 

          String u = Integer.toString(22);          // this is 
good 

1.4  Control Flow 

Control flow in Java is similar to that of other high-level languages. We review the 
basic structure and syntax of control flow in Java in this section, including method 
returns, if statements, switch statements, loops, and restricted forms of "jumps" 
(the break and continue statements). 

1.4.1  The If and Switch Statements 

In Java, conditionals work similarly to the way they work in other languages. They 
provide a way to make a decision and then execute one or more different statement 
blocks based on the outcome of that decision. 

The If Statement 

The syntax of a simple if statement is as follows: 

          if (boolean_exp) 

               true_statement 

          else 

               false_statement 

where boolean_exp is a Boolean expression and true_statement and 
false_statement are each either a single statment or a block of statements enclosed 
in braces ("{" and "}"). Note that, unlike some similar languages, the value tested 
by an if statement in Java must be a Boolean expression. In particular, it is 
definitely not an integer expression. Nevertheless, as in other similar languages, 
the else part (and its associated statement) in a Java if statement is optional. 
There is also a way to group a number of Boolean tests, as follows: 

          if (first_boolean_exp) 

                 true_statement 
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          else if (second_boolean_exp) 

                  second_true_statement 

          else 

                  false_statement 

If the first Boolean expression is false, the second Boolean expression will be 
tested, and so on. An if statement can have an arbitrary number of else if 
parts. 

For example, the following is a correct if statement. 

          if (snowLevel < 2) { 

               goToClass(); 

               comeHome(); 

          } 

          else if (snowLevel < 5) { 

               goSledding(); 

               haveSnowballFight(); 

          } 

          else 

               stayAtHome(); 

  

   

Switch Statements 

Java provides for multiple-value control flow using the switch statement, which is 
especially useful with enum types. The following is an indicative example (based 
on a variable d of the Day enum type of Section 1.1.3). 

          switch (d) { 

             case MON: 
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                System.out.println("This is tough."); 

                break; 

             case TUE: 

                System.out.println("This is getting better."); 

                break; 

             case WED: 

                System.out.println("Half way there."); 

                break; 

             case THU: 

                System.out.println("I can see the light."); 

                break; 

             case FRI: 

                System.out.println("Now we are talking."); 

                break; 

             default: 

                System.out.println("Day off ! "); 

                break; 

          } 

The switch statement evaluates an integer or enum expression and causes 
control flow to jump to the code location labeled with the value of this expression. 
If there is no matching label, then control flow jumps to the location labeled 
"default." This is the only explicit jump performed by the switch 
statement, however, so flow of control "falls through" to other cases if the code 
for each case is not ended with a break statement (which causes control flow to 
jump to the next line after the switch statement). 

1.4.2  Loops 
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Another important control flow mechanism in a programming language is looping. 
Java provides for three types of loops. 

While Loops 

The simplest kind of loop in Java is a while loop. Such a loop tests that a certain 
condition is satisfied and will perform the body of the loop each time this 
condition is evaluated to be true. The syntax for such a conditional test before a 
loop body is executed is as follows: 

          while (boolean_exp) 

               loop_statement 

At the beginning of each iteration, the loop tests the expression, boolean exp, and 
then executes the loop body, loop_statement, only if this Boolean expression 
evaluates to true. The loop body statement can also be a block of statements. 

Consider, for example, a gnome that is trying to water all of the carrots in his 
carrot patch, which he does as long as his watering can is not empty. Since his can 
might be empty to begin with, we would write the code to perform this task as 
follows: 

          public void waterCarrots () { 

               Carrot current = garden.findNextCarrot (); 

               while (!waterCan.isEmpty ()) { 

                    water (current, waterCan); 

                    current = garden.findNextCarrot (); 

               } 

          } 

Recall that "!" in Java is the "not" operator. 

For Loops 

Another kind of loop is thefor loop. In their simplest form, for loops provide 
for repeated code based on an integer index. In Java, we can do that and much 
more. The functionality of a for loop is significantly more flexible. In particular, 
the usage of a for loop is split into four sections: the initialization, the condition, 
the increment, and the body. 
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Defining a For Loop 

Here is the syntax for a Java for loop: 

          for (initialization; condition; increment) 

               loop_statement 

where each of the sections initialization, condition, and increment can be empty. 

In the initialization section, we can declare an index variable that will only exist 
in the scope of the for loop. For example, if we want a loop that indexes on a 
counter, and we have no need for the counter variable outside of the for loop, 
then declaring something like the following 

          for (int counter = 0; condition; increment) 

               loop_statement 

will declare a variable counter whose scope is the loop body only. 

In the condition section, we specify the repeat (while) condition of the loop. This 
must be a Boolean expression. The body of the for loop will be executed each 
time the condition is true when evaluated at the beginning of a potential 
iteration. As soon as condition evaluates to false, then the loop body is not 
executed, and, instead, the program executes the next statement after the for 
loop. 

In the increment section, we declare the incrementing statement for the loop. The 
incrementing statement can be any legal statement, allowing for significant 
flexibility in coding. Thus, the syntax of a for loop is equivalent to the 
following: 

          initialization; 

          while (condition) { 

               loop_statement; 

               increment; 

          } 

except that, in Java, a while loop cannot have an empty Boolean condition, 
whereas a for loop can. The following example shows a simple for loop in 
Java: 
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          public void eatApples (Apples apples) { 

               numApples = apples.getNumApples (); 

               for (int x = 0; × < numApples; ×++) { 

                    eatApple (apples.getApple (×)); 

                    spitOutCore (); 

               } 

          } 

In the Java example above, the loop variable x was declared as int x = 0. 
Before each iteration, the loop tests the condition " x < numApples" and 
executes the loop body only if this is true. Finally, at the end of each iteration the 
loop uses the statement x++ to increment the loop variable x before again testing 
the condition. 

Incidentally, since 5.0, Java also includes a for-each loop, which we discuss in 
Section 6.3.2. 

Do-While Loops 

Java has yet another kind of loop besides the for loop and the standard while 
loop—the do-while loop. The former loops tests a condition before performing 
an iteration of the loop body, the do-while loop tests a condition after the loop 
body. The syntax for a do-while loop is as shown below: 

          do 

               loop_statement 

          while (boolean_exp) 

Again, the loop body statement, loop_statement, can be a single statement or a 
block of statements, and the conditional, boolean_exp, must be a Boolean 
expression. In a do-while loop, we repeat the loop body for as long as the 
condition is true each time it is evaluated. 

Consider, for example, that we want to prompt the user for input and then do 
something useful with that input. (We discuss Java input and output in more detail 
in Section 1.6.) A possible condition, in this case, for exiting the loop is when the 
user enters an empty string. However, even in this case, we may want to handle 
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that input and inform the user that he or she has quit. The following example 
illustrates this case: 

          public void getUserInput() { 

               String input; 

               do { 

                    input = getInputString(); 

                    handleInput(input); 

               } while (input.length()>0); 

          } 

Notice the exit condition for the above example. Specifically, it is written to be 
consistent with the rule in Java that do-while loops exit when the condition is 
not true (unlike the repeat-until construct used in other languages). 

1.4.3  Explicit Control-Flow Statements 

Java also provides statements that allow for explicit change in the flow of control of 
a program. 

Returning from a Method 

If a Java method is declared with a return type of void, then flow of control 
returns when it reaches the last line of code in the method or when it encounters a 
return statement with no argument. If a method is declared with a return type, 
however, the method is a function and it must exit by returning the function's 
value as an argument to a return statement. The following (correct) example 
illustrates returning from a function: 

      // Check for a specific birthday 

      public boolean checkBDay (int date) { 

        if (date == Birthdays.MIKES_BDAY) { 

          return true; 

        } 

        return false; 
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      } 

It follows that the return statement must be the last statement executed in a 
function, as the rest of the code will never be reached. 

Note that there is a significant difference between a statement being the last line 
of code that is executed in a method and the last line of code in the method itself. 
In the example above, the line return true; is clearly not the last line of code 
that is written in the function, but it may be the last line that is executed (if the 
condition involving date is true). Such a statement explicitly interrupts the flow 
of control in the method. There are two other such explicit control-flow 
statements, which are used in conjunction with loops and switch statements. 

The break Statement 

The typical use of a break statement has the following simple syntax: 

          break; 

It is used to "break" out of the innermost switch, for, while, or do-
while statement body. When it is executed, a break statement causes the flow of 
control to jump to the next line after the loop or switch to the body containing 
the break. 

The break statement can also be used in a labeled form to jump out of an 
outernested loop or switch statement. In this case, it has the syntax 

          break label; 

where label is a Java identifier that is used to label a loop or switch statement. 
Such a label can only appear at the beginning of the declaration of a loop. There 
are no other kinds of "go to" statements in Java. 

We illustrate the use of a label with a break statement in the following simple 
example: 

public static boolean hasZeroEntry (int[][] a) { 

   boolean foundFlag = false; 

 zeroSearch: 

  for (int i=0; i<a.length; i++) { 

      for (int j=0; j<a[i].length; j++) { 
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        if (a[i][j] == 0) { 

           foundFlag = true; 

           break zeroSearch; 

        } 

      } 

  } 

  return foundFlag; 

} 

The example above also uses arrays, which are covered in Section 3.1. 

The continue Statement 

The other statement to explicitly change the flow of control in a Java program is 
the continue statement, which has the following syntax: 

          continue label; 

where label is an optional Java identifier that is used to label a loop. As 
mentioned above, there are no explicit "go to" statements in Java. Likewise, the 
continue statement can only be used inside loops (for, while, and do-
while). The continue statement causes the execution to skip over the 
remaining steps of the loop body in the current iteration (but then continue the 
loop if its condition is satisfied). 

1.5  Arrays 

A common programming task is to keep track of a numbered group of related objects. 
For example, we may want a video game to keep track of the top ten scores for that 
game. Rather than use ten different variables for this task, we would prefer to use a 
single name for the group and use index numbers to refer to the high scores in that 
group. Similarly, we may want a medical information system to keep track of the 
patients currently assigned to beds in a certain hospital. Again, we would rather not 
have to introduce 200 variables in our program just because the hospital has 200 beds. 

In such cases, we can save programming effort by using an array, which is a 
numbered collection of variables all of the same type. Each variable, or cell, in an 
array has an index, which uniquely refers to the value stored in that cell. The cells of 
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an array a are numbered 0, 1,2, and so on. We illustrate an array of high scores for a 
video game in Figure 1.6. 

Figure 1.6: An illustration of an array of ten (int) high 
scores for a video game. 

 

Such an organization is quite useful, for it allows us to do some interesting 
computations. For example, the following method adds up all the numbers in an array 
of integers: 

     /** Adds all the numbers in an integer array. */ 

     public static int sum(int[] a) { 

     int total = 0; 

     for (int i=0; i < a.length; i==) // note the use of the length 
variable 

       total += a[i]; 

     return total; 

     } 

This example takes advantage of a nice feature of Java, which allows us to find the 
number of cells an array stores, that is, its length. In Java, an array a is a special kind 
of object and the length of a is stored in an instance variable, length. That is, we 
never need to guess the length of an array in Java, the length of an array can be 
accessed as follows: 

          array_name.length 

where array_name is the name of the array. Thus, the cells of an array a are 
numbered 0, 1,2, and so on, up to a.length − 1. 

Array Elements and Capacities 

Each object stored in an array is called an element of that array. Element number 0 
is a[0], element number 1 is a[1], element number 2 is a[2], and so on. Since the 
length of an array determines the maximum number of things that can be stored in 
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the array, we will sometimes refer to the length of an array as its capacity. We show 
another simple use of an array in the following code fragment, which counts the 
number of times a certain number appears in an array: 

     /** Counts the number of times an integer appears in 
an array. */ 

     public static int findCount(int[] a, int k) { 

      int count = 0; 

      for (int e: a) {                   // note the use of the "foreach" loop 

        if (e == k)  // check if the current element equals k 

          count++; 

      } 

      return count; 

     } 

Out of Bounds Errors 

It is a dangerous mistake to attempt to index into an array a using a number outside 
the range from 0 to a.length &minus; 1. Such a reference is said to be out of 
bounds. Out of bounds references have been exploited numerous times by hackers 
using a method called the buffer overflow attack to compromise the security of 
computer systems written in languages other than Java. As a safety feature, array 
indices are always checked in Java to see if they are ever out of bounds. If an array 
index is out of bounds, the run-time Java environment signals an error condition. 
The name of this condition is the ArrayIndexOutOfBoundsException. This 
check helps Java avoid a number of security problems (including buffer overflow 
attacks) that other languages must cope with. 

We can avoid out-of-bounds errors by making sure that we alway index into an 
array, a, using an integer value between 0 and a.length. One shorthand way we 
can do this is by carefully using the early termination feature of Boolean operations 
in Java. For example, a statement like the following will never generate an index 
out-of-bounds error: 

     if ((i >= 0) && (i < a.length) && (a[i] > 2) ) 

       × = a[i]; 

 61



for the comparison "a[i] > 0.5" will only be performed if the first two 
comparisons succeed. 

1.5.1  Declaring Arrays 

One way to declare and initialize an array is as follows: 

          element_type[] array_name = {init_val_0,init_val_1,…,init_val_N−1}; 

The element_type can be any Java base type or class name, and array_name can be 
any value Java identifier. The initial values must be of the same type as the array. 
For example, consider the following declaration of an array that is initialized to 
contain the first ten prime numbers: 

          int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; 

In addition to creating an array and defining all its initial values when we declare it, 
we can declare an array variable without initializing it. The form of this declaration 
is as follows: 

          element_type[] array_name; 

An array created in this way is initialized with all zeros if the array type is a number 
type. Arrays of objects are initialized to all null references. Once we have 
declared an array in this way, we can create the collection of cells for an array later 
using the following syntax: 

          new element_type[length] 

where length is a positive integer denoting the length of the array created. Typically 
this expression appears in an assignment statement with an array name on the left 
hand side of the assignment operator. So, for example, the following statement 
defines an array variable named a, and later assigns it an array of 10 cells, each of 
type double, which it then initializes: 

          double[] a; 

          //… various steps … 

          a = new double[10]; 

          for (int k=0; k < a.length; k++) { 

              a[k] = 1.0; 

          } 
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The cells of this new array, "a," are indexed using the integer set {0,1,2,… ,9} 
(recall that arrays in Java always start indexing at 0), and, like every array in Java, 
all the cells in this array are of the same type—double. 

1.5.2  Arrays are Objects 

Arrays in Java are special kinds of objects. In fact, this is the reason we can use the 
new operator to create a new instance of an array. An array can be used just like 
any general object in Java, but we have a special syntax (using square brackets, "[" 
and "]") to refer to its members. An array in Java can do everything that a general 
object can. Since an array is an object, though, the name of an array in Java is 
actually a reference to the place in memory where the array is stored. Thus, there is 
nothing too special about using the dot operator and the instance variable, length, to 
refer to the length of an array, for example, as "a.length." The name, a, in this 
case is just a reference, or pointer, to the underlying array object. 

The fact that arrays in Java are objects has an important implication when it comes 
to using array names in assignment statements. For when we write something like 

          b = a; 

in a Java program, we really mean that b and a now both refer to the same array. 
So, if we then write something like 

          b[3] = 5; 

then we will also be setting the number a [3] to 5. We illustrate this crucial point in 
Figure 1.7. 

Figure 1.7: An illustration of an assignment of array 
objects. We show the result of setting "b[3] = 5;" 
after previously setting "b = a;". 
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Cloning an Array 

If instead, we wanted to create an exact copy of the array, a, and assign that array 
to the array variable, b, we should write 

          b = a.clone(); 

which copies all of the cells of a into a new array and assigns b to point to that 
new array. In fact, the clone method is a built-in method of every Java object, 
which makes an exact copy of that object. In this case, if we then write 

          b[3] = 5; 

then the new (copied) array will have its cell at index 3, assigned the value 5, but 
a[3] will remain unchanged. We illustrate this point in Figure 1.8. 

Figure 1.8: An illustration of cloning of array objects. 
We show the result of setting "b[3] = 5;" after 
previously setting "b = a.clone();". 

 

We should stress that the cells of an array are copied when we clone it. If the cells 
are a base type, like int, their values are copied. But if the cells are object 
references, then those references are copied. This means that there are now two 
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ways to reference such an object. We explore the consequences of this fact in 
Exercise R-1.1. 

1.6  Simple Input and Output 

Java provides a rich set of classes and methods for performing input and output 
within a program. There are classes in Java for doing graphical user interface design, 
complete with pop-up windows and pull-down menus, as well as methods for the 
display and input of text and numbers. Java also provides methods for dealing with 
graphical objects, images, sounds, Web pages, and mouse events (such as clicks, 
mouse overs, and dragging). Moreover, many of these input and output methods can 
be used in either stand-alone programs or in applets. 

Unfortunately, going into the details on how all of the methods work for constructing 
sophisticated graphical user interfaces is beyond the scope of this book. Still, for the 
sake of completeness, we describe how simple input and output can be done in Java 
in this section. 

Simple input and output in Java occurs within the Java console window. Depending 
on the Java environment we are using, this window is either a special pop-up window 
that can be used for displaying and inputting text, or a window used to issue 
commands to the operating system (such windows are referred to as shell windows, 
DOS windows, or terminal windows). 

Simple Output Methods 

Java provides a built-in static object, called System.out, that performs output to 
the "standard output" device. Most operating system shells allow users to redirect 
standard output to files or even as input to other programs, but the default output is 
to the Java console window. The System.out object is an instance of the 
java.io.PrintStream class. This class defines methods for a buffered 
output stream, meaning that characters are put in a temporary location, called a 
buffer, which is then emptied when the console window is ready to print characters. 

Specifically, the java.io.PrintStream class provides the following methods 
for performing simple output (we use base_type here to refer to any of the possible 
base types): 

                 print(Object o): Print the object o using its toString method. 

                 print(String s): Print the string s. 

          print(base_type b): Print the base type value b. 

             println(String s): Print the string s, followed by the newline 
character. 
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An Output Example 

Consider, for example, the following code fragment: 

          System.out.print("Java values: "); 

          System.out.print(3.1415); 

          System.out.print(','); 

          System.out.print(15); 

          System.out.println(" (double,char,int) ."); 

When executed, this fragment will output the following in the Java console 
window: Java values: 3.1415,15 (double,char,int). 

Simple Input Using the java.util.Scanner Class 

Just as there is a special object for performing output to the Java console window, 
there is also a special object, called System.in, for performing input from the 
Java console window. Technically, the input is actually coming from the "standard 
input" device, which by default is the computer keyboard echoing its characters in 
the Java console. The System.in object is an object associated with the standard 
input device. A simple way of reading input with this object is to use it to create a 
Scanner object, using the expression 

          new Scanner(System.in) 

The Scanner class has a number of convenient included methods that read from 
the given input stream. For example, the following program uses a Scanner object 
to process input: 

import java.io.*; 

import java.util.Scanner; 

public class InputExample { 

  public static void main(String args[]) throws 
IOException { 

    Scanner s = new Scanner(System.in); 

    System.out.print("Enter your height in centimeters: 
"); 
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    float height = s.nextFloat(); 

    System.out.print("Enter your weight in kilograms: "); 

    float weight = s.nextFloat(); 

    float bmi = weight/(height*height)*10000; 

    System.out.println("Your body mass index is " + bmi + 
"."); 

  } 

} 

When executed, this program could produce the following on the Java console: 

Enter your height in centimeters:180 

Enter your weight in kilograms: 80.5 

Your body mass index is 24.84568. 

java.util.Scanner Methods 

The Scanner class reads the input stream and divides it into tokens, which are 
contiguous strings of characters separated by delimiters, which are special 
separating characters. The default delimiter is whitespace, that is, tokens are 
separated by strings of spaces, tabs, and newlines, by default. Tokens can either be 
read immediately as strings or a Scanner object can convert a token to a base 
type, if the token is in the right syntax. Specifically, the Scanner class includes 
the following methods for dealing with tokens: 

        hasNext(): Return true if and only if there is another token in the input 
stream. 

             next(): Return the next token string in the input stream; generate an error 
if there are no more tokens left. 

  hasNextType(): Return true if and only if there is another token in the input 
stream and it can be interpreted as the corresponding base type, Type, where Type 
can be Boolean, Byte, Double, Float, Int, Long, or Short. 

   nextType(): Return the next token in the input stream, returned as the base 
type corresponding to Type; generate an error if there are no more tokens left or if 
the next token cannot be interpreted as a base type corresponding to Type. 
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Additionally, Scanner objects can process input line by line, ignoring delimiters, 
and even look for patterns within lines while doing so. The methods for processing 
input in this way include the following: 

       hasNextLine(): Returns true if and only if the input stream has another 
line of text. 

             nextLine(): Advances the input past the current line ending and returns 
the input that was skipped. 

 findInLine(String s): Attempts to find a string matching the (regular 
expression) pattern s in the current line. If the pattern is found, it is returned and the 
scanner advances to the first character after this match. If the pattern is not found, 
the scanner returns null and doesn't advance. 

These methods can be used with those above, as well, as in the following: 

Scanner input = new Scanner(System.in); 

System.out.print("Please enter an integer: "); 

while (!input.hasNextInt()) { 

   input. nextLine(); 

   System.out.print("That' s not an integer; please enter 
an integer: "); 

} 

int i = input.nextInt(); 

1.7  An Example Program 

In this section, we describe a simple example Java program that illustrates many of 
the constructs defined above. Our example consists of two classes, one, 
CreditCard, that defines credit card objects, and another, Test, that tests the 
functionality of CreditCard class. The credit card objects defined by the 
CreditCard class are simplified versions of traditional credit cards. They have 
identifying numbers, identifying information about their owners and their issuing 
bank, and information about their current balance and credit limit. They do not charge 
interest or late payments, however, but they do restrict charges that would cause a 
card's balance to go over its spending limit. 

The CreditCard Class 
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We show the CreditCard class in Code Fragment 1.5. Note that the 
CreditCard class defines five instance variables, all of which are private to the 
class, and it provides a simple constructor that initializes these instance variables. 

It also defines five accessor methods that provide access to the current values of 
these instance variables. Of course, we could have alternatively defined the instance 
variables as being public, which would have made the accessor methods moot. The 
disadvantage with this direct approach, however, is that it allows users to modify an 
object's instance variables directly, whereas in many cases such as this, we prefer to 
restrict the modification of instance variables to special update methods. We 
include two such update methods, chargeIt and makePayment in Code 
Fragment 1.5. 

In addition, it is often convenient to include action methods, which define specific 
actions for that object's behavior. To demonstrate, we have defined such an action 
method, the printCard method, as a static method, which is also included in 
Code Fragment 1.5. 

The Test Class 

We test the CreditCard class in a Test class. Note the use of an array, 
wallet, of CreditCard objects here, and how we are using iteration to 
make charges and payments. We show the complete code for the Test class in 
Code Fragment 1.6. For simplicity's sake, the Test class does not do any fancy 
graphical output, but simply sends its output to the Java console. We show this 
output in Code Fragment 1.7. Note the difference between the way we utilize the 
nonstatic chargeIt and make-Payment methods and the static printCard 
method. 

Code Fragment 1.5:  The CreditCard class. 
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Code Fragment 1.6:  The Test class. 
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Code Fragment 1.7:  Output from the Test class. 
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1.8  Nested Classes and Packages 

The Java language takes a general and useful approach to the organization of classes 
into programs. Every stand-alone public class defined in Java must be given in a 
separate file. The file name is the name of the class with a .java extension. So a class, 
public class SmartBoard, is defined in a file, SmartBoard.java. In this 
section, we describe two ways that Java allows multiple classes to be organized in 
meaningful ways. 

Nested Classes 

Java allows class definitions to be placed inside, that is, nested inside the definitions 
of other classes. This is a useful construct, which we will exploit several times in 
this book in the implementation of data structures. The main use for such nested 
classes is to define a class that is strongly affiliated with another class. For example, 

 72



a text editor class may wish to define a related cursor class. Defining the cursor 
class as a nested class inside the definition of the text editor class keeps these two 
highly related classes together in the same file. Moreover, it also allows each of 
them to access nonpublic methods of the other. One technical point regarding 
nested classes is that the nested class should be declared as static. This 
declaration implies that the nested class is associated with the outer class, not an 
instance of the outer class, that is, a specific object. 

Packages 

A set of classes, all defined in a common subdirectory, can be a Java package. 

Every file in a package starts with the line: 

          package package_name; 

The subdirectory containing the package must be named the same as the package. 
We can also define a package in a single file that contains several class definitions, 
but when it is compiled, all the classes will be compiled into separate files in the 
same subdirectory. 

In Java, we can use classes that are defined in other packages by prefixing class 
names with dots (that is, using the '.' character) that correspond to the other 
packages' directory structures. 

          public boolean Temperature(TA.Measures.Thermometer 
thermometer, 

                                                                int temperature) { 

            //… 

            } 

The function Temperature takes a class Thermometer as a parameter. 
Thermometer is defined in the TA package in a subpackage called Measures. 
The dots in TA.Measures.Thermometer correspond directly to the directory 
structure in the TA package. 

All the extra typing needed to refer to a class outside of the current package can get 
tiring. In Java, we can use the import keyword to include external classes or 
entire packages in the current file. To import an individual class from a specific 
package, we type the following at the beginning of the file: 

          import packageName.classNames; 

For example, we could type 
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          package Project; 

          import TA.Measures.Thermometer; 

          import TA.Measures.Scale; 

at the beginning of a Project package to indicate that we are importing the 
classes named TA.Measures.Thermometer and TA.Measures.Scale. 
The Java run-time environment will now search these classes to match identifiers to 
classes, methods, and instance variables that we use in our program. 

We can also import an entire package, by using the following syntax: 

          import <packageName>.*; 

For example: 

          package student; 

          import TA.Measures.*; 

          public boolean Temperature(Thermometer thermometer, 
int temperature) { 

            // … 

            } 

In the case where two packages have classes of the same name, we must 
specifically reference the package that contains a class. For example, suppose both 
the package Gnomes and package Cooking have a class named Mushroom. 

If we provide an import statement for both packages, then we must specify which 
class we mean as follows: 

          Gnomes.Mushroom shroom = new Gnomes.Mushroom 
("purple"); 

          Cooking.Mushroom topping = new Cooking.Mushroom (); 

If we do not specify the package (that is, in the previous example we just use a 
variable of type Mushroom), the compiler will give an "ambiguous class" error. 

To sum up the structure of a Java program, we can have instance variables and 
methods inside a class, and classes inside a package. 

1.9  Writing a Java Program 
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The process of writing a Java program involves three fundamental steps:  

1. Design 

2. Coding 

3. Testing and Debugging. 

We briefly discuss each of these steps in this section. 

1.9.1  Design 

The design step is perhaps the most important step in the process of writing a 
program. For it is in the design step that we decide how to divide the workings of 
our program into classes, we decide how these classes will interact, what data each 
will store, and what actions each will perform. Indeed, one of the main challenges 
that beginning Java programmers face is deciding what classes to define to do the 
work of their program. While general prescriptions are hard to come by, there are 
some general rules of thumb that we can apply when determining how to define our 
classes:  

• Responsibilities: Divide the work into different actors, each with a 
different responsibility. Try to describe responsibilities using action verbs. These 
actors will form the classes for the program. 

• Independence: Define the work for each class to be as independent from 
other classes as possible. Subdivide responsibilities between classes so that each 
class has autonomy over some aspect of the program. Give data (as instance 
variables) to the class that has jurisdiction over the actions that require access to 
this data. 

• Behaviors: So that the consequences of each action performed by a class 
will be well understood by other classes that interact with it, define the behaviors 
for each class carefully and precisely. These behaviors will define the methods 
that this class performs. The set of behaviors for a class is sometimes referred to 
as a protocol, for we expect the behaviors for a class to hold together as a 
cohesive unit. 

Defining the classes, together with their instance variables and methods, determines 
the design of a Java program. A good programmer will naturally develop greater 
skill in performing these tasks over time, as experience teaches him or her to notice 
patterns in the requirements of a program that match patterns that he or she has seen 
before. 

1.9.2  Pseudo-Code 
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Programmers are often asked to describe algorithms in a way that is intended for 
human eyes only, prior to writing actual code. Such descriptions are called pseudo-
code. Pseudo-code is not a computer program, but is more structured than usual 
prose. Pseudo-code is a mixture of natural language and high-level programming 
constructs that describe the main ideas behind a generic implementation of a data 
structure or algorithm. There really is no precise definition ofthe pseudo-code 
language, however, because of its reliance on natural language. At the same time, to 
help achieve clarity, pseudo-code mixes natural language with standard 
programming language constructs. The programming language constructs we 
choose are those consistent with modern high-level languages such as C, C++, and 
Java. 

These constructs include the following:  

• Expressions: We use standard mathematical symbols to express numeric 
and Boolean expressions. We use the left arrow sign (←) as the assignment 
operator in assignment statements (equivalent to the = operator in Java) and we 
use the equal sign (=) as the equality relation in Boolean expressions (equivalent 
to the "==" relation in Java). 

• Method declarations: Algorithm name(param1, par am2,…) declares a 
new method "name" and its parameters. 

• Decision structures: if condition then true-actions [else false-actions]. We 
use indentation to indicate what actions should be included in the true-actions and 
false-actions. 

• While-loops: while condition do actions. We use indentation to indicate 
what actions should be included in the loop actions. 

• Repeat-loops: repeat actions until condition. We use indentation to 
indicate what actions should be included in the loop actions. 

• For-loops: for variable-increment-definition do actions. We use 
indentation to indicate what actions should be included among the loop actions. 

• Array indexing: A[i] represents the ith cell in the array A. The cells of an 
n-celled array A are indexed from A[0] to A[n − 1] (consistent with Java). 

• Method calls: object.method(args) (object is optional if it is understood). 

• Method returns: return value. This operation returns the value specified 
to the method that called this one. 

• Comments: { Comment goes here. }. We enclose comments in braces. 

When we write pseudo-code, we must keep in mind that we are writing for a human 
reader, not a computer. Thus, we should strive to communicate high-level ideas, not 
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low-level implementation details. At the same time, we should not gloss over 
important steps. Like many forms of human communication, finding the right 
balance is an important skill that is refined through practice. 

1.9.3  Coding 

As mentioned above, one of the key steps in coding up an object-oriented program 
is coding up the descriptions of classes and their respective data and methods. In 
order to accelerate the development of this skill, we discuss various design patterns 
for designing object-oriented programs (see Section 2.1.3) at various points 
throughout this text. These patterns provide templates for defining classes and the 
interactions between these classes. 

Many programmers do their initial coding not on a computer, but by using CRC 
cards. Component-responsibility-collaborator, or CRC cards, are simple index cards 
that subdivide the work required of a program. The main idea behind this tool is to 
have each card represent a component, which will ultimately become a class in our 
program. We write the name of each component on the top of an index card. On the 
left-hand side of the card, we begin writing the responsibilities for this component. 
On the right-hand side, we list the collaborators for this component, that is, the 
other components that this component will have to interact with to perform its 
duties. The design process iterates through an action/actor cycle, where we first 
identify an action (that is, a responsibility), and we then determine an actor (that is, 
a component) that is best suited to perform that action. The design is complete when 
we have assigned all actions to actors. 

By the way, in using index cards to begin our coding, we are assuming that each 
component will have a small set of responsibilities and collaborators. This 
assumption is no accident, for it helps keep our programs manageable. 

An alternative to CRC cards is the use of UML (Unified Modeling Language) 
diagrams to express the organization of a Program, and the use of pseudo-code to 
describe the algorithms. UML diagrams are a standard visual notation to express 
object-oriented software designs. Several computer-aided tools are available to 
build UML diagrams. Describing algorithms in pseudo-code, on the other hand, is a 
technique that we utilize throughout this book. 

Once we have decided on the classes for our program and their responsibilities, we 
are ready to begin the actual coding on a computer. We create the actual code for 
the classes in our program by using either an independent text editor (such as 
emacs, WordPad, or vi), or the editor embedded in an integrated development 
environment (IDE), such as Eclipse or Borland JBuilder. 

Once we have completed coding for a class (or package), we compile this file into 
working code by invoking a compiler. If we are not using an IDE, then we compile 
our program by calling a program, such as javac, on our file. If we are using an 
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IDE, then we compile our program by clicking the appropriate compilation button. 
If we are fortunate, and our program has no syntax errors, then this compilation 
process will create files with a ".class" extension. 

If our program contains syntax errors, then these will be identified, and we will 
have to go back into our editor to fix the offending lines of code. Once we have 
eliminated all syntax errors, and created the appropriate compiled code, we can run 
our program by either invoking a command, such as "java" (outside an IDE), or 
by clicking on the appropriate "run" button (within an IDE). When a Java program 
is run in this way, the run-time environment locates the directories containing the 
named class and any other classes that are referenced from this class according to a 
special operating system environment variable. This variable is named 
"CLASSPATH," and the ordering of directories to search in is given as a list of 
directories, which are separated by colons in Unix/Linux or semicolons in 
DOS/Windows. An example CLASSPATH assignment in the DOS/Windows 
operating system could be the following: 

SET CLASSPATH= . ;C:\java;C:\Program Files\Java\ 

Whereas an example CLASSPATH assignment in the Unix/Linux operating system 
could be the following: 

setenv CLASSPATH 
".:/usr/local/java/lib:/usr/netscape/classes" 

In both cases, the dot (".") refers to the current directory in which the run-time 
environment is invoked. 

Javadoc 

In order to encourage good use of block comments and the automatic production 
of documentation, the Java programming environment comes with a 
documentation production program called javadoc. This program takes a 
collection of Java source files that have been commented using certain keywords, 
called tags, and it produces a series of HTML documents that describe the classes, 
methods, variables, and constants contained in these files. For space reasons, we 
have not used javadocstyle comments in all the example programs included in this 
book, but we include a javadoc example in Code Fragment 1.8 as well as other 
examples at the Web site that accompanies this book. 

Each javadoc comment is a block comment that starts with "/**" and ends with 
"*/," and each line between these two can begin with a single asterisk, "*," which 
is ignored. The block comment is assumed to start with a descriptive sentence, 
followed by a blank line, which is followed by special lines that begin with 
javadoc tags. A block comment that comes just before a class definition, instance 
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variable declaration, or method definition, is processed by javadoc into a 
comment about that class, variable, or method. 

Code Fragment 1.8:  An example class definition 
using javadoc-style comments. Note that this class 
includes two instance variables, one constructor, and 
two accessor methods. 
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The primary javadoc tags are the following:  

• @author text: Identifies each author (one per line) for a class. 
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• @exception exception-name description: Identifies an error condition 
that is signaled by this method (see Section 2.3). 

• @param parameter-name description: Identifies a parameter accepted by 
this method. 

• @return description: Describes the return type and its range of values 
for a method. 

There are other tags as well; the interested reader is referred to on-line 
documentation for javadoc for further discussion. 

Readability and Style 

Programs should be made easy to read and understand. Good programmers should 
therefore be mindful of their coding style, and develop a style that communicates 
the important aspects of a program's design for both humans and computers. 

Much has been written about good coding style, with some of the main principles 
being the following:  

• Use meaningful names for identifiers. Try to choose names that can be 
read aloud, and choose names that reflect the action, responsibility, or data each 
identifier is naming. The tradition in most Java circles is to capitalize the first 
letter of each word in an identifier, except for the first word in an identifier for a 
variable or method. So, in this tradition, "Date," "Vector," 
"DeviceManager" would identify classes, and 'isFull()," 
"insertItem()," "studentName," and "studentHeight" would 
respectively identify methods and variables. 

• Use named constants or enum types instead of literals. Readability, 
robustness, and modifiability are enhanced if we include a series of definitions 
of named constant values in a class definition. These can then be used within 
this class and others to refer to special values for this class. The tradition in Java 
is to fully capitalize such constants, as shown below: 

public class Student { 

  public static final int MINCREDITS = 12; // min. 
credits in a term 

  public static final int MAXCREDITS = 24; // max. 
credits in a term 

  public static final int FRESHMAN = 1; // code for 
freshman 
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  public static final int SOPHOMORE = 2; // code for 
sophomore 

  public static final int JUNIOR = 3; // code for 
junior 

  public static final int SENIOR = 4; // code for 
senior 

  // Instance variables, constructors, and method 
definitions go here… 

} 

• Indent statement blocks. Typically programmers indent each statement 
block by 4 spaces; in this book we typically use 2 spaces, however, to avoid 
having our code overrun the book's margins. 

• Organize each class in the following order:  

1. Constants 

2. Instance variables 

3. Constructors 

4. Methods. 

We note that some Java programmers prefer to put instance variable definitions 
last. We put them earlier so that we can read each class sequentially and 
understand the data each method is working with. 

• Use comments that add meaning to a program and explain ambiguous or 
confusing constructs. In-line comments are good for quick explanations and do 
not need to be sentences. Block comments are good for explaining the purpose 
of a method and complex code sections. 

1.9.4  Testing and Debugging 

Testing is the process of experimentally checking the correctness of a program, 
while debugging is the process of tracking the execution of a program and 
discovering the errors in it. Testing and debugging are often the most time-
consuming activity in the development of a program. 

Testing 
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A careful testing plan is an essential part of writing a program. While verifying 
the correctness of a program over all possible inputs is usually infeasible, we 
should aim at executing the program on a representative subset of inputs. At the 
very minimum, we should make sure that every method in the program is tested at 
least once (method coverage). Even better, each code statement in the program 
should be executed at least once (statement coverage). 

Programs often tend to fail on special cases of the input. Such cases need to be 
carefully identified and tested. For example, when testing a method that sorts (that 
is, puts in order) an array of integers, we should consider the following inputs:  

• The array has zero length (no elements) 

• The array has one element 

• All the elements of the array are the same 

• The array is already sorted 

• The array is reverse sorted. 

In addition to special inputs to the program, we should also consider special 
conditions for the structures used by the program. For example, if we use an array 
to store data, we should make sure that boundary cases, such as 
inserting/removing at the beginning or end of the subarray holding data, are 
properly handled. 

While it is essential to use hand-crafted test suites, it is also advantageous to run 
the program on a large collection of randomly generated inputs. The Random 
class in the java.util package provides several methods to generate random 
numbers. 

There is a hierarchy among the classes and methods of a program induced by the 
caller-callee relationship. Namely, a method A is above a method B in the 
hierarchy if A calls B. There are two main testing strategies, top-down and 
bottom-up, which differ in the order in which methods are tested. 

Bottom-up testing proceeds from lower-level methods to higher-level methods. 
Namely, bottom-level methods, which do not invoke other methods, are tested 
first, followed by methods that call only bottom-level methods, and so on. This 
strategy ensures that errors found in a method are not likely to be caused by 
lower-level methods nested within it. 

Top-down testing proceeds from the top to the bottom of the method hierarchy. It 
is typically used in conjunction with stubbing, a boot-strapping technique that 
replaces a lower-level method with a stub, a replacement for the method that 
simulates the output of the original method. For example, if method A calls 
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method B to get the first line of a file, when testing A we can replace B with a stub 
that returns a fixed string. 

Debugging 

The simplest debugging technique consists of using print statements (using 
method System.out.println(string)) to track the values of variables during 
the execution of the program. A problem with this approach is that the print 
statements need to be eventually removed or commented out before the software 
is finally released. 

A better approach is to run the program within a debugger, which is a specialized 
environment for controlling and monitoring the execution of a program. The basic 
functionality provided by a debugger is the insertion of breakpoints within the 
code. When the program is executed within the debugger, it stops at each 
breakpoint. While the program is stopped, the current value of variables can be 
inspected. In addition to fixed breakpoints, advanced debuggers allow for 
specification of conditional breakpoints, which are triggered only if a given 
expression is satisfied. 

The standard Java tools include a basic debugger called jdb, which is 
commandline oriented. IDEs for Java programming provide advanced debugging 
environments with graphical user interfaces. 

 

 

1.10  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-1.1 

Suppose that we create an array A of GameEntry objects, which has an integer 
scores field, and we clone A and store the result in an array B. If we then 
immediately set A [4].score equal to 550, what is the score value of the 
GameEntry object referenced by B[4]? 

R-1.2 
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Modify the CreditCard class from Code Fragment 1.5 to charge interest on 
each payment. 

R-1.3 

Modify the CreditCard class from Code Fragment 1.5 to charge a late fee 
for any payment that is past its due date. 

R-1.4 

Modify the CreditCard class from Code Fragment 1.5 to include modifier 
methods, which allow a user to modify internal variables in a CreditCard 
class in a controlled manner. 

R-1.5 

Modify the declaration of the first for loop in the Test class in Code 
Fragment 1.6 so that its charges will eventually cause exactly one of the three 
credit cards to go over its credit limit. Which credit card is it? 

R-1.6 

Write a short Java function, inputAllBaseTypes, that inputs a different 
value of each base type from the standard input device and prints it back to the 
standard output device. 

R-1.7 

Write a Java class, Flower, that has three instance variables of type String, 
int, and float, which respectively represent the name of the flower, its 
number of pedals, and price. Your class must include a constructor method that 
initializes each variable to an appropriate value, and your class should include 
methods for setting the value of each type, and getting the value of each type. 

R-1.8 

Write a short Java function, isMultiple, that takes two long values, n and 
m, and returns true if and only if n is a multiple of m, that is, n = mi for some 
integer i. 

R-1.9 

Write a short Java function, isOdd, that takes an int i and returns true if and 
only if i is odd. Your function cannot use the multiplication, modulus, or 
division operators, however. 

R-1.10 
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Write a short Java function that takes an integer n and returns the sum of all the 
integers smaller than n. 

R-1.11 

Write a short Java function that takes an integer n and returns the sum of all the 
odd integers smaller than n. 

Creativity 

C-1.1 

Write a short Java function that takes an array of int values and determines if 
there is a pair of numbers in the array whose product is odd. 

C-1.2 

Write a Java method that takes an array of int values and determines if all the 
numbers are different from each other (that is, they are distinct). 

C-1.3 

Write a Java method that takes an array containing the set of all integers in the 
range 1 to 52 and shuffles it into random order. Your method should output each 
possible order with equal probability. 

C-1.4 

Write a short Java program that outputs all possible strings formed by using the 
characters 'c', 'a', 'r', ' b', ' o', and 'n' exactly once. 

C-1.5 

Write a short Java program that takes all the lines input to standard input and 
writes them to standard output in reverse order. That is, each line is output in the 
correct order, but the ordering of the lines is reversed. 

C-1.6 

Write a short Java program that takes two arrays a and b of length n storing int 
values, and returns the dot product of a and b. That is, it returns an array c of 
length n such that c[i] = a[i] · b[i], for i = 0,… ,n − 1. 

Projects 

P-1.1 
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A common punishment for school children is to write out a sentence multiple 
times. Write a Java stand-alone program that will write out the following 
sentence one hundred times: "I will never spam my friends again." Your 
program should number each of the sentences and it should make eight different 
random-looking typos. 

P-1.2 

(For those who know Java graphical user interface methods) Define a 
GraphicalTest class that tests the functionality of the CreditCard class from 
Code Fragment 1.5 using text fields and buttons. 

P-1.3 

The birthday paradox says that the probability that two people in a room will 
have the same birthday is more than half as long as n, the number of people in 
the room, is more than 23. This property is not really a paradox, but many 
people find it surprising. Design a Java program that can test this paradox by a 
series of experiments on randomly generated birthdays, which test this paradox 
for n = 5,10,15,20,…, 100. 

Chapter Notes 

For more detailed information about the Java programming language, we refer the 
reader to some of the fine books about Java, including the books by Arnold and 
Gosling [7], Cam-pione and Walrath [19], Cornell and Horstmann [26], Flanagan 
[34], and Horstmann [51], as well as Sun's Java Web site 
(http://www.java.sun.com). 
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java.datastructures.net 

2.1  Goals, Principles, and Patterns 

As the name implies, the main "actors" in the object-oriented design paradigm are 
called objects. An object comes from a class, which is a specification of the data 
fields, also called instance variables, that the object contains, as well as the methods 
(operations) that the object can execute. Each class presents to the outside world a 
concise and consistent view of the objects that are instances of this class, without 
going into too much unnecessary detail or giving others access to the inner workings 
of the objects. This view of computing is intended to fulfill several goals and 
incorporate several design principles, which we discuss in this chapter. 

2.1.1  Object-Oriented Design Goals 

Software implementations should achieve robustness, adaptability, and reusability. 
(See Figure 2.1.) 

Figure 2.1:  Goals of object-oriented design. 

 

Robustness 

Every good programmer wants to develop software that is correct, which means 
that a program produces the right output for all the anticipated inputs in the 
program's application. In addition, we want software to be robust, that is, capable 
of handling unexpected inputs that are not explicitly defined for its application. 
For example, if a program is expecting a positive integer (for example, 
representing the price of an item) and instead is given a negative integer, then the 
program should be able to recover gracefully from this error. More importantly, in 
life-critical applications, where a software error can lead to injury or loss of life, 
software that is not robust could be deadly. This point was driven home in the late 
1980s in accidents involving Therac-25, a radiation-therapy machine, which 
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severely overdosed six patients between 1985 and 1987, some of whom died from 
complications resulting from their radiation overdose. All six accidents were 
traced to software errors. 

Adaptability 

Modern software applications, such as Web browsers and Internet search engines, 
typically involve large programs that are used for many years. Software, 
therefore, needs to be able to evolve over time in response to changing conditions 
in its environment. Thus, another important goal of quality software is that it 
achieves adaptability (also called evolvability). Related to this concept is 
portability, which is the ability of software to run with minimal change on 
different hardware and operating system platforms. An advantage of writing 
software in Java is the portability provided by the language itself. 

Reusability 

Going hand in hand with adaptability is the desire that software be reusable, that 
is, the same code should be usable as a component of different systems in various 
applications. Developing quality software can be an expensive enterprise, and its 
cost can be offset somewhat if the software is designed in a way that makes it 
easily reusable in future applications. Such reuse should be done with care, 
however, for one of the major sources of software errors in the Therac-25 came 
from inappropriate reuse of software from the Therac-20 (which was not object-
oriented and not designed for the hardware platform used with the Therac-25). 

2.1.2  Object-Oriented Design Principles 

Chief among the principles of the object-oriented approach, which are intended to 
facilitate the goals outlined above, are the following (see Figure 2.2):  

• Abstraction 

• Encapsulation 

• Modularity. 

Figure 2.2  : Principles of object-oriented design. 
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Abstraction 

The notion of abstraction is to distill a complicated system down to its most 
fundamental parts and describe these parts in a simple, precise language. 
Typically, describing the parts of a system involves naming them and explaining 
their functionality. Applying the abstraction paradigm to the design of data 
structures gives rise to abstract data types (ADTs). An ADT is a mathematical 
model of a data structure that specifies the type of data stored, the operations 
supported on them, and the types of parameters of the operations. An ADT 
specifies what each operation does, but not how it does it. In Java, an ADT can be 
expressed by an interface, which is simply a list of method declarations, where 
each method has an empty body. (We say more about Java interfaces in Section 
2.4.) 

An ADT is realized by a concrete data structure, which is modeled in Java by a 
class. A class defines the data being stored and the operations supported by the 
objects that are instances of the class. Also, unlike interfaces, classes specify how 
the operations are performed in the body of each method. A Java class is said to 
implement an interface if its methods include all the methods declared in the 
interface, thus providing a body for them. However, a class can have more 
methods than those of the interface. 

Encapsulation 

Another important principle of object-oriented design is the concept of 
encapsulation, which states that different components of a software system 
should not reveal the internal details of their respective implementations. One of 
the main advantages of encapsulation is that it gives the programmer freedom in 
implementing the details of a system. The only constraint on the programmer is to 
maintain the abstract interface that outsiders see. 

 93



Modularity 

In addition to abstraction and encapsulation, a fundamental principle of object 
oriented design is modularity. Modern software systems typically consist of 
several different components that must interact correctly in order for the entire 
system to work properly. Keeping these interactions straight requires that these 
different components be well organized. In object-oriented design, this code 
structuring approach centers around the concept of modularity. Modularity refers 
to an organizing principle for code in which different components of a software 
system are divided into separate functional units. 

Hierarchical Organization 

The structure imposed by modularity helps to enable software reusability. If 
software modules are written in an abstract way to solve general problems, then 
modules can be reused when instances of these same general problems arise in 
other contexts. 

For example, the structural definition of a wall is the same from house to house, 
typically being defined in terms of 2- by 4-inch studs, spaced a certain distance 
apart, etc. Thus, an organized architect can reuse his or her wall definitions from 
one house to another. In reusing such a definition, some parts may require 
redefinition, for example, a wall in a commercial building may be similar to that 
of a house, but the electrical system and stud material might be different. 

A natural way to organize various structural components of a software package is 
in a hierarchical fashion, which groups similar abstract definitions together in a 
level-by-level manner that goes from specific to more general as one traverses up 
the hierarchy. A common use of such hierarchies is in an organizational chart, 
where each link going up can be read as "is a," as in "a ranch is a house is a 
building." This kind of hierarchy is useful in software design, for it groups 
together common functionality at the most general level, and views specialized 
behavior as an extension of the general one. 

Figure 2.3:  An example of an "is a" hierarchy 
involving architectural buildings. 
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2.1.3  Design Patterns 

One of the advantages of object-oriented design is that it facilitates reusable, robust, 
and adaptable software. Designing good code takes more than simply understanding 
object-oriented methodologies, however. It requires the effective use of object-
oriented design techniques. 

Computing researchers and practitioners have developed a variety of organizational 
concepts and methodologies for designing quality object-oriented software that is 
concise, correct, and reusable. Of special relevance to this book is the concept of a 
design pattern, which describes a solution to a "typical" software design problem. 
A pattern provides a general template for a solution that can be applied in many 
different situations. It describes the main elements of a solution in an abstract way 
that can be specialized for a specific problem at hand. It consists of a name, which 
identifies the pattern, a context, which describes the scenarios for which this pattern 
can be applied, a template, which describes how the pattern is applied, and a result, 
which describes and analyzes what the pattern produces. 

We present several design patterns in this book, and we show how they can be 
consistently applied to implementations of data structures and algorithms. These 
design patterns fall into two groups—patterns for solving algorithm design 
problems and patterns for solving software engineering problems. Some of the 
algorithm design patterns we discuss include the following:  

• Recursion (Section 3.5) 

• Amortization (Section 6.1.4) 
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• Divide-and-conquer (Section 11.1.1) 

• Prune-and-search, also known as decrease-and-conquer (Section 11.7.1) 

• Brute force (Section 12.2.1) 

• The greedy method (Section 12.4.2) 

• Dynamic programming (Section 12.5.2). 

Likewise, some of the software engineering design patterns we discuss include:  

• Position (Section 6.2.2) 

• Adapter (Section 6.1.2) 

• Iterator (Section 6.3) 

• Template method (Sections 7.3.7, 11.6, and 13.3.2) 

• Composition (Section 8.1.2) 

• Comparator (Section 8.1.2) 

• Decorator (Section 13.3.1). 

Rather than explain each of these concepts here, however, we introduce them 
throughout the text as noted above. For each pattern, be it for algorithm engineering 
or software engineering, we explain its general use and we illustrate it with at least 
one concrete example. 

2.2  Inheritance and Polymorphism 

To take advantage of hierarchical relationships, which are common in software 
projects, the object-oriented design approach provides ways of reusing code. 

2.2.1  Inheritance 

The object-oriented paradigm provides a modular and hierarchical organizing 
structure for reusing code, through a technique called inheritance. This technique 
allows the design of general classes that can be specialized to more particular 
classes, with the specialized classes reusing the code from the general class. The 
general class, which is also known as a base class or superclass, can define 
standard instance variables and methods that apply in a multitude of situations. A 
class that specializes, or extends, or inherits from, a superclass need not give new 
implementations for the general methods, for it inherits them. It should only define 
those methods that are specialized for this particular subclass. 
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Example 2.1: Consider a class S that defines objects with a field, x, and three 
methods, a(), b(), and c(). Suppose we were to define a classT that extendsS 
and includes an additional field, y, and two methods, d() ande(). The classT 
would theninherit the instance variablex and the methodsa(), b(), andc() 
fromS. We illustrate the relationships between the classS and the classT in 
aclass inheritance diagram in Figure 2.4. Each box in such a diagram 
denotes a class, with its name, fields (or instance variables), and methods included 
as subrectangles. 

Figure 2.4:  A class inheritance diagram. Each box 
denotes a class, with its name, fields, and methods, and 
an arrow between boxes denotes an inheritance 
relation. 

 

Object Creation and Referencing 

When an object o is created, memory is allocated for its data fields, and these 
same fields are initialized to specific beginning values. Typically, one associates 
the new object o with a variable, which serves as a "link" to object o, and is said 
to reference o. When we wish to access object o (for the purpose of getting at its 
fields or executing its methods), we can either request the execution of one of o's 
methods (defined by the class that o belongs to), or look up one of the fields of o. 
Indeed, the primary way that an object p interacts with another object o is for p to 
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send a "message" to o that invokes one of o's methods, for example, for o to print 
a description of itself, for o to convert itself to a string, or for o to return the value 
of one of its data fields. The secondary way that p can interact with o is for p to 
access one of o's fields directly, but only if o has given other objects like p 
permission to do so. For example, an instance of the Java class Integer stores, 
as an instance variable, an integer, and it provides several operations for accessing 
this data, including methods for converting it into other number types, for 
converting it to a string of digits, and for converting strings of digits to a number. 
It does not allow for direct access of its instance variable, however, for such 
details are hidden. 

Dynamic Dispatch 

When a program wishes to invoke a certain method a() of some object o, it 
sends a message to o, which is usually denoted, using the dot-operator syntax 
(Section 1.3.2), as "o.a()." In the compiled version of this program, the code 
corresponding to this invocation directs the run-time environment to examine o's 
class T to determine if the class T supports an a() method, and, if so, to execute 
it. Specifically, the run-time environment examines the class T to see if it defines 
an a() method itself. If it does, then this method is executed. If T does not define 
an a() method, then the run-time environment examines the superclass S of T. If 
S defines a(), then this method is executed. If S does not define a(), on the 
other hand, then the run-time environment repeats the search at the superclass of 
S. This search continues up the hierarchy of classes until it either finds an a() 
method, which is then executed, or it reaches a topmost class (for example, the 
Object class in Java) without an a() method, which generates a run-time error. 
The algorithm that processes the message o.a() to find the specific method to 
invoke is called the dynamic dispatch (or dynamic binding) algorithm, which 
provides an effective mechanism for locating reused software. It also allows for 
another powerful technique of object-oriented programming—polymorphism. 

2.2.2  Polymorphism 

Literally, "polymorphism" means "many forms." In the context of object-oriented 
design, it refers to the ability of an object variable to take different forms. Object-
oriented languages, such as Java, address objects using reference variables. The 
reference variable o must define which class of objects it is allowed to refer to, in 
terms of some class S. But this implies that o can also refer to any object belonging 
to a class T that extends S. Now consider what happens if S defines an a() method 
and T also defines an a() method. The dynamic dispatch algorithm for method 
invocation always starts its search from the most restrictive class that applies. When 
o refers to an object from class T, then it will use T's a() method when asked for 
o.a(), not S's. In this case, T is said to override method a() from S. Alternatively, 
when o refers to an object from class S (that is not also a T object), it will execute 
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S's a() method when asked for o.a(). Polymorphism such as this is useful 
because the caller of o.a() does not have to know whether the object o refers to an 
instance of T or S in order to get the a() method to execute correctly. Thus, the 
object variable o can be polymorphic, or take many forms, depending on the 
specific class of the objects it is referring to. This kind of functionality allows a 
specialized class T to extend a class S, inherit the standard methods from S, and 
redefine other methods from S to account for specific properties of objects of T. 

Some object-oriented languages, such as Java, also provide a useful technique 
related to polymorphism, which is called method overloading. Overloading occurs 
when a single class T has multiple methods with the same name, provided each one 
has a different signature. The signature of a method is a combination of its name 
and the type and number of arguments that are passed to it. Thus, even though 
multiple methods in a class can have the same name, they can be distinguished by a 
compiler, provided they have different signatures, that is, are different in actuality. 
In languages that allow for method overloading, the run-time environment 
determines which actual method to invoke for a specific method call by searching 
up the class hierarchy to find the first method with a signature matching the method 
being invoked. For example, suppose a class T, which defines a method a(), 
extends a class U, which defines a method a(x,y). If an object o from class T 
receives the message "o.a(x,y)," then it is U's version of method a that is invoked 
(with the two parameters x and y). Thus, true polymorphism applies only to 
methods that have the same signature, but are defined in different classes. 

Inheritance, polymorphism, and method overloading support the development of 
reusable software. We can define classes that inherit the standard instance variables 
and methods and can then define new more-specific instance variables and methods 
that deal with special aspects of objects of the new class. 

2.2.3  Using Inheritance in Java 

There are two primary ways of using inheritance of classes in Java, specialization 
and extension. 

Specialization 

In using specialization we are specializing a general class to particular subclasses. 
Such subclasses typically possess an "is a" relationship to their superclass. A 
subclass then inherits all the methods of the superclass. For each inherited 
method, if that method operates correctly independent of whether it is operating 
for a specialization, no additional work is needed. If, on the other hand, a general 
method of the superclass would not work correctly on the subclass, then we 
should override the method to have the correct functionality for the subclass. For 
example, we could have a general class, Dog, which has a method drink and a 
method sniff. Specializing this class to a Bloodhound class would probably not 
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require that we override the drink method, as all dogs drink pretty much the 
same way. But it could require that we override the sniff method, as a 
Bloodhound has a much more sensitive sense of smell than a standard dog. In this 
way, the Bloodhound class specializes the methods of its superclass, Dog. 

Extension 

In using extension, on the other hand, we utilize inheritance to reuse the code 
written for methods of the superclass, but we then add new methods that are not 
present in the superclass, so as to extend its functionality. For example, returning 
to our Dog class, we might wish to create a subclass, BorderCollie, which 
inherits all the standard methods of the Dog class, but then adds a new method, 
herd, since Border Collies have a herding instinct that is not present in standard 
dogs. By adding the new method, we are extending the functionality of a standard 
dog. 

In Java, each class can extend exactly one other class. Even if a class definition 
makes no explicit use of the extends clause, it still inherits from exactly one 
other class, which in this case is class java.lang.Object. Because of this 
property, Java is said to allow only for single inheritance among classes. 

Types of Method Overriding 

Inside the declaration of a new class, Java uses two kinds of method overriding, 
refinement and replacement. In the replacement type of overriding, a method 
completely replaces the method of the superclass that it is overriding (as in the 
sniff method of Bloodhound mentioned above). In Java, all regular methods 
of a class utilize this type of overriding behavior. 

In the refinement type of overriding, however, a method does not replace the 
method of its superclass, but instead adds additional code to that of its superclass. 
In Java, all constructors utilize the refinement type of overriding, a scheme called 
constructor chaining. Namely, a constructor begins its execution by calling a 
constructor of the superclass. This call can be made explicitly or implicitly. To 
call a constructor of the superclass explicitly, we use the keyword super to refer 
to the superclass. (For example, super() calls the constructor of the superclass 
with no arguments.) If no explicit call is made in the body of a constructor, 
however, the compiler automatically inserts, as the first line of the constructor, a 
call to super(). (There is an exception to this general rule, which is discussed 
in the next section.) Summarizing, in Java, constructors use the refinement type of 
method overriding whereas regular methods use replacement. 

The Keyword this 

 100



Sometimes, in a Java class, it is convenient to reference the current instance of 
that class. Java provides a keyword, called this, for such a reference. Reference 
this is useful, for example, if we would like to pass the current object as a 
parameter to some method. Another application of this is to reference a field 
inside the current object that has a name clash with a variable defined in the 
current block, as shown in the program given in Code Fragment 2.1. 

Code Fragment 2.1:  Sample program illustrating 
the use of reference this to disambiguate between a 
field of the current object and a local variable with the 
same name. 

 

When this program is executed, it prints the following: 

The dog local variable =5.0 

The dog field = 2 

An Illustration of Inheritance in Java 

To make some of the notions above about inheritance and polymorphism more 
concrete, let us consider some simple examples in Java. 

In particular, we consider a series of several classes for stepping through and 
printing out numeric progressions. A numeric progression is a sequence of 
numbers, where each number depends on one or more of the previous numbers. 
For example, an arithmetic progression determines the next number by addition 
and a geometric progression determines the next number by multiplication. In 
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any case, a progression requires a way of defining its first value and it needs a 
way of identifying the current value as well. 

We begin by defining a class, Progression, shown in Code Fragment 2.2, 
which defines the standard fields and methods of a numeric progression. 
Specifically, it defines the following two long-integer fields:  

• first: first value of the progression; 

• cur: current value of the progression; 

and the following three methods: 

             firstValue(): Reset the progression to the first value, and return 
that value. 

               nextValue(): Step the progression to the next value and return that 
value. 

printProgression(n): Reset the progression and print the first n values of 
the progression. 

We say that the method printProgression has no output in the sense that it 
does not return any value, whereas the methods firstValue and nextValue 
both return long-integer values. That is, firstValue and nextValue are 
functions, and printProgression is a procedure. 

The Progression class also includes a method Progression(), which is a 
constructor. Recall that constructors set up all the instance variables at the time 
an object of this class is created. The Progression class is meant to be a 
general superclass from which specialized classes inherit, so this constructor is 
code that will be included in the constructors for each class that extends the 
Progression class. 

Code Fragment 2.2:  General numeric progression 
class. 
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An Arithmetic Progression Class 

Next, we consider the class ArithProgression, which we present in Code 
Fragment 2.3. This class defines an arithmetic progression, where the next value 
is determined by adding a fixed increment, inc, to the previous value. 
ArithProgression inherits fields first and cur and methods 
firstValue() and printProgression(n) from the Progression 
class. It adds a new field, inc, to store the increment, and two constructors for 
setting the increment. Finally, it overrides the nextValue() method to conform 
to the way we get the next value for an arithmetic progression. 

Polymorphism is at work here. When a Progression reference is pointing to 
an Arith Progression object, then it is the ArithProgression methods 
firstValue() and nextValue() that will be used. This polymorphism is 
also true inside the inherited version of printProgression(n), because the 
calls to the firstValue() and nextValue() methods here are implicit for 
the "current" object (called this in Java), which in this case will be of the Arith 
Progression class. 

Example Constructors and the Keyword this 

In the definition of the Arith Progression class, we have added two 
constructors, a default one, which takes no parameters, and a parametric one, 
which takes an integer parameter as the increment for the progression. The default 
constructor actually calls the parametric one, using the keyword this and 
passing 1 as the value of the increment parameter. These two constructors 
illustrate method overloading (where a method name can have multiple versions 
inside the same class), since a method is actually specified by its name, the class 
of the object that calls it, and the types of arguments that are passed to it—its 
signature. In this case, the overloading is for constructors (a default constructor 
and a parametric constructor). 

The call this(1) to the parametric constructor as the first statement of the 
default constructor triggers an exception to the general constructor chaining rule 
discussed in Section 2.2.3. Namely, whenever the first statement of a constructor 
C ′ calls another constructor C ″ of the same class using the this reference, the 
superclass constructor is not implicitly called for C. Note that a superclass 
constructor will eventually be called along the chain, either explicitly or 
implicitly. In particular, for our ArithProgression class, the default 
constructor of the superclass (Progression) is implicitly called as the first 
statement of the parametric constructor of Arith Progression. 

We discuss constructors in more detail in Section 1.2. 
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Code Fragment 2.3:  Class for arithmetic 
progressions, which inherits from the general 
progression class shown in Code Fragment 2.2. 

 

A Geometric Progression Class 

Let us next define a class, GeomProgression, shown in Code Fragment 2.4, 
which steps through and prints out a geometric progression, where the next value 
is determined by multiplying the previous value by a fixed base, base. A 
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geometric progression is like a general progression, except for the way we 
determine the next value. Hence, Geom Progression is declared as a subclass 
of the Progression class. As with the Arith Progression class, the 
GeomProgression class inherits the fields first and cur, and the methods 
firstValue and printProgression from Progression. 

Code Fragment 2.4:  Class for geometric 
progressions. 
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A Fibonacci Progression Class 

As a further example, we define a FibonacciProgression class that 
represents another kind of progression, the Fibonacci progression, where the next 
value is defined as the sum of the current and previous values. We show class 
FibonacciProgression in Code Fragment 2.5. Note our use of a 

 107



parameterized constructor in the FibonacciProgression class to provide a 
different way of starting the progression. 

Code Fragment 2.5:  Class for the Fibonacci 
progression. 

 

In order to visualize how the three different progression classes are derived from 
the general Progression class, we give their inheritance diagram in Figure 
2.5. 
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Figure 2.5  : Inheritance diagram for class 
Progression and its subclasses. 

 

To complete our example, we define a class TestProgression, shown in 
Code Fragment 2.6, which performs a simple test of each of the three classes. In 
this class, variable prog is polymorphic during the execution of the main 
method, since it references objects of class ArithProgression, 
GeomProgression, and FibonacciProgression in turn. When the main 
method of the TestProgression class is invoked by the Java run-time 
system, the output shown in Code Fragment 2.7 is produced. 

The example presented in this section is admittedly small, but it provides a simple 
illustration of inheritance in Java. The Progression class, its subclasses, and 
the tester program have a number of shortcomings, however, which might not be 
immediately apparent. One problem is that the geometric and Fibonacci 
progressions grow quickly, and there is no provision for handling the inevitable 
overflow of the long integers involved. For example, since 340 > 263, a geometric 
progression with base b = 3 will overflow a long integer after 40 iterations. 
Likewise, the 94th Fibonacci number is greater than 263; hence, the Fibonacci 
progression will overflow a long integer after 94 iterations. Another problem is 
that we may not allow arbitrary starting values for a Fibonacci progression. For 
example, do we allow a Fibonacci progression starting with 0 and −1 ? Dealing 
with input errors or error conditions that occur during the running of a Java 
program requires that we have some mechanism for handling them. We discuss 
this topic next. 
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Code Fragment 2.6:  Program for testing the 
progression classes. 

 
Code Fragment 2.7:  Output of the 
TestProgression program shown in Code 
Fragment 2.6. 
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2.3  Exceptions 

Exceptions are unexpected events that occur during the execution of a program. An 
exception can be the result of an error condition or simply an unanticipated input. In 
any case, in an object-oriented language, such as Java, exceptions can be thought of 
as being objects themselves. 

2.3.1  Throwing Exceptions 

In Java, exceptions are objects that are thrown by code that encounters some sort of 
unexpected condition. They can also be thrown by the Java run-time environment 
should it encounter an unexpected condition, like running out of object memory. A 
thrown exception is caught by other code that "handles" the exception somehow, or 
the program is terminated unexpectedly. (We will say more about catching 
exceptions shortly.) 

Exceptions originate when a piece of Java code finds some sort of problem during 
execution and throws an exception object. It is convenient to give a descriptive 
name to the class of the exception object. For instance, if we try to delete the tenth 
element from a sequence that has only five elements, the code may throw a 
BoundaryViolationException. This action could be done, for example, 
using the following code fragment: 

     if (insertIndex >= A.length) { 

        throw new 

          BoundaryViolationException("No element at index " + 
insertIndex); 
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} 

It is often convenient to instantiate an exception object at the time the exception has 
to be thrown. Thus, a throw statement is typically written as follows: 

     throw new exception_type(param0, param1, …, paramn−1); 

where exception_type is the type of the exception and the parami's form the list of 
parameters for a constructor for this exception. 

Exceptions are also thrown by the Java run-time environment itself. For example, 
the counterpart to the example above is 
ArrayIndexOutOfBoundsException. If we have a six-element array and 
ask for the ninth element, then this exception will be thrown by the Java run-time 
system. 

The Throws Clause 

When a method is declared, it is appropriate to specify the exceptions it might 
throw. This convention has both a functional and courteous purpose. For one, it 
lets users know what to expect. It also lets the Java compiler know which 
exceptions to prepare for. The following is an example of such a method 
definition: 

   public void goShopping() throws 
ShoppingListTooSmallException, 

                                      OutOfMoneyException { 

        // method body… 

   } 

By specifying all the exceptions that might be thrown by a method, we prepare 
others to be able to handle all of the exceptional cases that might arise from using 
this method. Another benefit of declaring exceptions is that we do not need to 
catch those exceptions in our method. Sometimes this is appropriate in the case 
where other code is responsible for causing the circumstances leading up to the 
exception. 

The following illustrates an exception that is "passed through": 

   public void getReadyForClass() throws 
ShoppingListTooSmallException, 

                                                     OutOfMoneyException { 
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      goShopping();     // I don't have to try or catch 
the exceptions 

                                             // which goShopping() might throw 
because 

                                             // getReadyForClass() will just pass 
these along. 

     makeCookiesForTA(); 

   } 

A function can declare that it throws as many exceptions as it likes. Such a listing 
can be simplified somewhat if all exceptions that can be thrown are subclasses of 
the same exception. In this case, we only have to declare that a method throws the 
appropriate superclass. 

Kinds of Throwables 

Java defines classes Exception and Error as subclasses of Throwable, 
which denotes any object that can be thrown and caught. Also, it defines class 
RuntimeException as a subclass of Exception. The Error class is used 
for abnormal conditions occurring in the run-time environment, such as running 
out of memory. Errors can be caught, but they probably should not be, because 
they usually signal problems that cannot be handled gracefully. An error message 
or a sudden program termination is about as much grace as we can expect. The 
Exception class is the root of the exception hierarchy. Specialized exceptions 
(for example, BoundaryViolationException) should be defined by 
subclassing from either Exception or RuntimeException. Note that 
exceptions that are not subclasses of RuntimeException must be 
declared in the throws clause of any method that can throw them. 

2.3.2  Catching Exceptions 

When an exception is thrown, it must be caught or the program will terminate. In 
any particular method, an exception in that method can be passed through to the 
calling method or it can be caught in that method. When an exception is caught, it 
can be analyzed and dealt with. The general methodology for dealing with 
exceptions is to "try" to execute some fragment of code that might throw an 
exception. If it does throw an exception, then that exception is caught by having the 
flow of control jump to a predefined catch block that contains the code dealing 
with the exception. 

The general syntax for a try-catch block in Java is as follows: 
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   try 

        main_block_of_statements 

   catch (exception_type1 variable1) 

        block_of_statements1 

   catch (exception_type2 variable2) 

        block_of_statements2 

   … 

   finally 

        block_of_statementsn 

where there must be at least one catch part, but the finally part is optional. 
Each exception_typei is the type of some exception, and each variablei is a valid 
Java variable name. 

The Java run-time environment begins performing a try-catch block such as 
this by executing the block of statements, main_block_of_statements. If this 
execution generates no exceptions, then the flow of control continues with the first 
statement after the last line of the entire try-catch block, unless it includes an 
optional finally part. The finally part, if it exists, is executed regardless of 
whether any exceptions are thrown or caught. Thus, in this case, if no exception is 
thrown, execution progresses through the try-catch block, jumps to the 
finally part, and then continues with the first statement after the last line of the 
try-catch block. 

If, on the other hand, the block, main_block_of_statements, generates an 
exception, then execution in the try-catch block terminates at that point and 
execution jumps to the catch block whose exception_type most closely matches 
the exception thrown. The variable for this catch statement references the exception 
object itself, which can be used in the block of the matching catch statement. 
Once execution of that catch block completes, control flow is passed to the 
optional finally block, if it exists, or immediately to the first statement after the 
last line of the entire try-catch block if there is no finally block. Otherwise, 
if there is no catch block matching the exception thrown, then control is passed to 
the optional finally block, if it exists, and then the exception is thrown back to 
the calling method. 

Consider the following example code fragment: 

int index = Integer.MAX_VALUE; // 2.14 Billion 
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try                        // This code might have a 
problem… 

   { 

      String toBuy = shoppingList[index]; 

   } 

catch (ArrayIndexOutOfBoundsException aioobx) 

   { 

      System.out.println("The index "+index+" is outside 
the array."); 

   } 

If this code does not catch a thrown exception, the flow of control will immediately 
exit the method and return to the code that called our method. There, the Java run-
time environment will look again for a catch block. If there is no catch block in the 
code that called this method, the flow of control will jump to the code that called 
this, and so on. Eventually, if no code catches the exception, the Java run-time 
system (the origin of our program's flow of control) will catch the exception. At this 
point, an error message and a stack trace is printed to the screen and the program is 
terminated. 

The following is an actual run-time error message: 

   java.lang.NullPointerException: Returned a null 
locator 

   at java.awt.Component.handleEvent(Component.java:900) 

   at java.awt.Component.postEvent(Component.java:838) 

   at java.awt.Component.postEvent(Component.java:845) 

   at 
sun.awt.motif.MButtonPeer.action(MButtonPeer.java:39) 

   at java.lang.Thread.run(Thread.java) 

Once an exception is caught, there are several things a programmer might want to 
do. One possibility is to print out an error message and terminate the program. 
There are also some interesting cases in which the best way to handle an exception 
is to ignore it (this can be done by having an empty catch block). 
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Ignoring an exception is usually done, for example, when the programmer does not 
care whether there was an exception or not. Another legitimate way of handling 
exceptions is to create and throw another exception, possibly one that specifies the 
exceptional condition more precisely. The following is an example of this approach: 

   catch (ArrayIndexOutOfBoundsException aioobx) { 

      throw new ShoppingListTooSmallException( 

                  "Product index is not in the shopping list"); 

      } 

Perhaps the best way to handle an exception (although this is not always possible) is 
to find the problem, fix it, and continue execution. 

2.4  Interfaces and Abstract Classes 

In order for two objects to interact, they must "know" about the various messages that 
each will accept, that is, the methods each object supports. To enforce this 
"knowledge," the object-oriented design paradigm asks that classes specify the 
application programming interface (API), or simply interface, that their objects 
present to other objects. In the ADT-based approach (see Section 2.1.2) to data 
structures followed in this book, an interface defining an ADT is specified as a type 
definition and a collection of methods for this type, with the arguments for each 
method being of specified types. This specification is, in turn, enforced by the 
compiler or run-time system, which requires that the types of parameters that are 
actually passed to methods rigidly conform with the type specified in the 
interface.This requirement is known as strong typing. Having to define interfaces and 
then having those definitions enforced by strong typing admittedly places a burden on 
the programmer, but this burden is offset by the rewards it provides, for it enforces 
the encapsulation principle and often catches programming errors that would 
otherwise go unnoticed. 

2.4.1  Implementing Interfaces 

The main structural element in Java that enforces an API is the interface. An 
interface is a collection of method declarations with no data and no bodies. That is, 
the methods of an interface are always empty (that is, they are simply method 
signatures). When a class implements an interface, it must implement all of the 
methods declared in the interface. In this way, interfaces enforce requirements that 
an implementing class has methods with certain specified signatures. 

Suppose, for example, that we want to create an inventory of antiques we own, 
categorized as objects of various types and with various properties. We might, for 
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instance, wish to identify some of our objects as sellable, in which case they could 
implement the Sellable interface shown in Code Fragment 2.8. 

We can then define a concrete class, Photograph, shown in Code Fragment 2.9, 
that implements the Sellable interface, indicating that we would be willing to 
sell any of our Photograph objects: This class defines an object that 
implements each of the methods of the Sellable interface, as required. In 
addition, it adds a method, isColor, which is specialized for Photograph 
objects. 

Another kind of object in our collection might be something we could transport. For 
such objects, we define the interface shown in Code Fragment 2.10. 

Code Fragment 2.8:  Interface Sellable. 

 
Code Fragment 2.9  : Class Photograph 
implementing the Sellable interface. 
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Code Fragment 2.10:  Interface Transportable. 

 

We could then define the class BoxedItem, shown in Code Fragment 2.11, for 
miscellaneous antiques that we can sell, pack, and ship. Thus, the class 
BoxedItem implements the methods of the Sellable interface and the 
Transportable interface, while also adding specialized methods to set an 
insured value for a boxed shipment and to set the dimensions of a box for shipment. 

Code Fragment 2.11  : Class BoxedItem. 
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The class BoxedItem shows another feature of classes and interfaces in Java, as 
well—a class can implement multiple interfaces—which allows us a great deal of 
flexibility when defining classes that should conform to multiple APIs. For, while a 
class in Java can extend only one other class, it can nevertheless implement many 
interfaces. 

2.4.2  Multiple Inheritance in Interfaces 
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The ability of extending from more than one class is known as multiple 
inheritance. In Java, multiple inheritance is allowed for interfaces but not for 
classes. The reason for this rule is that the methods of an interface never have 
bodies, while methods in a class always do. Thus, if Java were to allow for multiple 
inheritance for classes, there could be a confusion if a class tried to extend from two 
classes that contained methods with the same signatures. This confusion does not 
exist for interfaces, however, since their methods are empty. So, since no confusion 
is involved, and there are times when multiple inheritance of interfaces is useful, 
Java allows for interfaces to use multiple inheritance. 

One use for multiple inheritance of interfaces is to approximate a multiple 
inheritance technique called the mixin. Unlike Java, some object-oriented 
languages, such as Smalltalk and C++, allow for multiple inheritance of concrete 
classes, not just interfaces. In such languages, it is common to define classes, called 
mixin classes, that are never intended to be created as stand-alone objects, but are 
instead meant to provide additional functionality to existing classes. Such 
inheritance is not allowed in Java, however, so programmers must approximate it 
with interfaces. In particular, we can use multiple inheritance of interfaces as a 
mechanism for "mixing" the methods from two or more unrelated interfaces to 
define an interface that combines their functionality, possibly adding more methods 
of its own. Returning to our example of the antique objects, we could define an 
interface for insurable items as follows: 

public interface InsurableItem extends Transportable, 
Sellable { 

   /** Returns insured Value in cents */ 

   public int insuredValue(); 

} 

This interface mixes the methods of the Transportable interface with the 
methods of the Sellable interface, and adds an extra method, insuredValue. 
Such an interface could allow us to define the BoxedItem alternately as follows: 

public class BoxedItem2 implements InsurableItem { 

   // … same code as class BoxedItem 

} 

In this case, note that the method insuredValue is not optional, whereas it was 
optional in the declaration of BoxedItem given previously. 

Java interfaces that approximate the mixin include java.lang.Cloneable, 
which adds a copy feature to a class, java.lang.Comparable, which adds a 
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comparability feature to a class (imposing a natural order on its instances), and 
java.util.Observer, which adds an update feature to a class that wishes to 
be notified when certain "observable" objects change state. 

2.4.3  Abstract Classes and Strong Typing 

An abstract class is a class that contains empty method declarations (that is, 
declarations of methods without bodies) as well as concrete definitions of methods 
and/or instance variables. Thus, an abstract class lies between an interface and a 
complete concrete class. Like an interface, an abstract class may not be instantiated, 
that is, no object can be created from an abstract class. A subclass of an abstract 
class must provide an implementation for the abstract methods of its superclass, 
unless it is itself abstract. But, like a concrete class, an abstract class A can extend 
another abstract class, and abstract and concrete classes can further extend A, as 
well. Ultimately, we must define a new class that is not abstract and extends 
(subclasses) the abstract superclass, and this new class must fill in code for all 
abstract methods. Thus, an abstract class uses the specification style of inheritance, 
but also allows for the specialization and extension styles as well (see Section 2.2.3. 

The java.lang.Number Class 

It turns out that we have already seen an example of an abstract class. Namely, the 
Java number classes (shown in Table 1.2) specialize an abstract class called 
java.lang.Number. Each concrete number class, such as 
java.lang.Integer and java.lang.Double, extends the 
java.lang.Number class and fills in the details for the abstract methods of 
the superclass. In particular, the methods intValue, floatValue, 
doubleValue, and longValue are all abstract in java.lang.Number. 
Each concrete number class must specify the details of these methods. 

Strong Typing 

In Java, an object can be viewed as being of various types. The primary type of an 
object o is the class C specified at the time o was instantiated. In addition, o is of 
type S for each superclass S of C and is of type I for each interface I implemented 
byC. 

However, a variable can be declared as being of only one type (either a class or an 
interface), which determines how the variable is used and how certain methods 
will act on it. Similarly, a method has a unique return type. In general, an 
expression has a unique type. 

By enforcing that all variables be typed and that methods declare the types they 
expect and return, Java uses the technique of strong typing to help prevent bugs. 
But with rigid requirements on types, it is sometimes necessary to change, or 
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convert, a type into another type. Such conversions may have to be specified by 
an explicit cast operator. We have already discussed (Section 1.3.3) how 
conversions and casting work for base types. Next, we discuss how they work for 
reference variables. 

2.5  Casting and Generics 

In this section, we discuss casting among reference variables, as well as a technique, 
called generics, which allow us to avoid explicit casting in many cases. 

2.5.1  Casting 

We begin our discussion with methods for type conversions for objects. 

Widening Conversions 

A widening conversion occurs when a type T is converted into a "wider" type U. 
The following are common cases of widening conversions:  

• T and U are class types and U is a superclass of T 

• T and U are interface types and U is a superinterface of T 

• T is a class that implements interface U. 

Widening conversions are automatically performed to store the result of an 
expression into a variable, without the need for an explicit cast. Thus, we can 
directly assign the result of an expression of type T into a variable v of type U 
when the conversion from T to U is a widening conversion. The example code 
fragment below shows that an expression of type Integer (a newly constructed 
Integer object) can be assigned to a variable of type Number. 

   Integer i = new Integer(3); 

   Number n = i;    // widening conversion from Integer 
to Number 

The correctness of a widening conversion can be checked by the compiler and its 
validity does not require testing by the Java run-time environment during program 
execution. 

Narrowing Conversions 

A narrowing conversion occurs when a type T is converted into a "narrower" 
type S. The following are common cases of narrowing conversions:  
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• T and S are class types and S is a subclass of T 

• T and S are interface types and S is a subinterface of T 

• T is an interface implemented by class S. 

In general, a narrowing conversion of reference types requires an explicit cast. 
Also, the correctness of a narrowing conversion may not be verifiable by the 
compiler. Thus, its validity should be tested by the Java run-time environment 
during program execution. 

The example code fragment below shows how to use a cast to perform a 
narrowing conversion from type Number to type Integer. 

   Number n = new Integer(2); // widening conversion 
from Integer to Number 

   Integer i = (Integer) n;  // narrowing conversion 
from Number to Integer 

In the first statement, a new object of class Integer is created and assigned to a 
variable n of type Number. Thus, a widening conversion occurs in this 
assignment and no cast is required. In the second statement, we assign n to a 
variable i of type Integer using a cast. This assignment is possible because n 
refers to an object of type Integer. However, since variable n is of type 
Number, a narrowing conversion occurs and the cast is necessary. 

Casting Exceptions 

In Java, we can cast an object reference o of type T into a type S, provided the 
object o is referring to is actually of type S. If, on the other hand, object o is not 
also of type S, then attempting to cast o to type S will throw an exception called 
ClassCastException. We illustrate this rule in the following code fragment: 

   Number n; 

   Integer i; 

   n = new Integer(3); 

   i = (Integer) n;  // This is legal 

   n = new Double(3.1415); 

   i = (Integer) n;  // This is illegal! 
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To avoid problems such as this and to avoid peppering our code with try-
catch blocks every time we perform a cast, Java provides a way to make sure an 
object cast will be correct. Namely, it provides an operator, instanceof, that 
allows us to test whether an object variable is referring to an object of a certain 
class (or implementing a certain interface). The syntax for using this operator is 
object referenceinstanceof reference_type, where object_reference is an 
expression that evaluates to an object reference and reference_type is the name of 
some existing class, interface, or enum (Section 1.1.3). If object_reference is 
indeed an instance of reference_type, then the expression above returns true. 
Otherwise, it returns false. Thus, we can avoid a ClassCastException 
from being thrown in the code fragment above by modifying it as follows: 

   Number n; 

   Integer i; 

   n = new Integer(3); 

   if (n instanceof Integer) 

     i = (Integer) n;  // This is legal 

   n = new Double(3.1415); 

   if (n instanceof Integer) 

     i = (Integer) n;  // This will not be attempted 

Casting with Interfaces 

Interfaces allow us to enforce that objects implement certain methods, but using 
interface variables with concrete objects sometimes requires casting. Suppose we 
declare a Person interface as shown in Code Fragment 2.12. Note that method 
equalTo of the Person interface takes one parameter of type Person. Thus, we 
can pass an object of any class implementing the Person interface to this 
method. 

Code Fragment 2.12  : Interface Person. 
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We show in Code Fragment 2.13 a class, Student, that implements Person. 
The method equalTo assumes that the argument (declared of type Person) is 
also of type Student and performs a narrowing conversion from type Person 
(an interface) to type Student (a class) using a cast. The conversion is allowed 
in this case, because it is a narrowing conversion from class T to interface U, 
where we have an object taken from T such that T extends S (or T = S) and S 
implements U. 

Code Fragment 2.13  : Class Student implementing 
interface Person. 

 

Because of the assumption above in the implementation of method equalTo, we 
have to make sure that an application using objects of class Student will not 
attempt the comparison of Student objects with other types of objects, or 
otherwise, the cast in method equalTo will fail. For example, if our application 
manages a directory of Student objects and uses no other types of Person 
objects, the assumption will be satisfied. 
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The ability of performing narrowing conversions from interface types to class 
types allows us to write general kinds of data structures that only make minimal 
assumptions about the elements they store. In Code Fragment 2.14, we sketch 
how to build a directory storing pairs of objects implementing the Person 
interface. The remove method performs a search on the directory contents and 
removes the specified person pair, if it exists, and, like the findOther method, 
it uses the equalTo method to do this. 

Code Fragment 2.14  : Sketch of class 
PersonPairDirectory. 

 

Now, suppose we have filled a directory, myDirectory, with pairs of 
Student objects that represent roommate pairs. In order to find the roommate of 
a given Student object, smart_one, we may try to do the following (which is 
wrong): 

   Student cute_one = myDirectory.findOther(smart_one); 
// wrong! 

The statement above causes an "explicit-cast-required" compilation error. The 
problem here is that we are trying to perform a narrowing conversion without an 
explicit cast. Namely, the value returned by method findOther is of type 
Person while the variable cute_one, to which it is assigned, is of the 
narrower type Student, a class implementing interface Person. Thus, we use 
a cast to convert type Person to type Student, as follows: 

   Student cute_one = (Student) 
myDirectory.findOther(smart_one); 

Casting the value of type Person returned by method findOther to type 
Student works fine as long as we are sure that the call to 
myDirectory.findOther is really giving us a Student object. In general, 
interfaces can be a valuable tool for the design of general data structures, which 
can then be specialized by other programmers through the use of casting. 

2.5.2  Generics 
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Starting with 5.0, Java includes a generics framework for using abstract types in a 
way that avoids many explicit casts. A generic type is a type that is not defined at 
compilation time, but becomes fully specified at run time. The generics framework 
allows us to define a class in terms of a set of formal type parameters, with could 
be used, for example, to abstract the types of some internal variables of the class. 
Angle brackets are used to enclose the list of formal type parameters. Although any 
valid identifier can be used for a formal type parameter, single-letter uppercase 
names are conventionally used. Given a class that has been defined with such 
parameterized types, we instantiate an object of this class by using actual type 
parameters to indicate the concrete types to be used. 

In Code Fragment 2.15, we show a class Pair storing key-value pairs, where the 
types of the key and value are specified by parameters K and V, respectively. The 
main method creates two instances of this class, one for a String-Integer pair 
(for example, to store a dimension and its value), and the other for a Student-
Double pair (for example, to store the grade given to a student). 

Code Fragment 2.15:  Example using the Student 
class from Code Fragment 2.13. 
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The output of the execution of this method is shown below: 

[height, 36] 

[Student(ID: A5976, Name: Sue, Age: 19), 9.5] 

In the previous example, the actual type parameter can be an arbitrary type. To 
restrict the type of an actual parameter, we can use an extends clause, as shown 
below, where class PersonPairDirectoryGeneric is defined in terms of a 
generic type parameter P, partially specified by stating that it extends class 
Person. 

public class PersonPairDirectoryGeneric<P extends 
Person> { 

   //… instance variables would go here … 

   public PersonPairDirectoryGeneric() { /* default 
constructor goes here */ } 
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   public void insert (P person, P other) { /* insert 
code goes here */ } 

   public P findOther (P person) { return null; } // stub 
for find 

   public void remove (P person, P other) { /* remove 
code goes here */ } 

} 

This class should be compared with class PersonPairDirectory in Code 
Fragment 2.14. Given the class above, we can declare a variable referring to an 
instance of PersonPairDirectoryGeneric, that stores pairs of objects of 
type Student: 

   PersonPairDirectoryGeneric<Student> 
myStudentDirectory; 

For such an instance, method findOther returns a value of type Student. Thus, 
the following statement, which does not use a cast, is correct: 

   Student cute_one = 
myStudentDirectory.findOther(smart_one); 

The generics framework allows us to define generic versions of methods. In this 
case, we can include the generic definition among the method modifiers. For 
example, we show below the definition of a method that can compare the keys from 
any two Pair objects, provided that their keys implement the Comparable 
interface: 

   public static <K extends Comparable,V,L,W> int 

          comparePairs(Pair<K,V> p, Pair<L,W> q) { 

     return p.getKey().compareTo(q.getKey()); // p's key 
implements compare To 

   } 

There is an important caveat related to generic types, namely, that the elements 
stored in array cannot be a type variable or a parameterized type. Java allows for an 
array to be defined with a parameterized type, but it doesn't allow a parameterized 
type to be used to create a new array. Fortunately, it allows for an array defined 
with a parameterized type to be initialized with a newly created, nonparametric 
array. Even so, this latter mechanism causes the Java compiler to issue a warning, 
because it is not 100% type-safe. We illustrate this point in the following: 
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   public static void main(String[] args) { 

     Pair<String,Integer>[] a = new Pair[10]; // right, but 
gives a warning 

     Pair<String,Integer>[] b = new 
Pair<String,Integer>[10]; // wrong 

     a[0] = new Pair<String,Integer>(); // this is 
completely right 

     a[0].set("Dog",10); // this and the next statement are 
right too 

     System.out.println("First pair is "+a[0].getKey()+", 
"+a[0].getValue()); 

} 

2.6  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-2.1 

Can two interfaces extend each other? Why or why not? 

R-2.2 

Give three examples of life-critical software applications. 

R-2.3 

Give an example of a software application where adaptability can mean the 
difference between a prolonged sales lifetime and bankruptcy. 

R-2.4 

Describe a component from a text-editor GUI (other than an "edit" menu) and 
the methods that it encapsulates. 

R-2.5 

Draw a class inheritance diagram for the following set of classes:  
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• 

Class Goat extends Object and adds an instance variable tail and 
methods milk() and jump(). 

• 

Class Pig extends Object and adds an instance variable nose and 
methods eat() and wallow(). 

• 

Class Horse extends Object and adds instance variables height and 
color, and methods run() and jump(). 

• 

Class Racer extends Horse and adds a method race(). 

• 

Class Equestrian extends Horse and adds an instance variable 
weight and methods trot() and is Trained(). 

R-2.6 

Give a short fragment of Java code that uses the progression classes from 
Section 2.2.3 to find the 8th value of a Fibonacci progression that starts with 2 
and 2 as its first two values. 

R-2.7 

If we choose inc = 128, how many calls to the nextValue method from the 
ArithProgression class of Section 2.2.3 can we make before we cause a 
long-integer overflow? 

R-2.8 

Suppose we have an instance variable p that is declared of type 
Progression, using the classes of Section 2.2.3. Suppose further that p 
actually refers to an instance of the class Geom Progression that was 
created with the default constructor. If we cast p to type Progression and 
call p.firstValue(), what will be returned? Why? 

R-2.9 
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Consider the inheritance of classes from Exercise R-2.5, and let d be an object 
variable of type Horse. If d refers to an actual object of type Equestrian, 
can it be cast to the class Racer? Why or why not? 

R-2.10 

Give an example of a Java code fragment that performs an array reference that 
is possibly out of bounds, and if it is out of bounds, the program catches that 
exception and prints the following error message: "Don't try buffer 
overflow attacks in Java!" 

R-2.11 

Consider the following code fragment, taken from some package: 

public class Maryland extends State { 

   Maryland() { /* null constructor */ } 

   public void printMe() { System.out.println("Read 
it."); } 

   public static void main(String[] args) { 

     Region mid = new State(); 

     State md = new Maryland(); 

     Object obj = new Place(); 

     Place usa = new Region(); 

     md.printMe(); 

     mid.printMe(); 

     ((Place) obj).printMe(); 

     obj = md; 

     ((Maryland) obj).printMe(); 

     obj = usa; 

     ((Place) obj).printMe(); 

     usa = md; 
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     ((Place) usa).printMe(); 

    } 

   } 

   class State extends Region { 

     State() { /* null constructor */ } 

     public void printMe() { System.out.println("Ship 
it."); } 

   } 

   class Region extends Place { 

     Region() { /* null constructor */ } 

     public void printMe() { System.out.println("Box it."); 
} 

   } 

   class Place extends Object { 

     Place() { /* null constructor */ } 

     public void printMe() { System.out.println("Buy it."); 
} 

   } 

What is the output from calling the main() method of the Maryland class? 

R-2.12 

Write a short Java method that counts the number of vowels in a given character 
string. 

R-2.13 

Write a short Java method that removes all the punctuation from a string s 
storing a sentence. For example, this operation would transform the string 

"Let's try, Mike." to "Lets try Mike". 

R-2.14 
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Write a short program that takes as input three integers, a, b, and c, from the 
Java console and determines if they can be used in a correct arithmetic formula 
(in the given order), like "a + b = c," "a = b − c," or "a*b = c." 

R-2.15 

Write a short Java program that creates a Pair class that can store two objects 
declared as generic types. Demonstrate this program by creating and printing 
Pair objects that contain five different kinds of pairs, such as 
<Integer,String> and <Float,Long>. 

R-2.16 

Generic parameters are not included in the signature of a method declaration, so 
you cannot have different methods in the same class that have different generic 
parameters but otherwise have the same names and the types and number of 
their parameters. How can you change the signatures of the conflicting methods 
to get around this restriction? 

Creativity 

C-2.1 

Explain why the Java dynamic dispatch algorithm, which looks for the method 
to invoke for a call o.a(), will never get into an infinite loop. 

C-2.2 

Write a Java class that extends the Progression class so that each value in 
the progression is the absolute value of the difference between the previ- ous 
two values. You should include a default constructor that starts with 2 and 200 
as the first two values and a parametric constructor that starts with a specified 
pair of numbers as the first two values. 

C-2.3 

Write a Java class that extends the Progression class so that each value in 
the progression is the square root of the previous value. (Note that you can no 
longer represent each value with an integer.) You should include a default 
constructor that has 65,536 as the first value and a parametric constructor that 
starts with a specified (double) number as the first value. 

C-2.4 

Rewrite all the classes in the Progression hierarchy so that all values are 
from the BigInteger class, in order to avoid overflows all together. 
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C-2.5 

Write a program that consists of three classes, A, B, and C, such that B extends 
A and C extends B. Each class should define an instance variable named "x" 
(that is, each has its own variable named x). Describe a way for a method in C to 
access and set A's version of x to a given value, without changing B or C's 
version. 

C-2.6 

Write a set of Java classes that can simulate an Internet application, where one 
party, Alice, is periodically creating a set of packets that she wants to send to 
Bob. An Internet process is continually checking if Alice has any packets to 
send, and if so, it delivers them to Bob's computer, and Bob is periodically 
checking if his computer has a packet from Alice, and, if so, he reads and 
deletes it. 

Projects 

P-2.1 

Write a Java program that inputs a document and then outputs a bar-chart plot 
of the frequencies of each alphabet character that appears in that document. 

P-2.2 

Write a Java program that simulates a handheld calculator. Your program 
should be able process input, either in a GUI or from the Java console, forthe 
buttons that are pushed, and then output the contents of the screen after each 
operation is performed. Minimally, your calculator should be able to process the 
basic arithmetic operations and a reset/clear operation. 

P-2.3 

Fill in code for the PersonPairDirectory class of Code Fragment 2.14, 
assuming person pairs are stored in an array with capacity 1,000. The directory 
should keep track of how many person pairs are actually in it. 

P-2.4 

Write a Java program that can take a positive integer greater than 2 as input and 
write out the number of times one must repeatedly divide this number by 2 
before getting a value less than 2. 

P-2.5 
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Write a Java program that can "make change." Your program should take two 
numbers as input, one that is a monetary amount charged and the other that is a 
monetary amount given. It should then return the number of each kind of bill 
and coin to give back as change for the difference between the amount given 
and the amount charged. The values assigned to the bills and coins can be based 
on the monetary system of any current or former government. Try to design 
your program so that it returns the fewest number of bills and coins as possible. 

Chapter Notes 

For a broad overview of developments in computer science and engineering, we refer 
the reader to The Computer Science and Engineering Handbook [92]. For more 
information about the Therac-25 incident, please see the paper by Leveson and 
Turner [66]. 

The reader interested in studying object-oriented programming further, is referred to 
the books by Booch [14], Budd [17], and Liskov and Guttag [69]. Liskov and Guttag 
[69] also provide a nice discussion of abstract data types, as does the survey paper by 
Cardelli and Wegner [20] and the book chapter by Demurjian [28] in the The 
Computer Science and Engineering Handbook [92]. Design patterns are described in 
the book by Gamma, et al. [38]. The class inheritance diagram notation we use is 
derived from the book by Gamma, et al. 
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3.1  Using Arrays 

In this section, we explore a few applications of arrays, which were introduced in 
Section 1.5. 

3.1.1  Storing Game Entries in an Array 

The first application we study is for storing entries in an array—in particular, high 
score entries for a video game. Storing entries in arrays is a common use for arrays, 
and we could just as easily have chosen to store records for patients in a hospital or 
the names of students in a data structures class. But instead, we have decided to 
store high score entries, which is a simple application that presents some important 
data structuring concepts that we will use for other implementations in this book. 

We should begin by asking ourselves what we want to include in a high score entry. 
Obviously, one component we should include is an integer representing the score 
itself, which we will call score. Another nice feature would be to include the 
name of the person earning this score, which we will simply call name. We could 
go on from here adding fields representing the date the score was earned or game 
statistics that led to that score. Let us keep our example simple, however, and just 
have two fields, score and name. We show a Java class, GameEntry, 
representing a game entry in Code Fragment 3.1. 

Code Fragment 3.1:  Java code for a simple 
GameEntry class. Note that we include methods for 
returning the name and score for a game entry object, 
as well as a method for return a string representation of 
this entry. 
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A Class for High Scores 

Suppose we have some high scores that we want to store in an array named 
entries. The number of scores we want to store could be 10, 20, or 50, so let us 
use a symbolic name, maxEntries, which represents the number of scores we 
want to store. We must set this variable to a specific value, of course, but by using 
this variable throughout our code, we can make it easy to change its value later if 
we need to. We can then define the array, entries, to be an array of length 
maxEntries. Initially, this array stores only nullentries, but as users play 
our video game, we will fill in the entries array with entries, but as users play 
our video game, we will fill in the entries array with references to new 
GameEntry objects. So we will eventually have to define methods for updating 
the GameEntry references in the entries array. 

The way we keep the entries array organized is simple—we store our set of 
GameEntry objects ordered by their integer score values, highest to lowest. If 
the number of GameEntry objects is less than maxEntries, then we let the 
end of the entries array store null references. This approach prevents having 
any empty cells, or "holes," in the continuous series of cells of array entries 
that store the game entries from index 0 onward. We illustrate an instance of the 
data structure in Figure 3.1 and we give Java code for such a data structure in 
Code Fragment 3.2. In an exercise (C-3.1), we explore how game entry addition 
might be simplified for the case when we don't need to preserve relative orders. 
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Figure 3.1:  An illustration of an array of length ten 
storing references to six GameEntry objects in the 
cells from index 0 to 5, with the rest being null 
references. 

 
Code Fragment 3.2:  Class for maintaining a set of 
scores as GameEntry objects. 
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Note that we include a method, toString(), which produces a string 
representation of the high scores in the entries array. This method is quite 
useful for debugging purposes. In this case, the string will be a comma-separated 
listing of the GameEntry objects in the entries array. We produce this listing 
with a simple for-loop, which adds a comma just before each entry that comes 
after the first one. With such a string representation, we can print out the state of 
the entries array during debugging, for testing how things look before and 
after we make updates. 

Insertion 

One of the most common updates we might want to make to the entries array 
of high scores is to add a new game entry. So suppose we want to insert a new 
GameEntry object, e. In particular, let us consider how we might perform the 
following update operation on an instance of the Scores class: 

            add(e): Insert game entry e into the collection of high scores. If the 
collection is full, then e is added only if its score is higher than the lowest score in 
the set, and in this case, e replaces the entry with the lowest score. 

The main challenge in implementing this operation is figuring out where e should 
go in the entries array and making room for e. 
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Visualizing Game Entry Insertion 

To visualize this insertion process, imagine that we store in array entries 
remote controls representing references to the nonnull GameEntry objects, 
listed left-to-right from the one with highest score to the one with the lowest. 

Given the new game entry, e, we need to figure out where it belongs. We start this 
search at the end of the entries array. If the last reference in this array is not 
null and its score is bigger than e's score, then we can stop immediately. For, in 
this case, e is not a high score—it doesn't belong in the entries array at all. 
Otherwise, we know that e belongs in the array, and we also know that the last 
thing in the entries array no longer belongs there. Next, we go to the second to 
the last reference in the array. If this reference is null or it points to a 
GameEntry object whose score is less thane's, this reference needs to be moved 
one cell to the right in the entries array. Moreover, if we move this reference, 
then we need to repeat this comparison with the next one, provided we haven't 
reached the beginning of the entries array. We continue comparing and 
shifting references to game entries until we either reach the beginning of the 
entries array or we compare e's score with a game entry with a higher score. In 
either case, we will have identified the place where e belongs. (See Figure 3.2.) 

Figure 3.2:  Preparing to add a new GameEntry 
object to the entries array. In order to make room 
for the new reference, we have to shift the references 
to game entries with smaller scores than the new one 
to the right by one cell. 
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Once we have identified the place in the entries array where the new game 
entry, e, belongs, we add a reference to e at this position. That is, continuing our 
visualization of object references as remote controls, we add a remote control 
designed especially for e to this location in the entries array. (See Figure 3.3.) 

Figure 3.3:  Adding a reference to a new 
GameEntry object to the entries array. The 
reference can now be inserted at index 2, since we 
have shifted all references to GameEntry objects with 
scores less than the new one to the right. 
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The details of our algorithm for adding the new game entry e to the entries 
array are similar to this informal description, and are given in Java in Code 
Fragment 3.3. Note that we use a loop to move references out of the way. The 
number of times we perform this loop depends on the number of references we 
have to move to make room for a reference to the new game entry. If there are 0, 
1, or even just a few references to move over, this add method will be pretty fast. 
But if there are a lot to move, then this method could be fairly slow. Also note 
that if the array is full and we perform an add on it, then we will either remove 
the reference to the current last game entry or we will fail to add a reference to the 
new game entry, e. 

Code Fragment 3.3:  Java code for inserting a 
GameEntry object. 
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Object Removal 

Suppose some hot shot plays our video game and gets his or her name on our high 
score list. In this case, we might want to have a method that lets us remove a 
game entry from the list of high scores. Therefore, let us consider how we might 
remove a reference to a GameEntry object from the entries array. That is, let 
us consider how we might implement the following operation: 

         remove(i): Remove and return the game entry e at index i in the 
entries array. If index i is outside the bounds of the entries array, then this 
method throws an exception; otherwise, the entries array will be updated to 
remove the object at index i and all objects previously stored at indices higher 
than i are "moved over" to fill in for the removed object. 

Our implementation for remove will be much like performing our algorithm for 
object addition, but in reverse. Again, we can visualize the entries array as an 
array of remote controls pointing to GameEntry objects. To remove the 
reference to the object at index i, we start at index i and move all the references at 
indices higher than i one cell to the left. (See Figure 3.4.) 

Figure 3.4:  An illustration of a removal at index 3 in 
an array storing references to GameEntry objects. 
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Some Subtle Points About Entry Removal 

The details for doing the remove operation contain a few subtle points. The first is 
that, in order to remove and return the game entry (let's call it e) at index i in our 
array, we must first save e in a temporary variable. We will use this variable to 
return e when we are done removing it. The second subtle point is that, in moving 
references higher than i one cell to the left, we don't go all the way to the end of 
the array—we stop at the second to last reference. We stop just before the end, 
because the last reference does not have any reference to its right (hence, there is 
no reference to move into the last place in the entries array). For the last 
reference in the entries array, it is enough that we simply null it out. We 
conclude by returning a reference to the removed entry (which no longer has any 
reference pointing to it in the entries array). See Code Fragment 3.4. 

Code Fragment 3.4: Java code for performing the 
remove operation. 

 148



 

These methods for adding and removing objects in an array of high scores are 
simple. Nevertheless, they form the basis of techniques that are used repeatedly to 
build more sophisticated data structures. These other structures may be more 
general than the array structure above, of course, and often they will have a lot 
more operations that they can perform than just add and remove. But studying 
the concrete array data structure, as we are doing now, is a great starting point to 
understanding these other structures, since every data structure has to be 
implemented using concrete means. 

In fact, later in this book, we will study a Java Collections Class, ArrayList, 
which is more general than the array structure we are studying here. The 
ArrayList has methods to do a lot of the things we will want to do with an 
array, while also eliminating the error that occurs when adding an object to a full 
array. The ArrayList eliminates this error by automatically copying the objects 
into a larger array if necessary. Rather than discuss this process here, however, we 
will say more about how this is done when we discuss the ArrayList in detail. 

3.1.2  Sorting an Array 

In the previous section, we worked hard to show how we can add or remove objects 
at a certain index i in an array while keeping the previous order of the objects intact. 
In this section, we study a way of starting with an array with objects that are out of 
order and putting them in order. This is known as the sorting problem. 

A Simple Insertion-Sort Algorithm 

We study several sorting algorithms in this book, most of which appear in Chapter 
11. As a warm up, we describe in this section a nice, simple sorting algorithm 
called insertion–sort. In this case, we describe a specific version of the algorithm 
where the input is an array of comparable elements. We consider more general 
kinds of sorting algorithms later in this book. 

 149



This simple insertion–sort algorithm goes as follows. We start with the first 
character in the array. One character by itself is already sorted. Then we consider 
the next character in the array. If it is smaller than the first, we swap them. Next 
we consider the third character in the array. We swap it leftward until it is in its 
proper order with the first two characters. We then consider the fourth character, 
and swap it leftward until it is in the proper order with the first three. We continue 
in this manner with the fifth integer, the sixth, and so on, until the whole array is 
sorted. Mixing this informal description with programming constructs, we can 
express the insertion-sort algorithm as shown in Code Fragment 3.5. 

Code Fragment 3.5: High-level description of the 
insertion-sort algorithm. 

 

This is a nice, high-level description of insertion-sort. It also demonstrates why 
this algorithm is called "insertion-sort"—because each iteration of the main 
inserts the next element into the sorted part of the array that comes before it. 
Before we can code this description up, however, we need to work out more of 
the details of how we do this insertion task. 

Diving into those details a bit more, let us rewrite our description so that we now 
use two nested loops. The outer loop will consider each element in the array in 
turn and the inner loop will move that element to its proper location with the 
(sorted) subarray of characters that are to its left. 

Refining the Details for Insertion-Sort 

Refining the details, then, we can describe our algorithm as shown in Code 
Fragment 3.6. 

Code Fragment 3.6:  Intermediate-level description 
of the insertion-sort algorithm. 
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This description is much closer to actual code, since it is a better explanation of 
how to insert the element A [i] into the subarray that comes before it. It still uses 
an informal description of moving elements if they are out of order, but this is not 
a terribly difficult thing to do. 

A Java Description of Insertion-Sort 

Now we are ready to give Java code for this simple version of the insertion-sort 
algorithm. We give such a description in Code Fragment 3.7 for the special case 
when A is an array of characters, a. 

Code Fragment 3.7:  Java code for performing 
insertion-sort on an array of characters. 

 

We illustrate an example run of the insertion-sort algorithm in Figure 3.5. 

Figure 3.5:  Execution of the insertion-sort algorithm 
on an array of eight characters. We show the 
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completed (sorted) part of the array in white, and we 
color the next element that is being inserted into the 
sorted part of the array with light blue. We also 
highlight that character on the left, since it is stored in 
the cur variable. Each row corresponds to an iteration 
of the outer loop, and each copy of the array in a row 
corresponds to an iteration of the inner loop. Each 
comparison is shown with an arc. In addition, we 
indicate whether that comparison resulted in a move 
or not. 

 

An interesting thing happens in the insertion-sort algorithm if the array is already 
sorted. In this case, the inner loop does only one comparison, determines that 
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there is no swap needed, and returns back to the outer loop. That is, we perform 
only one iteration of the inner loop for each iteration of the outer loop. Thus, in 
this case, we perform a minimum number of comparisons. Of course, we might 
have to do a lot more work than this if the input array is extremely out of order. In 
fact, we will have to do the most work if the input array is in decreasing order. 

3.1.3  java.util Methods for Arrays and Random Numbers 

Because arrays are so important, Java provides a number of built-in methods for 
performing common tasks on arrays. These methods appear as static methods in the 
java.util.Arrays class. That is, they are associated with the class, 
java.util.Arrays itself, and not with a particular instance of this class. 
Describing some of these methods will have to wait, however, until later in this 
book (when we discuss the concept that these methods are based on). 

Some Simple Methods of java.util.Arrays 

We list below some simple methods of class java.util.Arrays that need no 
further explanation: 

              equals(A, B): Returns true if and only if the array A and the array B 
are equal. Two arrays are considered equal if they have the same number of 
elements and every corresponding pair of elements in the two arrays are equal. 
That is, A and B have the same elements in the same order. 

                    fill(A,x): Stores element x into every cell of array A. 

                       sort(A): Sorts the array A using the natural ordering of its 
elements. 

                toString(A): Returns a String representation of the array A. 

For example, the following string would be returned by the method toString 
called on an array of integers A = [4,5,2,3,5,7,10]: 

          [4, 5, 2, 3, 5, 7, 10] 

Note that, from the list above, Java has a built-in sorting algorithm. This is not the 
insertion-sort algorithm we presented above, however. It is an algorithm called 
quick-sort, which usually runs much faster than insertion—sort. We discuss the 
quick-sort algorithm in Section 11.2. 

An Example Using Pseudo-Random Numbers 
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We show in Code Fragment 3.8 a short (but complete) Java program that uses the 
methods above. 

Code Fragment 3.8:  Test program ArrayTest 
that uses various built-in methods of the Arrays 
class. 

 

Program ArrayTest uses another feature in Java—the ability to generate 
pseudorandomnumbers, that is, numbers that are statistically random (but not 
truly random). In particular, it uses a java.util.Random object, which is a 
pseudo-random number generator, that is, an object that computes, or 
"generates," a sequence of numbers that are statistically random. Such a generator 
needs a place to start, however,which is its seed. The sequence of numbers 
generated for a given seed will always be the same. In our program, we set the 
seed to the current time in milliseconds since January 1, 1970 (using the method 
System.currentTimeMillis), which will be different each time we run 
our program. Once we have set the seed, we can repeatedly get a random number 
between 0 and 99 by calling the nextInt method with argument 100. We show 
a sample output of this program below: 

     arrays equal before sort: true 

     arrays equal after sort: false 

     old = [41,38,48,12,28,46,33,19,10,58] 
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     num = [10,12,19,28,33,38,41,46,48,58] 

By the way, there is a slight chance that the old and num arrays will remain 
equal even after num is sorted, namely, if num is already sorted before it is 
cloned. But the odds of this occurring are less than one in four million. 

3.1.4  Simple Cryptography with Strings and Character 
Arrays 

One of the primary applications of arrays is the representation of strings of 
characters.That is, string objects are usually stored internally as an array of 
characters. Even if strings may be represented in some other way, there is a natural 
relationship between strings and character arrays—both use indices to refer to their 
characters. Because of this relationship, Java makes it easy for us to create string 
objects from character arrays and vice versa. Specifically, to create an object of 
class String from a character array A, we simply use the expression, 

          new String(A) 

That is, one of the constructors for the String class takes a character array as its 
argument and returns a string having the same characters in the same order as the 
array. For example, the string we would construct from the array A = [a, c, a, t] is 
acat. Likewise, given a string S, we can create a character array representation of 
S by using the expression, 

          S.toCharArray() 

That is, the String class has a method, toCharArray, which returns an array 
(of type char[]) with the same characters as S. For example, if we call 
toCharArray on the string adog, we would get the array B = [a, d, o, g]. 

The Caesar Cipher 

One area where being able to switch from string to character array and back again 
is useful is in cryptography, the science of secret messages and their applications. 
This field studies ways of performing encryption, which takes a message, called 
the plaintext, and converts it into a scrambled message, called the ciphertext. 
Likewise, cryptography also studies corresponding ways of performing 
decryption, which takes a ciphertext and turns it back into its original plaintext. 

Arguably the earliest encryption scheme is the Caesar cipher, which is named 
after Julius Caesar, who used this scheme to protect important military messages. 
(All of Caesar's messages were written in Latin, of course, which already makes 
them unreadable for most of us!) The Caesar cipher is a simple way to obscure a 
message written in a language that forms words with an alphabet. 
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The Caesar cipher involves replacing each letter in a message with the letter that 
is three letters after it in the alphabet for that language. So, in an English message, 
we would replace each A with D, each B with E, each C with F, and so on. We 
continue this approach all the way up to W, which is replaced with Z. Then, we 
let the substitution pattern wrap around, so that we replace X with A, Y with B, 
and Z with C. 

Using Characters as Array Indices 

If we were to number our letters like array indices, so that A is 0, B is 1, C is 2, 
and so on, then we can write the Caesar cipher as a simple formula: 

        Replace each letter i with the letter (i + 3) mod 26, 

where mod is the modulus operator, which returns the remainder after performing 
an integer division. This operator is denoted %in Java, and it is exactly the 
operator we need to easily perform the wrap around at the end of the alphabet. For 
26 mod 26 is 0, 27 mod 26 is 1, and 28 mod 26 is 2. The decryption algorithm for 
the Caesar cipher is just the opposite—we replace each letter with the one three 
places before it, with wrap around for A, B, and C. 

We can capture this replacement rule using arrays for encryption and decryption. 
Since every character in Java is actually stored as a number—its Unicode value—
we can use letters as array indices. For an uppercase character c, for example, we 
can use c as an array index by taking the Unicode value for c and subtracting A. 
Of course, this only works for uppercase letters, so we will require our secret 
messages to be uppercase. We can then use an array, encrypt, that represents 
the encryption replacement rule, so that encrypt [i] is the letter that replaces 
letter number i (which is c — A for an uppercase character c in Unicode). This 
usage is illustrated in Figure 3.6. Likewise, an array, decrypt, can represent the 
decryption replacement rule, so that decrypt[i] is the letter that replaces letter 
number i. 

Figure 3.6:  Illustrating the use of uppercase 
characters as array indices, in this case to perform the 
replacement rule for Caesar cipher encryption. 
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In Code Fragment 3.9, we give a simple, complete Java class for performing the 
Caesar cipher, which uses the approach above and also makes use of conversions 
between strings and character arrays. When we run this program (to perform a 
simple test), we get the following output: 

   Encryption order = DEFGHIJKLMNOPQRSTUVWXYZABC 

   Decryption order = XYZABCDEFGHIJKLMNOPQRSTUVW 

   WKH HDJOH LV LQ SODB; PHHW DW MRH'V. 

   THE EAGLE IS IN PLAY; MEET AT JOE'S. 

Code Fragment 3.9:  A simple, complete Java class 
for the Caesar cipher. 
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3.1.5  Two-Dimensional Arrays and Positional Games 
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Many computer games, be they strategy games, simulation games, or first-person 
conflict games, use a two-dimensional "board." Programs that deal with such 
positional games need a way of representing objects in a two-dimensional space. A 
natural way to do this is with a two-dimensional array, where we use two indices, 
say i and j, to refer to the cells in the array. The first index usually refers to a row 
number and the second to a column number. Given such an array we can then 
maintain two-dimensional game boards, as well as perform other kinds of 
computations involving data that is stored in rows and columns. 

Arrays in Java are one-dimensional; we use a single index to access each cell of an 
array. Nevertheless, there is a way we can define two-dimensional arrays in Java—
we can create a two-dimensional array as an array of arrays. That is, we can define 
a two—dimensional array to be an array with each of its cells being another array. 
Such a two—dimensional array is sometimes also called a matrix. In Java, we 
declare a two—dimensional array as follows: 

          int[][] Y = new int[8][10]; 

This statement creates a two-dimensional "array of arrays," Y, which is 8 × 10, 
having 8 rows and 10 columns. That is, Y is an array of length 8 such that each 
element of Y is an array of length 10 of integers. (See Figure 3.7.) The following 
would then be valid uses of array Y and int variables i and j: 

          Y[i][i+1] = Y[i][i] + 3; 

          i = a.length; 

          j = Y[4].length; 

Two-dimensional arrays have many applications to numerical analysis. Rather than 
going into the details of such applications, however, we explore an application of 
two-dimensional arrays for implementing a simple positional game. 

Figure 3.7:  Illustration of a two-dimensional integer 
array, Y, which has 8 rows and 10 columns. The value of 
Y[3][5] is 100 and the value of Y[6][2] is 632. 
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Tic-Tac-Toe 

As most school children know, tic-tac-toe is a game played in a three-by-three 
board. Two players—X and O—alternate in placing their respective marks in the 
cells of this board, starting with player X. If either player succeeds in getting three 
of his or her marks in a row, column, or diagonal, then that player wins. 

This is admittedly not a sophisticated positional game, and it's not even that much 
fun to play, since a good player O can always force a tie. Tic-tac-toe's saving 
grace is that it is a nice, simple example showing how two-dimensional arrays can 
be used for positional games. Software for more sophisticated positional games, 
such as checkers, chess, or the popular simulation games, are all based on the 
same approach we illustrate here for using a two-dimensional array for tic—tac—
toe. (See Exercise P-7.8.) 

The basic idea is to use a two-dimensional array, board, to maintain the game 
board. Cells in this array store values that indicate if that cell is empty or stores an 
X or O. That is, board is a three-by-three matrix, whose middle row consists of 
the cells board[1][0], board[1][1], and board[1][2]. In our case, we choose to 
make the cells in the board array be integers, with a 0 indicating an empty cell, a 1 
indicating an X, and a −1 indicating O. This encoding allows us to have a simple 
way of testing if a given board configuration is a win for X or O, namely, if the 
values of a row, column, or diagonal add up to −3 or 3. We illustrate this 
approach in Figure 3.8. 

Figure 3.8:  An illustration of a tic-tac-toe board and 
the two-dimensional integer array, board, 
representing it. 

 160



 

We give a complete Java class for maintaining a Tic-Tac-Toe board for two 
players in Code Fragments 3.10 and 3.11. We show a sample output in Figure 3.9. 
Note that this code is just for maintaining the tic-tac-toe board and registering 
moves; it doesn't perform any strategy or allow someone to play tic-tac-toe 
against the computer. Such a program would make a good project in a class on 
Artificial Intelligence. 

Code Fragment 3.10:  A simple, complete Java class 
for playing Tic-Tac-Toe between two players. 
(Continues in Code Fragment 3.11.) 
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Code Fragment 3.11:  A simple, complete Java class 
for playing Tic-Tac-Toe between two players. 
(Continued from Code Fragment 3.10.) 
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Figure 3.9:  Sample output of a Tic-Tac-Toe game. 

 

3.2  Singly Linked Lists 

In the previous sections, we presented the array data structure and discussed some of 
its applications. Arrays are nice and simple for storing things in a certain order, but 
they have the drawback of not being very adaptable, since we have to fix the size N of 
the array in advance. 

There are other ways to store a sequence of elements, however, that do not have this 
drawback. In this section, we explore an important alternate implementation, which is 
known as the singly linked list. 

A linked list, in its simplest form, is a collection of nodes that together form a linear 
ordering. The ordering is determined as in the children's game "Follow the Leader," 
in that each node is an object that stores a reference to an element and a reference, 
called next, to another node. (See Figure 3.10.) 

Figure 3.10:  Example of a singly linked list whose 
elements are strings indicating airport codes. The next 
pointers of each node are shown as arrows. The null 
object is denoted as �. 

 

It might seem strange to have a node reference another node, but such a scheme easily 
works. The next reference inside a node can be viewed as a link or pointer to 
another node. Likewise, moving from one node to another by following a next 
reference is known as link hopping or pointer hopping. The first and last node of a 
linked list usually are called the head and tail of the list, respectively. Thus, we can 
link hop through the list starting at the head and ending at the tail. We can identify the 
tail as the node having a null next reference, which indicates the end of the list. A 
linked list defined in this way is known as a singly linked list. 
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Like an array, a singly linked list keeps its elements in a certain order. This order is 
determined by the chain of next links going from each node to its successor in the 
list. Unlike an array, a singly linked list does not have a predetermined fixed size, and 
uses space proportional to the number of its elements. Likewise, we do not keep track 
of any index numbers for the nodes in a linked list. So we cannot tell just by 
examining a node if it is the second, fifth, or twentieth node in the list. 

Implementing a Singly Linked List 

To implement a singly linked list, we define a Node class, as shown in Code 
Fragment 3.12, which specifies the type of objects stored at the nodes of the list. 
Here we assume elements are character strings. In Chapter 5, we describe how to 
define nodes that can store arbitrary types of elements. Given the Node class, we 
can define a class, SLinkedList, shown in Code Fragment 3.13, defining the 
actual linked list. This class keeps a reference to the head node and a variable 
counting the total number of nodes. 

Code Fragment 3.12:  Implementation of a node of a 
singly linked list. 

 
Code Fragment 3.13:  Partial implementation of the 
class for a singly linked list. 
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3.2.1  Insertion in a Singly Linked List 

When using a singly linked list, we can easily insert an element at the head of the 
list, as shown in Figure 3.11 and Code Fragment 3.14. The main idea is that we 
create a new node, set its next link to refer to the same object as head, and then 
set head to point to the new node. 

Figure 3.11:  Insertion of an element at the head of a 
singly linked list: (a) before the insertion; (b) creation of 
a new node; (c) after the insertion. 
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Code Fragment 3.14:  Inserting a new node v at the 
beginning of a singly linked list. Note that this method 
works even if the list is empty. Note that we set the 
next pointer for the new node v before we make 
variable head point to v. 

 

Inserting an Element at the Tail of a Singly Linked List 

We can also easily insert an element at the tail of the list, provided we keep a 
reference to the tail node, as shown in Figure 3.12. In this case, we create a new 
node, assign its next reference to point to the null object, set the next 
reference of the tail to point to this new object, and then assign the tail 
reference itself to this new node. We give the details in Code Fragment 3.15. 
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Figure 3.12:  Insertion at the tail of a singly linked list: 
(a) before the insertion; (b) creation of a new node; (c) 
after the insertion. Note that we set the next link for 
the tail in (b) before we assign the tail variable to 
point to the new node in (c). 

 
Code Fragment 3.15:  Inserting a new node at the 
end of a singly linked list. This method works also if 
the list is empty. Note that we set the next pointer for 
the old tail node before we make variable tail point to 
the new node. 

 

3.2.2  Removing an Element in a Singly Linked List 
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The reverse operation of inserting a new element at the head of a linked list
remove an element at the head. This operation is illustrated in 

 is to 
Figure 3.13 and given 

in detail in Code Fragment 3.16. 

Figure 3.13:  Removal of an element at the head of a 
singly linked list: (a) before the removal; (b) "linking out" 
the old new node; (c) after the removal. 

 
Code Fragment 3.16:  Removing the node at the 
beginning of a singly linked list. 

 

Unfortunately, we cannot easily delete the tail node of a singly linked list. Even if 
we have a tail reference directly to the last node of the list, we must be able to 

t 
 

access the node before the last node in order to remove the last node. But we canno
reach the node before the tail by following next links from the tail. The only way to
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access this node is to start from the head of the list and search all the way through 
the list. But such a sequence of link hopping operations could take a long time. 

.3  Doubly Linked Lists 3

g an element at the tail of a singly linked 
list is not easy. Indeed, it is time consuming to remove any node other than the head 

 

 directions—forward and 
reverse—in a linked list. It is the doubly linked list. Such lists allow for a great 

nd 
, 

 a node of a doubly linked list is shown in Code Fragment 

As we saw in the previous section, removin

in a singly linked list, since we do not have a quick way of accessing the node in front
of the one we want to remove. Indeed, there are many applications where we do not 
have quick access to such a predecessor node. For such applications, it would be nice 
to have a way of going both directions in a linked list. 

There is a type of linked list that allows us to go in both

variety of quick update operations, including insertion and removal at both ends, a
in the middle. A node in a doubly linked list stores two references—a next link
which points to the next node in the list, and a prev link, which points to the 
previous node in the list. 

A Java implementation of
3.17, where we assume that elements are character strings. In Chapter 5, we discuss 

 
how to define nodes for arbitrary element types. 

Code Fragment 3.17:  Java class DNode representing
a node of a doubly linked list that stores a character 
string. 
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Header and Trailer Sentinels 

To simplify programming, it is convenient to add special nodes at both ends of a 
doubly linked list: a header node just before the head of the list, and a trailer node 
just after the tail of the list. These "dummy" or sentinel nodes do not store any 
elements. The header has a valid next reference but a null prev reference, while 
the trailer has a valid prev reference but a null next reference. A doubly linked 
list with these sentinels is shown in Figure 3.14. Note that a linked list object would 
simply need to store references to these two sentinels and a size counter that 
keeps track of the number of elements (not counting sentinels) in the list. 

Figure 3.14:  A doubly linked list with sentinels, 
header and trailer, marking the ends of the list. An 
empty list would have these sentinels pointing to each 
other. We do not show the null prev pointer for the 
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header nor do we show the null next pointer for the 
trailer. 

 

Inserting or removing elements at either end of a doubly linked list is straight- 
forward to do. Indeed, the prev links eliminate the need to traverse the list to get to 
the node just before the tail. We show the removal at the tail of a doubly linked list 
in Figure 3.15 and the details for this operation in Code Fragment 3.18. 

Figure 3.15:  Removing the node at the end of a a 
doubly linked list with header and trailer sentinels: (a) 
before deleting at the tail; (b) deleting at the tail; (c) 
after the deletion. 

 
Code Fragment 3.18:  Removing the last node of a 
doubly linked list. Variable size keeps track of the 
current number of elements in the list. Note that this 
method works also if the list has size one. 
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Likewise, we can easily perform an insertion of a new element at the beginning of a 
doubly linked list, as shown in Figure 3.16 and Code Fragment 3.19. 

Figure 3.16:  Adding an element at the front: (a) 
during; (b) after. 

 
Code Fragment 3.19:  Inserting a new node v at the 
beginning of a doubly linked list. Variable size keeps 
track of the current number of elements in the list. Note 
that this method works also on an empty list. 
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3.3.1  Insertion in the Middle of a Doubly Linked List 

Doubly linked lists are useful for more than just inserting and removing elements at 
the head and tail of the list, however. They also are convenient for maintaining a list 
of elements while allowing for insertion and removal in the middle of the list. Given 
a node v of a doubly linked list (which could be possibly the header but not the 
trailer), we can easily insert a new node z immediately after v. Specifically, let w the 
be node following v. We execute the following steps:  

1. make z's prev link refer to v 

2. make z's next link refer to w 

3. make w's prev link refer to z 

4. make v's next link refer to z 

This method is given in detail in Code Fragment 3.20, and is illustrated in Figure 
3.17. Recalling our use of header and trailer sentinels, note that this algorithm 
works even if v is the tail node (the node just before the trailer). 

Code Fragment 3.20:  Inserting a new node z after a 
given node v in a doubly linked list. 
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Figure 3.17:  Adding a new node after the node 
storing JFK: (a) creating a new node with element BWI 
and linking it in; (b) after the insertion. 

 

3.3.2  Removal in the Middle of a Doubly Linked List 

Likewise, it is easy to remove a node v in the middle of a doubly linked list. We 
access the nodes u and w on either side of v using v's getPrev and getNext 
methods (these nodes must exist, since we are using sentinels). To remove node v, 
we simply have u and w point to each other instead of to v. We refer to this 
operation as the linking out of v. We also null out v's prev and next pointers so 
as not to retain old references into the list. This algorithm is given in Code 
Fragment 3.21 and is illustrated in Figure 3.18. 

Code Fragment 3.21:  Removing a node v in a 
doubly linked list. This method works even if v is the 
first, last, or only nonsentinel node. 
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Figure 3.18:  Removing the node storing PVD: (a) 
before the removal; (b) linking out the old node; (c) 
after the removal (and garbage collection). 

 

3.3.3  An Implementation of a Doubly Linked List 

In Code Fragments 3.22–3.24 we show an implementation of a doubly linked list 
with nodes that store character string elements. 

Code Fragment 3.22:  Java class DList for a doubly 
linked list whose nodes are objects of class DNode (see 
Code Fragment 3.17) storing character strings. 
(Continues in Code Fragment 3.23.) 
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Code Fragment 3.23:  Java class DList for a doubly 
linked list. (Continues in Code Fragment 3.24.) 
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Code Fragment 3.24:  A doubly linked list class. 
(Continued from Code Fragment 3.23.) 
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We make the following observations about class DList above. 

• Object of class DNode, which store String elements, are used for all the 
nodes of the list, including the header and trailer sentinels. 

• We can use class DList for a doubly linked list of String objects only. 
To build a linked list of other types of objects, we can use a generic declaration, 
which we discuss in Chapter 5. 

• Methods getFirst and getLast provide direct access to the first and 
last nodes in the list. 

• Methods getPrev and getNext allow to traverse the list. 

• Methods hasPrev and hasNext detect the boundaries of the list. 

• Methods, addFirst and addLast add a new node at the beginning or 
end of the list. 

• Methods, add Before and add After add a new node before or after 
an existing node. 
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• Having only a single removal method, remove, is not actually a 
restriction, since we can remove at the beginning or end of a doubly linked list L 
by executing L.remove(L.getFirst()) or L.remove(L.getLast()), 
respectively. 

• Method toString for converting an entire list into a string is useful for 
testing and debugging purposes. 

3.4  Circularly Linked Lists and Linked-List Sorting 

In this section, we study some applications and extensions of linked lists. 

3.4.1  Circularly Linked Lists and Duck, Duck, Goose 

The children's game, "Duck, Duck, Goose," is played in many cultures. Children in 
Minnesota play a version called "Duck, Duck, Grey Duck" (but please don't ask us 
why.) In Indiana, this game is called "The Mosh Pot." And children in the Czech 
Republic and Ghana play sing-song versions known respectively as "Pesek" and 
"Antoakyire." A variation on the singly linked list, called the circularly linked list, 
is used for a number of applications involving circle games, like "Duck, Duck, 
Goose." We discuss this type of list and the circle-game application next. 

A circularly linked list has the same kind of nodes as a singly linked list. That is, 
each node in a circularly linked list has a next pointer and a reference to an element. 
But there is no head or tail in a circularly linked list. For instead of having the last 
node's next pointer be null, in a circularly linked list, it points back to the first 
node. Thus, there is no first or last node. If we traverse the nodes of a circularly 
linked list from any node by following next pointers, we will cycle through the 
nodes. 

Even though a circularly linked list has no beginning or end, we nevertheless need 
some node to be marked as a special node, which we call the cursor. The cursor 
node allows us to have a place to start from if we ever need to traverse a circularly 
linked list. And if we remember this starting point, then we can also know when we 
are done-we are done with a traversal of a circularly linked list when we return to 
the node that was the cursor node when we started. 

We can then define some simple update methods for a circularly linked list: 

               add(v): Insert a new node v immediately after the cursor; if the list is 
empty, then v becomes the cursor and its next pointer points to itself. 

             remove(): Remove and return the node v immediately after the cursor 
(not the cursor itself, unless it is the only node); if the list becomes empty, the 
cursor is set to null. 
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            advance(): Advance the cursor to the next node in the list. 

In Code Fragment 3.25, we show a Java implementation of a circularly linked list, 
which uses the Node class from Code Fragment 3.12 and includes also a 
toString method for producing a string representation of the list. 

Code Fragment 3.25:  A circularly linked list class 
with simple nodes. 
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Some Observations about the CircleList Class 

There are a few observations we can make about the CircleList class. It is a 
simple program that can provide enough functionality to simulate circle games, 
like Duck, Duck, Goose, as we will soon show. It is not a robust program, 
however. In particular, if a circle list is empty, then calling advance or remove 
on that list will cause an exception. (Which one?) Exercise R-3.5 deals with this 
exception-generating behavior and ways of handling this empty-list condition 
better. 

Duck, Duck, Goose 

In the children's game, Duck, Duck, Goose, a group of children sit in a circle. One 
of them is elected "it" and that person walks around the outside of the circle. The 
person who is "it" pats each child on the head, saying "Duck" each time, until 
reaching a child that the "it" person identifies as "Goose." At this point there is a 
mad scramble, as the "Goose" and the "it" person race around the circle. Who 
ever returns to the Goose's former place first gets to remain in the circle. The loser 
of this race is the "it" person for the next round of play. This game continues like 
this until the children get bored or an adult tells them it is snack time, at which 
point the game ends. (See Figure 3.19.) 

Figure 3.19:  The Duck, Duck, Goose game: (a) 
choosing the "Goose;" (b) the race to the "Goose's" 
place between the "Goose" and the "it" person. 

 

Simulating this game is an ideal application of a circularly linked list. The 
children can represent nodes in the list. The "it" person can be identified as the 
person sitting after the cursor, and can be removed from the circle to simulate the 
marching around. We can advance the cursor with each "Duck" the "it" person 
identifies, which we can simulate with a random decision. Once a "Goose" is 
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identified, we can remove this node from the list, make a random choice to 
simulate whether the "Goose" or the "it" person win the race, and insert the 
winner back into the list. We can then advance the cursor and insert the "it" 
person back in to repeat the process (or be done if this is the last time we play the 
game). 

Using a Circularly Linked List to Simulate Duck, Duck, 
Goose 

We give Java code for a simulation of Duck, Duck, Goose in Code Fragment 
3.26. 

Code Fragment 3.26:  The main method from a 
program that uses a circularly linked list to simulate 
the Duck, Duck, Goose children's game. 
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Some Sample Output 
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We show an example output from a run of the Duck, Duck, Goose program in 
Figure 3.20. 

Figure 3.20:  Sample output from the Duck, Duck, 
Goose program. 

 

Note that each iteration in this particular execution of this program produces a 
different outcome, due to the different initial configurations and the use of 
random choices to identify ducks and geese. Likewise, whether the "Duck" or the 
"Goose" wins the race is also different, depending on random choices. This 
execution shows a situation where the next child after the "it" person is 
immediately identified as the "Goose," as well a situation where the "it" person 
walks all the way around the group of children before identifying the "Goose." 
Such situations also illustrate the usefulness of using a circularly linked list to 
simulate circular games like Duck, Duck, Goose. 

3.4.2  Sorting a Linked List 
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We show in Code Fragment 3.27 theinsertion-sort algorithm (Section 3.1.2) for a 
doubly linked list. A Java implementation is given in Code Fragment 3.28. 

Code Fragment 3.27:  High-level pseudo-code 
description of insertion-sort on a doubly linked list. 

 
Code Fragment 3.28:  Java implementation of the 
insertion-sort algorithm on a doubly linked list 
represented by class DList (see Code Fragments 3.22–
3.24). 
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3.5  Recursion 

We have seen that repetition can be achieved by writing loops, such as for loops and 
while loops. Another way to achieve repetition is through recursion, which occurs 
when a function calls itself. We have seen examples of methods calling other 
methods, so it should come as no surprise that most modern programming languages, 
including Java, allow a method to call itself. In this section, we will see why this 
capability provides an elegant and powerful alternative for performing repetitive 
tasks. 

The Factorial function 

To illustrate recursion, let us begin with a simple example of computing the value 
of the factorial function. The factorial of a positive integer n, denoted n!, is defined 
as the product of the integers from 1 to n. If n = 0, then n! is defined as 1 by 
convention. More formally, for any integer n ≥ 0, 

 

For example, 5! = 5·4·3·2·1 = 120. To make the connection with methods clearer, 
we use the notation factorial(n) to denote n!. 
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The factorial function can be defined in a manner that suggests a recursive 
formulation. To see this, observe that 

factorial(5) = 5 · (4 · 3 · 2 · 1) = 5 · factorial(4). 

Thus, we can define factorial(5) in terms of factorial(4). In general, for a 
positive integer n, we can define factorial(n) to be n·factorial(n − 1). This 
leads to the following recursive definition. 

 

This definition is typical of many recursive definitions. First, it contains one or 
more base cases, which are defined nonrecursively in terms of fixed quantities. In 
this case, n = 0 is the base case. It also contains one or more recursive cases, which 
are defined by appealing to the definition of the function being defined. Observe 
that there is no circularity in this definition, because each time the function is 
invoked, its argument is smaller by one. 

A Recursive Implementation of the Factorial Function 

Let us consider a Java implementation of the factorial function shown in Code 
Fragment 3.29 under the name recursiveFactorial(). Notice that no 
looping was needed here. The repeated recursive invocations of the function takes 
the place of looping. 

Code Fragment 3.29:  A recursive implementation of 
the factorial function. 

 

We can illustrate the execution of a recursive function definition by means of a 
recursion trace. Each entry of the trace corresponds to a recursive call. Each new 
recursive function call is indicated by an arrow to the newly called function. When 
the function returns, an arrow showing this return is drawn and the return value may 
be indicated with this arrow. An example of a trace is shown in Figure 3.21. 

What is the advantage of using recursion? Although the recursive implementation 
of the factorial function is somewhat simpler than the iterative version, in this case 
there is no compelling reason for preferring recursion over iteration. For some 
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problems, however, a recursive implementation can be significantly simpler and 
easier to understand than an iterative implementation. Such an example follows. 

Figure 3.21:  A recursion trace for the call 
recursiveFactorial(4). 

 

Drawing an English Ruler 

As a more complex example of the use of recursion, consider how to draw the 
markings of a typical English ruler. A ruler is broken up into 1-inch intervals, and 
each interval consists of a set of ticks placed at intervals of 1/2 inch, 1/4 inch, and 
so on. As the size of the interval decreases by half, the tick length decreases by one. 
(See Figure 3.22.) 

Figure 3.22:  Three sample outputs of the ruler-
drawing function: (a) a 2-inch ruler with major tick 
length 4; (b) a 1-inch ruler with major tick length 5; (c) a 
3-inch ruler with major tick length 3. 
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Each multiple of 1 inch also has a numeric label. The longest tick length is called 
the major tick length. We will not worry about actual distances, however, and just 
print one tick per line. 

A Recursive Approach to Ruler Drawing 

Our approach to drawing such a ruler consists of three functions. The main function 
drawRuler() draws the entire ruler. Its arguments are the total number of inches 
in the ruler, nInches, and the major tick length, majorLength. The utility 
function drawOneTick() draws a single tick of the given length. It can also be 
given an optional integer label, which is printed if it is nonnegative. 

The interesting work is done by the recursive function drawTicks(), which 
draws the sequence of ticks within some interval. Its only argument is the tick 
length associated with the interval's central tick. Consider the 1-inch ruler with 
major tick length 5 shown in Figure 3.22(b). Ignoring the lines containing 0 and 1, 
let us consider how to draw the sequence of ticks lying between these lines. The 
central tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above 
and below this central tick are identical, and each has a central tick of length 3. In 
general, an interval with a central tick length L ≥ 1 is composed of the following:  

• An interval with a central tick length L − 1 
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• A single tick of length L 

• A interval with a central tick length L − 1. 

With each recursive call, the length decreases by one. When the length drops to 
zero, we simply return. As a result, this recursive process will always terminate. 
This suggests a recursive process, in which the first and last steps are performed by 
calling the drawTicks(L − 1) recursively. The middle step is performed by 
calling the function drawOneTick(L). This recursive formulation is shown in 
Code Fragment 3.30. As in the factorial example, the code has a base case (when L 
= 0). In this instance we make two recursive calls to the function. 

Code Fragment 3.30:  A recursive implementation of 
a function that draws a ruler. 

 

Illustrating Ruler Drawing using a Recursion Trace 

The recursive execution of the recursive drawTicks function, defined above, can 
be visualized using a recursion trace. 
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The trace for drawTicks is more complicated than in the factorial example, 
however, because each instance makes two recursive calls. To illustrate this, we 
will show the recursion trace in a form that is reminiscent of an outline for a 
document. See Figure 3.23. 

Figure 3.23:  A partial recursion trace for the call 
drawTicks(3). The second pattern of calls for 
drawTicks(2) is not shown, but it is identical to the 
first. 

 

Throughout this book we shall see many other examples of how recursion can be 
used in the design of data structures and algorithms. 
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Further Illustrations of Recursion 

As we discussed above, recursion is the concept of defining a method that makes a 
call to itself. Whenever a method calls itself, we refer to this as a recursive call. We 
also consider a method M to be recursive if it calls another method that ultimately 
leads to a call back to M. 

The main benefit of a recursive approach to algorithm design is that it allows us to 
take advantage of the repetitive structure present in many problems. By making our 
algorithm description exploit this repetitive structure in a recursive way, we can 
often avoid complex case analyses and nested loops. This approach can lead to 
more readable algorithm descriptions, while still being quite efficient. 

In addition, recursion is a useful way for defining objects that have a repeated 
similar structural form, such as in the following examples. 

Example 3.1: Modern operating systems define file-system directories (which 
are also sometimes called "folders") in a recursive way. Namely, a file system 
consists of a top-level directory, and the contents of this directory consists of files 
and other directories, which in turn can contain files and other directories, and so 
on. The base directories in the file system contain only files, but by using this 
recursive definition, the operating system allows for directories to be nested 
arbitrarily deep (as long as there is enough space in memory). 

Example 3.2: Much of the syntax in modern programming languages is defined 
in a recursive way. For example, we can define an argument list in Java using the 
following notation: 

argument-list: 

            argument 

            argument-list, argument 

In other words, an argument list consists of either (i) an argument or (ii) an 
argument list followed by a comma and an argument. That is, an argument list 
consists of a comma-separated list of arguments. Similarly, arithmetic expressions 
can be defined recursively in terms of primitives (like variables and constants) and 
arithmetic expressions. 

Example 3.3: There are many examples of recursion in art and nature. One of 
the most classic examples of recursion used in art is in the Russian Matryoshka 
dolls. Each doll is made of solid wood or is hollow and contains another 
Matryoshka doll inside it. 

3.5.1  Linear Recursion 
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The simplest form of recursion is linear recursion, where a method is defined so 
that it makes at most one recursive call each time it is invoked. This type of 
recursion is useful when we view an algorithmic problem in terms of a first or last 
element plus a remaining set that has the same structure as the original set. 

Summing the Elements of an Array Recursively 

Suppose, for example, we are given an array, A, of n integers that we wish to sum 
together. We can solve this summation problem using linear recursion by 
observing that the sum of all n integers in A is equal to A[0], if n = 1, or the sum 
of the first n − 1 integers in A plus the last element in A. In particular, we can 
solve this summation problem using the recursive algorithm described in Code 
Fragment 3.31. 

Code Fragment 3.31:  Summing the elements in an 
array using linear recursion. 

 

This example also illustrates an important property that a recursive method should 
always possess—the method terminates. We ensure this by writing a nonrecursive 
statement for the case n = 1. In addition, we always perform the recursive call on 
a smaller value of the parameter (n − 1) than that which we are given (n), so that, 
at some point (at the "bottom" of the recursion), we will perform the nonrecursive 
part of the computation (returning A[0]). In general, an algorithm that uses linear 
recursion typically has the following form:  

• Test for base cases. We begin by testing for a set of base cases (there 
should be at least one). These base cases should be defined so that every 
possible chain of recursive calls will eventually reach a base case, and the 
handling of each base case should not use recursion. 

• Recur. After testing for base cases, we then perform a single recursive 
call. This recursive step may involve a test that decides which of several 
possible recursive calls to make, but it should ultimately choose to make just 
one of these calls each time we perform this step. Moreover, we should define 
each possible recursive call so that it makes progress towards a base case. 
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Analyzing Recursive Algorithms using Recursion Traces 

We can analyze a recursive algorithm by using a visual tool known as a recursion 
trace. We used recursion traces, for example, to analyze and visualize the 
recursive Fibonacci function of Section 3.5, and we will similarly use recursion 
traces for the recursive sorting algorithms of Sections 11.1 and 11.2. 

To draw a recursion trace, we create a box for each instance of the method and 
label it with the parameters of the method. Also, we visualize a recursive call by 
drawing an arrow from the box of the calling method to the box of the called 
method. For example, we illustrate the recursion trace of the LinearSum 
algorithm of Code Fragment 3.31 in Figure 3.24. We label each box in this trace 
with the parameters used to make this call. Each time we make a recursive call, 
we draw a line to the box representing the recursive call. We can also use this 
diagram to visualize stepping through the algorithm, since it proceeds by going 
from the call for n to the call for n − 1, to the call for n − 2, and so on, all the way 
down to the call for 1. When the final call finishes, it returns its value back to the 
call for 2, which adds in its value, and returns this partial sum to the call for 3, and 
so on, until the call for n − 1 returns its partial sum to the call for n. 

Figure 3.24:  Recursion trace for an execution of 
LinearSum(A,n) with input parameters A = {4,3,6,2,5} 
and n = 5. 

 

From Figure 3.24, it should be clear that for an input array of size n, Algorithm 
LinearSum makes n calls. Hence, it will take an amount of time that is roughly 
proportional to n, since it spends a constant amount of time performing the 
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nonrecursive part of each call. Moreover, we can also see that the memory space 
used by the algorithm (in addition to the array A) is also roughly proportional to n, 
since we need a constant amount of memory space for each of the n boxes in the 
trace at the time we make the final recursive call (for n = 1). 

Reversing an Array by Recursion 

Next, let us consider the problem of reversing the n elements of an array, A, so 
that the first element becomes the last, the second element becomes second to the 
last, and so on. We can solve this problem using linear recursion, by observing 
that the reversal of an array can be achieved by swapping the first and last 
elements and then recursively reversing the remaining elements in the array. We 
describe the details of this algorithm in Code Fragment 3.32, using the convention 
that the first time we call this algorithm we do so as ReverseArray(A,0,n − 1). 

Code Fragment 3.32:  Reversing the elements of an 
array using linear recursion. 

 

Note that, in this algorithm, we actually have two base cases, namely, when i = j 
and when i > j. Moreover, in either case, we simply terminate the algorithm, since 
a sequence with zero elements or one element is trivially equal to its reversal. 
Furthermore, note that in the recursive step we are guaranteed to make progress 
towards one of these two base cases. If n is odd, we will eventually reach the i = j 
case, and if n is even, we will eventually reach the i > j case. The above argument 
immediately implies that the recursive algorithm of Code Fragment 3.32 is 
guaranteed to terminate. 

Defining Problems in Ways That Facilitate Recursion 

To design a recursive algorithm for a given problem, it is useful to think of the 
different ways we can subdivide this problem to define problems that have the 
same general structure as the original problem. This process sometimes means we 
need to redefine the original problem to facilitate similar-looking subproblems. 
For example, with the ReverseArray algorithm, we added the parameters i and 
j so that a recursive call to reverse the inner part of the array A would have the 
same structure (and same syntax) as the call to reverse all of A. Then, rather than 
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initially calling the algorithm as ReverseArray(A), we call it initially as 
ReverseArray(A,0,n−1). In general, if one has difficulty finding the repetitive 
structure needed to design a recursive algorithm, it is sometimes useful to work 
out the problem on a few concrete examples to see how the subproblems should 
be defined. 

Tail Recursion 

Using recursion can often be a useful tool for designing algorithms that have 
elegant, short definitions. But this usefulness does come at a modest cost. When 
we use a recursive algorithm to solve a problem, we have to use some of the 
memory locations in our computer to keep track of the state of each active 
recursive call. When computer memory is at a premium, then, it is useful in some 
cases to be able to derive nonrecursive algorithms from recursive ones. 

We can use the stack data structure, discussed in Section 5.1, to convert a 
recursive algorithm into a nonrecursive algorithm, but there are some instances 
when we can do this conversion more easily and efficiently. Specifically, we can 
easily convert algorithms that use tail recursion. An algorithm uses tail recursion 
if it uses linear recursion and the algorithm makes a recursive call as its very last 
operation. For example, the algorithm of Code Fragment 3.32 uses tail recursion 
to reverse the elements of an array. 

It is not enough that the last statement in the method definition include a recursive 
call, however. In order for a method to use tail recursion, the recursive call must 
be absolutely the last thing the method does (unless we are in a base case, of 
course). For example, the algorithm of Code Fragment 3.31 does not use tail 
recursion, even though its last statement includes a recursive call. This recursive 
call is not actually the last thing the method does. After it receives the value 
returned from the recursive call, it adds this value to A [n − 1] and returns this 
sum. That is, the last thing this algorithm does is an add, not a recursive call. 

When an algorithm uses tail recursion, we can convert the recursive algorithm 
into a nonrecursive one, by iterating through the recursive calls rather than calling 
them explicitly. We illustrate this type of conversion by revisiting the problem of 
reversing the elements of an array. In Code Fragment 3.33, we give a 
nonrecursive algorithm that performs this task by iterating through the recursive 
calls of the algorithm of Code Fragment 3.32. We initially call this algorithm as 
IterativeReverseArray (A, 0,n − 1). 

Code Fragment 3.33:  Reversing the elements of an 
array using iteration. 
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3.5.2  Binary Recursion 

When an algorithm makes two recursive calls, we say that it uses binary recursion. 
These calls can, for example, be used to solve two similar halves of some problem, 
as we did in Section 3.5 for drawing an English ruler. As another application of 
binary recursion, let us revisit the problem of summing the n elements of an integer 
array A. In this case, we can sum the elements in A by: (i) recursively summing the 
elements in the first half of A; (ii) recursively summing the elements in the second 
half of A; and (iii) adding these two values together. We give the details in the 
algorithm of Code Fragment 3.34, which we initially call as BinarySum(A,0,n). 

Code Fragment 3.34:  Summing the elements in an 
array using binary recursion. 

 

To analyze Algorithm BinarySum, we consider, for simplicity, the case where n 
is a power of two. The general case of arbitrary n is considered in Exercise R-4.4. 
Figure 3.25 shows the recursion trace of an execution of method BinarySum(0,8). 
We label each box with the values of parameters i and n, which represent the 
starting index and length of the sequence of elements to be reversed, respectively. 
Notice that the arrows in the trace go from a box labeled (i,n) to another box labeled 
(i,n/2) or (i + n/2,n/2). That is, the value of parameter n is halved at each recursive 
call. Thus, the depth of the recursion, that is, the maximum number of method 
instances that are active at the same time, is 1 + log2n. Thus, Algorithm 
BinarySum uses an amount of additional space roughly proportional to this value. 
This is a big improvement over the space needed by the LinearSum method of Code 
Fragment 3.31. The running time of Algorithm BinarySum is still roughly 
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proportional to n, however, since each box is visited in constant time when stepping 
through our algorithm and there are 2n − 1 boxes. 

Figure 3.25:  Recursion trace for the execution of 
BinarySum(0,8). 

 

Computing Fibonacci Numbers via Binary Recursion 

Let us consider the problem of computing the kth Fibonacci number. Recall from 
Section 2.2.3, that the Fibonacci numbers are recursively defined as follows: 

                                                                                          F0 = 0 

                                                                                          F1 = 1 

                                                                                          Fi = Fi−1 + Fi−2   for i < 1. 

By directly applying this definition, Algorithm BinaryFib, shown in Code 
Fragment 3.35, computes the sequence of Fibonacci numbers using binary 
recursion. 

Code Fragment 3.35:  Computing the kth Fibonacci 
number using binary recursion. 
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Unfortunately, in spite of the Fibonacci definition looking like a binary recursion, 
using this technique is inefficient in this case. In fact, it takes an exponential 
number of calls to compute the kth Fibonacci number in this way. Specifically, let 
nk denote the number of calls performed in the execution of BinaryFib(k). 
Then, we have the following values for the nk's: 

                                        n0 = 1 

                                        n1 = 1 

                                        n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3 

                                        n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5 

                                        n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9 

                                        n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15 

                                        n6 = n5+ n4 + 1 = 15 + 9 + 1 = 25 

                                        n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41 

                                        n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67. 

If we follow the pattern forward, we see that the number of calls more than 
doubles for each two consecutive indices. That is, n4 is more than twice n2 n5 is 
more than twice n3, n6 is more than twice n4, and so on. Thus, nk > 2k/2, which 
means that BinaryFib(k) makes a number of calls that are exponential in k. In 
other words, using binary recursion to compute Fibonacci numbers is very 
inefficient. 

Computing Fibonacci Numbers via Linear Recursion 

The main problem with the approach above, based on binary recursion, is that the 
computation of Fibonacci numbers is really a linearly recursive problem. It is not 
a good candidate for using binary recursion. We simply got tempted into using 
binary recursion because of the way the kth Fibonacci number, Fk, depends on the 
two previous values, Fk−1 and Fk−2. But we can compute Fk much more efficiently 
using linear recursion. 

In order to use linear recursion, however, we need to slightly redefine the 
problem. One way to accomplish this conversion is to define a recursive function 
that computes a pair of consecutive Fibonacci numbers (Fk,Fk−1) using the 
convention F−1 = 0. Then we can use the linearly recursive algorithm shown in 
Code Fragment 3.36. 
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Code Fragment 3.36:  Computing the kth Fibonacci 
number using linear recursion. 

 

The algorithm given in Code Fragment 3.36 shows that using linear recursion to 
compute Fibonacci numbers is much more efficient than using binary recursion. 
Since each recursive call to LinearFibonacci decreases the argument k by 1, 
the original call LinearFibonacci(k) results in a series of k − 1 additional 
calls. That is, computing the kth Fibonacci number via linear recursion requires k 
method calls. This performance is significantly faster than the exponential time 
needed by the algorithm based on binary recursion, which was given in Code 
Fragment 3.35. Therefore, when using binary recursion, we should first try to 
fully partition the problem in two (as we did for summing the elements of an 
array) or, we should be sure that overlapping recursive calls are really necessary. 

Usually, we can eliminate overlapping recursive calls by using more memory to 
keep track of previous values. In fact, this approach is a central part of a technique 
called dynamic programming, which is related to recursion and is discussed in 
Section 12.5.2. 

3.5.3  Multiple Recursion 

Generalizing from binary recursion, we use multiple recursion when a method may 
make multiple recursive calls, with that number potentially being more than two. 
One of the most common applications of this type of recursion is used when we 
wish to enumerate various configurations in order to solve a combinatorial puzzle. 
For example, the following are all instances of summation puzzles: 

                                                                                          pot + pan = bib 

                                                                                          dog + cat = pig 

                                                                                          boy + girl = baby 
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To solve such a puzzle, we need to assign a unique digit (that is, 0,1,…, 9) to each 
letter in the equation, in order to make the equation true. Typically, we solve such a 
puzzle by using our human observations of the particular puzzle we are trying to 
solve to eliminate configurations (that is, possible partial assignments of digits to 
letters) until we can work though the feasible configurations left, testing for the 
correctness of each one. 

If the number of possible configurations is not too large, however, we can use a 
computer to simply enumerate all the possibilities and test each one, without 
employing any human observations. In addition, such an algorithm can use multiple 
recursion to work through the configurations in a systematic way. We show 
pseudocode for such an algorithm in Code Fragment 3.37. To keep the description 
general enough to be used with other puzzles, the algorithm enumerates and tests all 
k-length sequences without repetitions of the elements of a given set U. We build 
the sequences of k elements by the following steps:  

1. Recursively generating the sequences of k − 1 elements 

2. Appending to each such sequence an element not already contained in it. 

Throughout the execution of the algorithm, we use the set U to keep track of the 
elements not contained in the current sequence, so that an element e has not been 
used yet if and only if e is in U. 

Another way to look at the algorithm of Code Fragment 3.37 is that it enumerates 
every possible size-k ordered subset of U, and tests each subset for being a possible 
solution to our puzzle. 

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the sequence 
corresponds to a given letter. For example, the first position could stand for b, the 
second for o, the third for y, and so on. 

Code Fragment 3.37:  Solving a combinatorial puzzle 
by enumerating and testing all possible configurations. 
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In Figure 3.26, we show a recursion trace of a call to PuzzleSolve(3,S,U), 
where S is empty and U = {a,b,c}. During the execution, all the permutations of the 
three characters are generated and tested. Note that the initial call makes three 
recursive calls, each of which in turn makes two more. If we had executed 
PuzzleSolve(3,S, U) on a set U consisting of four elements, the initial call 
would have made four recursive calls, each of which would have a trace looking 
like the one in Figure 3.26. 

Figure 3.26:  Recursion trace for an execution of 
PuzzleSolve(3,S,U), where S is empty and U = {a, b, 
c}. This execution generates and tests all permutations 
of a, b, and c. We show the permutations generated 
directly below their respective boxes. 
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3.6  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-3.1 

The add and remove methods of Code Fragments 3.3 and 3.4 do not keep 
track of the number,n, of non-null entries in the array, a. Instead, the unused 
cells point to the null object. Show how to change these methods so that they 
keep track of the actual size of a in an instance variable n. 

R-3.2 

Describe a way to use recursion to add all the elements in a n × n (two 
dimensional) array of integers. 

R-3.3 

Explain how to modify the Caesar cipher program (Code Fragment 3.9) so that 
it performs ROT 13 encryption and decryption, which uses 13 as the alphabet 
shift amount. How can you further simplify the code so that the body of the 
decrypt method is only a single line? 

R-3.4 

Explain the changes that would have be made to the program of Code Fragment 
3.9 so that it could perform the Caesar cipher for messages that are written in an 
alphabet-based language other than English, such as Greek, Russian, or Hebrew. 

R-3.5 

What is the exception that is thrown when advance or remove is called on an 
empty list, from Code Fragment 3.25? Explain how to modify these methods so 
that they give a more instructive exception name for this condition. 

R-3.6 

Give a recursive definition of a singly linked list. 

R-3.7 

Describe a method for inserting an element at the beginning of a singly linked 
list. Assume that the list does not have a sentinel header node, and instead uses 
a variable head to reference the first node in the list. 
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R-3.8 

Give an algorithm for finding the penultimate node in a singly linked list where 
the last element is indicated by a null next reference. 

R-3.9 

Describe a nonrecursive method for finding, by link hopping, the middle node 
of a doubly linked list with header and trailer sentinels. (Note: This method 
must only use link hopping; it cannot use a counter.) What is the running time 
of this method? 

R-3.10 

Describe a recursive algorithm for finding the maximum element in an array A 
of n elements. What is your running time and space usage? 

R-3.11 

Draw the recursion trace for the execution of method ReverseArray (A ,0,4) 
(Code Fragment 3.32) on array A = {4,3,6,2,5}. 

R-3.12 

Draw the recursion trace for the execution of method PuzzleSolve(3,S, U) 
(Code Fragment 3.37), where S is empty and U = {a,b,c,d}. 

R-3.13 

Write a short Java method that repeatedly selects and removes a random entry 
from an array until the array holds no more entries. 

R-3.14 

Write a short Java method to count the number of nodes in a circularly linked 
list. 

Creativity 

C-3.1 

Give Java code for performing add(e) and remove(i) methods for game 
entries, stored in an array a, as in Code Fragments 3.3 and 3.4, except now don't 
maintain the game entries in order. Assume that we still need to keep n entries 
stored in indices 0 to n − 1. Try to implement the add and remove methods 
without using any loops, so that the number of steps they perform does not 
depend on n. 
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C-3.2 

Let A be an array of size n ≥ 2 containing integers from 1 to n − 1, inclusive, 
with exactly one repeated. Describe a fast algorithm for finding the integer in A 
that is repeated. 

C-3.3 

Let B be an array of size n ≥ 6 containing integers from 1 to n − 5, inclusive, 
with exactly five repeated. Describe a good algorithm for finding the five 
integers in B that are repeated. 

C-3.4 

Suppose you are designing a multi-player game that has n ≥ 1000 players, 
numbered 1 to n, interacting in an enchanted forest. The winner of this game is 
the first player who can meet all the other players at least once (ties are 
allowed). Assuming that there is a method meet(i,j), which is called each time a 
player i meets a player j (with i ≠ j), describe a way to keep track of the pairs of 
meeting players and who is the winner. 

C-3.5 

Give a recursive algorithm to compute the product of two positive integers, m 
and n, using only addition and subtraction. 

C-3.6 

Describe a fast recursive algorithm for reversing a singly linked list L, so that 
the ordering of the nodes becomes opposite of what it was before, a list has only 
one position, then we are done; the list is already reversed. Otherwise, remove 

C-3.7 

Describe a good algorithm for concatenating two singly linked lists L and M, 
with header sentinels, into a single list L ′ that contains all the nodes of L 
followed by all the nodes of M. 

C-3.8 

Give a fast algorithm for concatenating two doubly linked lists L and M, with 
header and trailer sentinel nodes, into a single list L ′. 

C-3.9 

Describe in detail how to swap two nodes x and y in a singly linked list L given 
references only to x and y. Repeat this exercise for the case when L is a doubly 
linked list. Which algorithm takes more time? 
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C-3.10 

Describe in detail an algorithm for reversing a singly linked list L using only a 
constant amount of additional space and not using any recursion. 

C-3.11 

In the Towers of Hanoi puzzle, we are given a platform with three pegs, a, b, 
and c, sticking out of it. On peg a is a stack of n disks, each larger than the next, 
so that the smallest is on the top and the largest is on the bottom. The puzzle is 
to move all the disks from peg a to peg c, moving one disk at a time, so that we 
never place a larger disk on top of a smaller one. See Figure 3.27 for an 
example of the case n = 4. Describe a recursive algorithm for solving the 
Towers of Hanoi puzzle for arbitrary n. (Hint: Consider first the subproblem of 
moving all but the nth disk from peg a to another peg using the third as 
"temporary storage." ) 

Figure 3.27:  An illustration of the Towers of Hanoi 
puzzle. 

 

C-3.12 

Describe a recursive method for converting a string of digits into the integer it 
represents. For example, "13531" represents the integer 13,531. 

C-3.13 

Describe a recursive algorithm that counts the number of nodes in a singly 
linked list. 

C-3.14 
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Write a recursive Java program that will output all the subsets of a set of n 
elements (without repeating any subsets). 

C-3.15 

Write a short recursive Java method that finds the minimum and maximum 
values in an array of int values without using any loops. 

C-3.16 

Describe a recursive algorithm that will check if an array A of integers contains 
an integer A[i] that is the sum of two integers that appear earlier in A, that is, 
such that A[i] = A[j] +A[k] for j,k > i. 

C-3.17 

Write a short recursive Java method that will rearrange an array of int values 
so that all the even values appear before all the odd values. 

C-3.18 

Write a short recursive Java method that takes a character string s and outputs 
its reverse. So for example, the reverse of "pots&pans" would be 
"snap&stop". 

C-3.19 

Write a short recursive Java method that determines if a string s is a palindrome, 
that is, it is equal to its reverse. For example, "racecar" and 
"gohangasalamiimalasagnahog" are palindromes. 

C-3.20 

Use recursion to write a Java method for determining if a string s has more 
vowels than consonants. 

C-3.21 

Suppose you are given two circularly linked lists, L and M, that is, two lists of 
nodes such that each node has a nonnull next node. Describe a fast algorithm for 
telling if L and M are really the same list of nodes, but with different (cursor) 
starting points. 

C-3.22 

Given a circularly linked list L containing an even number of nodes, describe 
how to split L into two circularly linked lists of half the size. 
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Projects 

P-3.1 

Write a Java program for a matrix class that can add and multiply arbitrary two-
dimensional arrays of integers. 

P-3.2 

Perform the previous project, but use generic types so that the matrices involved 
can contain arbitrary number types. 

P-3.3 

Write a class that maintains the top 10 scores for a game application, 
implementing the add and remove methods of Section 3.1.1, but using a 
singly linked list instead of an array. 

P-3.4 

Perform the previous project, but use a doubly linked list. Moreover, your 
implementation of remove(i) should make the fewest number of pointer hops 
to get to the game entry at index i. 

P-3.5 

Perform the previous project, but use a linked list that is both circularly linked 
and doubly linked. 

P-3.6 

Write a program for solving summation puzzles by enumerating and testing all 
possible configurations. Using your program, solve the three puzzles given in 
Section 3.5.3. 

P-3.7 

Write a program that can perform encryption and decryption using an arbitrary 
substitution cipher. In this case, the encryption array is a random shuffling of 
the letters in the alphabet. Your program should generate a random encryption 
array, its corresponding decryption array, and use these to encode and decode a 
message. 

P-3.8 

Write a program that can perform the Caesar cipher for English messages that 
include both upper and lowercase characters. 
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Chapter Notes 

The fundamental data structures of arrays and linked lists, as well as recursion, 
discussed in this chapter, belong to the folklore of computer science. They were first 
chronicled in the computer science literature by Knuth in his seminal book on 
Fundamental Algorithms [62]. 
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4.1  The Seven Functions Used in This Book 

In this section, we briefly discuss the seven most important functions used in the 
analysis of algorithms. We will use only these seven simple functions for almost all 
the analysis we do in this book. In fact, a section that uses a function other than one of 
these seven will be marked with a star (�) to indicate that it is optional. In addition to 
these seven fundamental functions, Appendix A contains a list of other useful 
mathematical facts that apply in the context of data structure and algorithm analysis. 

4.1.1  The Constant Function 

The simplest function we can think of is the constant function. This is the function, 

f(n) = c, 

for some fixed constant c, such as c = 5, c = 27, or c = 210. That is, for any argument 
n, the constant function f(n) assigns the value c. In other words, it doesn't matter 
what the value of n is; f (n) will always be equal to the constant value c. 

Since we are most interested in integer functions, the most fundamental constant 
function is g(n) = 1, and this is the typical constant function we use in this book. 
Note that any other constant function, f(n) = c, can be written as a constant c times 
g(n). That is,f(n) = cg(n) in this case. 

As simple as it is, the constant function is useful in algorithm analysis, because it 
characterizes the number of steps needed to do a basic operation on a computer, like 
adding two numbers, assigning a value to some variable, or comparing two 
numbers. 
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4.1.2  The Logarithm function 

One of the interesting and sometimes even surprising aspects of the analysis of data 
structures and algorithms is the ubiquitous presence of the logarithm function, f(n) 
= logbn, for some constant b > 1. This function is defined as follows: 

x = logb n if and only if bx = n. 

By definition, logb 1 = 0. The value b is known as the base of the logarithm. 

Computing the logarithm function exactly for any integer n involves the use of 
calculus, but we can use an approximation that is good enough for our purposes 
without calculus. In particular, we can easily compute the smallest integer greater 
than or equal to logan, for this number is equal to the number of times  we can 
divide n by a until we get a number less than or equal to 1. For example, this 
evaluation of log327 is 3, since 27/3/3/3 = 1. Likewise, this evaluation of log464 is 
4, since 64/4/4/4/4 = 1, and this approximation to log212 is 4, since 12/2/2/2/2 = 
0.75 ≤ 1. This base-two approximation arises in algorithm analysis, actually, since a 
common operation in many algorithms is to repeatedly divide an input in half. 

Indeed, since computers store integers in binary, the most common base for the 
logarithm function in computer science is 2. In fact, this base is so common that we 
will typically leave it off when it is 2. That is, for us, 

logn = log2n. 

We note that most handheld calculators have a button marked LOG, but this is 
typically for calculating the logarithm base-10, not base-two. 

There are some important rules for logarithms, similar to the exponent rules. 

Proposition 4.1 (Logarithm Rules): Given real numbers a > 0, b > 1, 
c > 0 and d > 1, we have:  

1. logbac = logba + logbc 

2. logba/c = logba− logbc 

3. logbac = clogba 

4. logba = (logda)/logdb 

5. b log   
d

a = a log   
d

b. 

Also, as a notational shorthand, we use logcn to denote the function (logn)c. Rather 
than show how we could derive each of the identities above which all follow from 
the definition of logarithms and exponents, let us illustrate these identities with a 
few examples instead. 
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Example 4.2: We demonstrate below some interesting applications of the 
logarithm rules from Proposition 4.1 (using the usual convention that the base of a 
logarithm is 2 if it is omitted). 

• log(2n) = log2 + log n = 1 + logn, by rule 1 

• log(n/2) = logn − log2 = logn − 1, by rule 2 

• logn3 = 3logn, by rule 3 

• log2n = nlog2 =n · 1 = n, by rule 3 

• log4n = (log n)/ log4 = (logn) /2, by rule 4 

• 2logn = nlog2 = n1 = n, by rule 5. 

As a practical matter, we note that rule 4 gives us a way to compute the base-two 
logarithm on a calculator that has a base-10 logarithm button, LOG, for 

log2n = LOGn/LOG2. 

4.1.3  The Linear function 

Another simple yet important function is the linear function, 

f(n)= n. 

That is, given an input value n, the linear function f assigns the value n itself. 

This function arises in algorithm analysis any time we have to do a single basic 
operation for each of n elements. For example, comparing a number x to each 
element of an array of size n will require n comparisons. The linear function also 
represents the best running time we can hope to achieve for any algorithm that 
processes a collection of n objects that are not already in the computer's memory, 
since reading in the n objects itself requires n operations. 

4.1.4  The N-Log-N function 

The next function we discuss in this section is the n-log-n function, 

f(n) = nlogn, 

that is, the function that assigns to an input n the value of n times the logarithm 
base-two of n. This function grows a little faster than the linear function and a lot 
slower than the quadratic function. Thus, as we will show on several occasions, if 
we can improve the running time of solving some problem from quadratic to n-log-
n, we will have an algorithm that runs much faster in general. 

 216



4.1.5  The Quadratic function 

Another function that appears quite often in algorithm analysis is the quadratic 
function, 

f(n) = n2. 

That is, given an input value n, the function f assigns the product of n with itself (in 
other words, "n squared"). 

The main reason why the quadratic function appears in the analysis of algo rithms is 
that there are many algorithms that have nested loops, where the inner loop 
performs a linear number of operations and the outer loop is performed a linear 
number of times. Thus, in such cases, the algorithm performs n · n = n2 operations. 

Nested Loops and the Quadratic function 

The quadratic function can also arise in the context of nested loops where the first 
iteration of a loop uses one operation, the second uses two operations, the third 
uses three operations, and so on. That is, the number of operations is 

1+ 2 + 3 +… + (n − 2) + (n − 1) + n. 

In other words, this is the total number of operations that will be performed by the 
nested loop if the number of operations performed inside the loop increases by 
one with each iteration of the outer loop. This quantity also has an interesting 
history. 

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils 
occupied by adding up the integers from 1 to 100. But almost immediately one of 
the children claimed to have the answer! The teacher was suspicious, for the 
student had only the answer on his slate. But the answer was correct—5,050— 
and the student, Carl Gauss, grew up to be one of the greatest mathematicians of 
his time. It is widely suspected that young Gauss used the following identity. 

Proposition 4.3: For any integer n ≥ 1, we have: 

1 + 2 + 3 + … + (n − 2) + (n − 1) + n = n(n + 1)/2. 

We give two "visual" justifications of Proposition 4.3 in Figure 4.1. 

Figure 4.1:  Visual justifications of Proposition 4.3. 
Both illustrations visualize the identity in terms of the 
total area covered by n unit-width rectangles with 
heights 1,2,…,n. In (a) the rectangles are shown to 
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cover a big triangle of area n2/2 (base n and height n) 
plus n small triangles of area 1/2 each (base 1 and 
height 1). In (b), which applies only when n is even, the 
rectangles are shown to cover a big rectangle of base 
n/2 and height n+ 1. 

 

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm 
with nested loops such that the operations in the inner loop increase by one each 
time, then the total number of operations is quadratic in the number of times, n, 
we perform the outer loop. In particular, the number of operations is n2/2 + n/2, in 
this case, which is a little more than a constant factor (1/2) times the quadratic 
function n2. In other words, such an algorithm is only slightly better than an 
algorithm that uses n operations each time the inner loop is performed. This 
observation might at first seem nonintuitive, but it is nevertheless true, as shown 
in Figure 4.1. 

4.1.6  The Cubic Function and Other 
Polynomials 

Continuing our discussion of functions that are powers of the input, we consider the 
cubic function, 

f(n) = n3, 
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which assigns to an input value n the product of n with itself three times. This 
function appears less frequently in the context of algorithm analysis than the 
constant, linear, and quadratic functions previously mentioned, but it does appear 
from time to time. 

Polynomials 

Interestingly, the functions we have listed so far can be viewed as all being part of 
a larger class of functions, the polynomials. 

A polynomial function is a function of the form, 

f(n) = a0 + a1n + a2n2 + a3n3 + … + adnd, 

where a0,a1,…,ad are constants, called the coefficients of the polynomial, and ad 
≠ 0. Integer d, which indicates the highest power in the polynomial, is called the
degree of the polynomial. 

 

For example, the following functions are all polynomials:  

• f(n) = 2 + 5n + n2 

• f(n) = 1 + n3 

• f(n) = 1 

• f(n) = n 

• f(n) = n2. 

Therefore, we could argue that this book presents just four important functions 
used in algorithm analysis, but we will stick to saying that there are seven, since 
the constant, linear, and quadratic functions are too important to be lumped in 
with other polynomials. Running times that are polynomials with degree, d, are 
generally better than polynomial running times with large degree. 

Summations 

A notation that appears again and again in the analysis of data structures and 
algorithms is the summation, which is defined as follows: 

, 
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where a and b are integers and a ≤ b. Summations arise in data structure and 
algorithm analysis because the running times of loops naturally give rise to 
summations. 

Using a summation, we can rewrite the formula of Proposition 4.3 as 

. 

Likewise, we can write a polynomial f(n) of degree d with coefficients a0, …, ad 
as 

. 

Thus, the summation notation gives us a shorthand way of expressing sums of 
increasing terms that have a regular structure. 

4.1.7  The Exponential Function 

Another function used in the analysis of algorithms is the exponential function, 

f(n) = bn, 

where b is a positive constant, called the base, and the argument n is the exponent. 
That is, function f(n) assigns to the input argument n the value obtained by 
multiplying the base b by itself n times. In algorithm analysis, the most common 
base for the exponential function is b = 2. For instance, if we have a loop that starts 
by performing one operation and then doubles the number of operations performed 
with each iteration, then the number of operations performed in the nth iteration is 
2n. In addition, an integer word containing n bits can represent all the nonnegative 
integers less than 2n. Thus, the exponential function with base 2 is quite common. 
The exponential function will also be referred to as exponent function. 

We sometimes have other exponents besides n, however; hence, it is useful for us to 
know a few handy rules for working with exponents. In particular, the following 
exponent rules are quite helpful. 

Proposition 4.4 (Exponent Rules): Given positive integers a,b,and 
c,we have 

1. (ba)c = bac 

2. babc = ba+c 

3. ba/bc = ba − c. 
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For example, we have the following:  

• 256 = 162 = (24)2 = 24.2 = 28 = 256 (Exponent Rule 1) 

• 243 = 35 = 32+3 = 3233 = 9 · 27 = 243 (Exponent Rule 2) 

• 16 = 1024/64 = 210/26 = 210−6 = 24 = 16 (Exponent Rule 3). 

We can extend the exponential function to exponents that are fractions or real 
numbers and to negative exponents, as follows. Given a positive integer k, we 
define b1/k to be kth root of b, that is, the number r such that rk = b. For example, 
251/2 = 5, since 52 = 25. Likewise, 271/3 = 3 and 161/4 = 2. This approach allows us 
to define any power whose exponent can be expressed as a fraction, for ba/c = (ba)1/c, 
by Exponent Rule 1. For example, 93/2 = (93)1/2 = 7291/2 = 27. Thus, ba/c is really just 
the cth root of the integral exponent ba. 

We can further extend the exponential function to define bx for any real number x, 
by computing a series of numbers of the form ba/c for fractions a/c that get 
progressively closer and closer to x. Any real number x can be approximated 
arbitrarily close by a fraction a/c; hence, we can use the fraction a/c as the exponent 
of b to get arbitrarily close to bx. So, for example, the number 2π is well defined. 
Finally, given a negative exponent d, we define bd = 1/b−d, which corresponds to 
applying Exponent Rule 3 with a = 0 and c = −d. 

Geometric Sums 

Suppose we have a loop where each iteration takes a multiplicative factor longer 
than the previous one. This loop can be analyzed using the following proposition. 

Proposition 4.5: For any integer n ≥ 0 and any real number a such that a > 
0 and a ≠ 1, consider the summation 

 

(remembering that a0 = 1 if a > 0). This summation is equal to 

an+ 1 − 1/a − 1 

Summations as shown in Proposition 4.5 are called geometric summations, 
because each term is geometrically larger than the previous one if a > 1. For 
example, everyone working in computing should know that 

1 + 2 + 4 + 8 + … + 2n−1 = 2n−,1 

for this is the largest integer that can be represented in binary notation using n 
bits. 
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4.1.8  Comparing Growth Rates 

To sum up, Table 4.1 shows each of the seven common functions used in algorithm 
analysis, which we described above, in order. 

Table 4.1: Classes of functions. Here we assume that a 
> 1 is a constant. 

constant 

logarithm 

linear 

n-log-n 

quadratic 

cubic 

exponent 

1 

log n 

n 

nlogn 

n2 

n3 

an 

Ideally, we would like data structure operations to run in times proportional to the 
constant or logarithm function, and we would like our algorithms to run in linear or 
n-log-n time. Algorithms with quadratic or cubic running times are less practical, 
but algorithms with exponential running times are infeasible for all but the smallest 
sized inputs. Plots of the seven functions are shown in Figure 4.2. 

Figure 4.2: Growth rates for the seven fundamental 
functions used in algorithm analysis. We use base a = 2 
for the exponential function. The functions are plotted 
in a log-log chart, to compare the growth rates 
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primarily as slopes. Even so, the exponential function 
grows too fast to display all its values on the chart. Also, 
we use the scientific notation for numbers, where, aE+b 
denotes a10b. 

 

The Ceiling and Floor Functions 

One additional comment concerning the functions above is in order. The value of 
a logarithm is typically not an integer, yet the running time of an algorithm is 
usually expressed by means of an integer quantity, such as the number of 
operations performed. Thus, the analysis of an algorithm may sometimes involve 
the use of thefloor function and ceiling function, which are defined respectively 
as follows:  

• �x� = the largest integer less than or equal to x. 

• �x� = the smallest integer greater than or equal to x. 

4.2  Analysis of Algorithms 

In a classic story, the famous mathematician Archimedes was asked to determine if a 
golden crown commissioned by the king was indeed pure gold, and not part silver, as 
an informant had claimed. Archimedes discovered a way to perform this analysis 
while stepping into a (Greek) bath. He noted that water spilled out of the bath in 
proportion to the amount of him that went in. Realizing the implications of this fact, 
he immediately got out of the bath and ran naked through the city shouting, "Eureka, 
eureka!," for he had discovered an analysis tool (displacement), which, when 
combined with a simple scale, could determine if the king's new crown was good or 
not. That is, Archimedes could dip the crown and an equal-weight amount of gold 
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into a bowl of water to see if they both displaced the same amount. This discovery 
was unfortunate for the goldsmith, however, for when Archimedes did his analysis, 
the crown displaced more water than an equal-weight lump of pure gold, indicating 
that the crown was not, in fact, pure gold. 

In this book, we are interested in the design of "good" data structures and algorithms. 
Simply put, a data structure is a systematic way of organizing and accessing data, 
and an algorithm is a step-by-step procedure for performing some task in a finite 
amount of time. These concepts are central to computing, but to be able to classify 
some data structures and algorithms as "good," we must have precise ways of 
analyzing them. 

The primary analysis tool we will use in this book involves characterizing the running 
times of algorithms and data structure operations, with space usage also being of 
interest. Running time is a natural measure of "goodness," since time is a precious 
resource—computer solutions should run as fast as possible. 

In general, the running time of an algorithm or data structure method increases with 
the input size, although it may also vary for different inputs of the same size. Also, 
the running time is affected by the hardware environment (as reflected in the 
processor, clock rate, memory, disk, etc.) and software environment (as reflected in 
the operating system, programming language, compiler, interpreter, etc.) in which the 
algorithm is implemented, compiled, and executed. All other factors being equal, the 
running time of the same algorithm on the same input data will be smaller if the 
computer has, say, a much faster processor or if the implementation is done in a 
program compiled into native machine code instead of an interpreted implementation 
run on a virtual machine. Nevertheless, in spite of the possible variations that come 
from different environmental factors, we would like to focus on the relationship 
between the running time of an algorithm and the size of its input. 

We are interested in characterizing an algorithm's running time as a function of the 
input size. But what is the proper way of measuring it? 

4.2.1  Experimental Studies 

if an algorithm has been implemented, we can study its running time by executing it 
on various test inputs and recording the actual time spent in each execution. 
Fortunately, such measurements can be taken in an accurate manner by using 
system calls that are built into the language or operating system (for example, by 
using the System.current Time Millis () method or calling the run-time 
environment with profiling enabled). Such tests assign a specific running time to a 
specific input size, but we are interested in determining the general dependence of 
running time on the size of the input. In order to determine this dependence, we 
should perform several experiments on many different test inputs of various sizes. 
Then we can visualize the results of such experiments by plotting the performance 
of each run of the algorithm as a point with x-coordinate equal to the input size, n, 
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and y-coordinate equal to the running time, t. (See Figure 4.3.) From this 
visualization and the data that supports it, we can perform a statistical analysis that 
seeks to fit the best function of the input size to the experimental data. To be 
meaningful, this analysis requires that we choose good sample inputs and test 
enough of them to be able to make sound statistical claims about the algorithm's 
running time. 

Figure 4.3: Results of an experimental study on the 
running time of an algorithm. A dot with coordinates (n, 
t) indicates that on an input of size n, the running time 
of the algorithm is t milliseconds (ms). 

 

While experimental studies of running times are useful, they have three major 
limitations:  

• Experiments can be done only on a limited set of test inputs; hence, they 
leave out the running times of inputs not included in the experiment (and these 
inputs may be important). 
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• We will have difficulty comparing the experimental running times of two 
algorithms unless the experiments were performed in the same hardware and 
software environments. 

• We have to fully implement and execute an algorithm in order to study its 
running time experimentally. 

This last requirement is obvious, but it is probably the most time consuming aspect 
of performing an experimental analysis of an algorithm. The other limitations 
impose serious hurdles too, of course. Thus, we would ideally like to have an 
analysis tool that allows us to avoid performing experiments. 

In the rest of this chapter, we develop a general way of analyzing the running times 
of algorithms that:  

• Takes into account all possible inputs 

• Allows us to evaluate the relative efficiency of any two algorithms in a 
way that is independent from the hardware and software environment 

• Can be performed by studying a high-level description of the algorithm 
without actually implementing it or running experiments on it. 

This methodology aims at associating, with each algorithm, a function f(n) that 
characterizes the running time of the algorithm as a function of the input size n. 
Typical functions that will be encountered include the seven functions mentioned 
earlier in this chapter. 

4.2.2  Primitive Operations 

As noted above, experimental analysis is valuable, but it has its limitations. If we 
wish to analyze a particular algorithm without performing experiments on its 
running time, we can perform an analysis directly on the high-level pseudo-code 
instead. We define a set of primitive operations such as the following:  

• Assigning a value to a variable 

• Calling a method 

• Performing an arithmetic operation (for example, adding two numbers) 

• Comparing two numbers 

• Indexing into an array 

• Following an object reference 

• Returning from a method. 
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Counting Primitive Operations 

Specifically, a primitive operation corresponds to a low-level instruction with an 
execution time that is constant. Instead of trying to determine the specific 
execution time of each primitive operation, we will simply count how many 
primitive operations are executed, and use this number t as a measure of the 
running-time of the algorithm. 

This operation count will correlate to an actual running time in a specific 
computer, for each primitive operation corresponds to a constant-time instruction, 
and there are only a fixed number of primitive operations. The implicit 
assumption in this approach is that the running times of different primitive 
operations will be fairly similar. Thus, the number, t, of primitive operations an 
algorithm performs will be proportional to the actual running time of that 
algorithm. 

An algorithm may run faster on some inputs than it does on others of the same 
size. Thus, we may wish to express the running time of an algorithm as the 
function of the input size obtained by taking the average over all possible inputs 
of the same size. Unfortunately, such an average-case analysis is typically quite 
challenging. It requires us to define a probability distribution on the set of inputs, 
which is often a difficult task. Figure 4.4 schematically shows how, depending on 
the input distribution, the running time of an algorithm can be anywhere between 
the worst-case time and the best-case time. For example, what if inputs are really 
only of types "A" or "D"? 

Figure 4.4: The difference between best-case and 
worst-case time. Each bar represents the running time 
of some algorithm on a different possible input. 
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Focusing on the Worst Case 

An average-case analysis usually requires that we calculate expected running 
times based on a given input distribution, which usually involves sophisticated 
probability theory. Therefore, for the remainder of this book, unless we specify 
otherwise, we will characterize running times in terms of the worst case, as a 
function of the input size, n, of the algorithm. 

Worst-case analysis is much easier than average-case analysis, as it requires only 
the ability to identify the worst-case input, which is often simple. Also, this 
approach typically leads to better algorithms. Making the standard of success for 
an algorithm to perform well in the worst case necessarily requires that it will do 
well on every input. That is, designing for the worst case leads to stronger 
algorithmic "muscles," much like a track star who always practices by running up 
an incline. 

4.2.3  Asymptotic Notation 

In general, each basic step in a pseudo-code description or a high-level language 
implementation corresponds to a small number of primitive operations (except for 
method calls, of course). Thus, we can perform a simple analysis of an algorithm 
written in pseudo-code that estimates the number of primitive operations executed 
up to a constant factor, by pseudo-code steps (but we must be careful, since a single 
line of pseudo-code may denote a number of steps in some cases). 
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Simplifying the Analysis Further 

In algorithm analysis, we focus on the growth rate of the running time as a 
function of the input size n, taking a "big-picture" approach, rather than being 
bogged down with small details. It is often enough just to know that the running 
time of an algorithm such as arrayMax, given in Section 1.9.2, grows 
proportionally to n, with its true running time being n times a constant factor that 
depends on the specific computer. 

We analyze data structures and algorithms using a mathematical notation for 
functions that disregards constant factors. Namely, we characterize the running 
times of algorithms by using functions that map the size of the input, n, to values 
that correspond to the main factor that determines the growth rate in terms of n. 
We do not formally define what n means, however, and instead let n refer to a 
chosen measure of the input "size," which is allowed to be defined differently for 
each algorithm we are analyzing. This approach allows us to focus attention on 
the primary "big-picture" aspects in a running time function. In addition, the same 
approach lets us characterize space usage for data structures and algorithms, 
where we define space usage to be the total number of memory cells used. 

The "Big-Oh" Notation 

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We 
say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant n0 ≥ 
1 such that 

f(n) ≤cg(n), for n ≥ n0. 

This definition is often referred to as the "big-Oh" notation, for it is sometimes 
pronounced as "f(n) is big-Oh of g(n)." Alternatively, we can also say "f(n) is 
order of g(n)." (This definition is illustrated in Figure 4.5.) 

Figure 4.5: Illustrating the "big-Oh" notation. The 
function f(n) is O(g(n)), since f(n) ≤ c · g(n) when n≥n0. 
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Example 4.6: The function 8n − 2 is O(n). 

Justification: By the big-Oh definition, we need to find a real constant c > 
0 and an integer constant n0 ≥ 1 such that 8n − 2 ≤ cn for every integer n ≥ n0. It 
is easy to see that a possible choice is c = 8 and n0 = 1. Indeed, this is one o
infinitely many choices available because any real number greater than or equal to 
8 will work for c, and any integer greater than or equal to 1 will work for n

f 

0 

 

The big-Oh notation allows us to say that a function f(n) is "less than or equal to" 
another function g(n) up to a constant factor and in the asymptotic sense as n 
grows toward infinity. This ability comes from the fact that the definition uses "≤" 
to compare f(n) to a g(n) times a constant, c, for the asymptotic cases when n≥n0. 

Characterizing Running Times using the Big-Oh 
Notation 

The big-Oh notation is used widely to characterize running times and space 
bounds in terms of some parameter n, which varies from problem to problem, but 
is always defined as a chosen measure of the "size" of the problem. For example, 
if we are interested in finding the largest element in an array of integers, as in the 
arrayMax algorithm, we should let n denote the number of elements of the 
array. Using the big-Oh notation, we can write the following mathematically 
precise statement on the running time of algorithm arrayMax for any computer. 
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Proposition 4.7: The AlgorithmarrayMax, for computing the maximum 
element in an array ofn integers, runs in O(n) time. 

Justification: The number of primitive operations executed by algorithm 
arrayMax in each iteration is a constant. Hence, since each primitive operation 
runs in constant time, we can say that the running time of algorithm arrayMax 
on an input of size n is at most a constant times n, that is, we may conclude that 
the running time of algorithm arrayMax is O(n). 

 

Some Properties of the Big-Oh Notation 

The big-Oh notation allows us to ignore constant factors and lower order terms 
and focus on the main components of a function that affect its growth. 

Example 4.8: 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4). 

Justification: Note that 5n4 + 3n3 + 2n2 + 4n+ 1 ≤ (5 + 3 + 2 + 4+ 1)n4 = 
cn4, for c = 15, when n ≥ n0 = 1. 

 

In fact, we can characterize the growth rate of any polynomial function. 

Proposition 4.9: If f(n) is a polynomial of degree d, that is, 

f(n) = a0+ a1n+ … + adnd, 

and ad > 0, then f(n) is O(nd). 

Justification: Note that, for n ≥ 1, we have 1 ≤ n ≤ n2 ≤ … ≤ nd; hence, 

a0 + a1n + a2n2 + … + adnd ≤ (a0 + a1 + a2 + … + ad)nd. 

 Therefore, we can show f(n) is O(nd) by defining c = a0 + a1 +… + ad and n0 = 1.

 

Thus, the highest-degree term in a polynomial is the term that determines the 
asymptotic growth rate of that polynomial. We consider some additional 
properties of the big-Oh notation in the exercises. Let us consider some further 
examples here, however, focusing on combinations of the seven fundamental 
functions used in algorithm design. 

Example 4.10: 5n2 + 3nlog n+ 2n+ 5 is O(n2). 
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Justification: 5n2 + 3nlogn + 2n + 5 ≤ (5 + 3 + 2+5)n2 =cn, for c= 15, 
when n≥ n0 = 2 (note that n log n is zero for n = 1). 

 

Example 4.11: 20n3 + 10n log n + 5 is O(n3). 

Justification: 20n3 + 10n log n + 5 ≤ 35n3, for n ≥ 1. 

 

Example 4.12: 3log n + 2 is O(log n). 

Justification: 3 log n + 2 ≤ 5 log n, for n ≥ 2. Note that log n is zero for n 
= 1. That is why we use n ≥ n0 = 2 in this case. 

 

Example 4.13: 2n+2 is O(2n). 

Justification: 2n+2 = 2n22 = 4·2n; hence, we can take c = 4 and n0 = 1 in 
this case. 

 

Example 4.14: 2n + 100 log n is O(n). 

Justification: 2n + 100 log n ≤ 102 n, for n ≥ n0 = 2; hence, we can take c 
= 102 in this case. 

 

Characterizing Functions in Simplest Terms 

In general, we should use the big-Oh notation to characterize a function as closely 
as possible. While it is true that the function f(n) = 4n3 + 3n2 is O(n5) or even 
O(n4), it is more accurate to say that f(n) is O(n3). Consider, by way of analogy, a 
scenario where a hungry traveler driving along a long country road happens upon 
a local farmer walking home from a market. If the traveler asks the farmer how 
much longer he must drive before he can find some food, it may be truthful for 
the farmer to say, "certainly no longer than 12 hours," but it is much more 
accurate (and helpful) for him to say, "you can find a market just a few minutes 
drive up this road." Thus, even with the big-Oh notation, we should strive as 
much as possible to tell the whole truth. 

It is also considered poor taste to include constant factors and lower order terms in 
the big-Oh notation. For example, it is not fashionable to say that the function 2n2 
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is O(4n2 + 6n log n), although this is completely correct. We should strive instead 
to describe the function in the big-Oh in simplest terms. 

The seven functions listed in Section 4.1 are the most common functions used in 
conjunction with the big-Oh notation to characterize the running times and space 
usage of algorithms. Indeed, we typically use the names of these functions to refer 
to the running times of the algorithms they characterize. So, for example, we 
would say that an algorithm that runs in worst-case time 4n2 + n log n as a 
quadratic-time algorithm, since it runs in O(n2) time. Likewise, an algorithm 
running in time at most 5n + 20 log n + 4 would be called a linear-time algorithm. 

Big-Omega 

Just as the big-Oh notation provides an asymptotic way of saying that a function 
is "less than or equal to" another function, the following notations provide an 
asymptotic way of saying that a function grows at a rate that is "greater than or 
equal to" that of another. 

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We 
say that f(n) is Ω(g(n)) (pronounced "f(n) is big-Omega of g(n)") if g(n) is O(f(n)) 
, that is, there is a real constant c > 0 and an integer constant n0 ≥ 1 such that 

f(n) ≥cg(n), for n ≥ n0. 

This definition allows us to say asymptotically that one function is greater than or 
equal to another, up to a constant factor. 

Example 4.15: 3nlog n + 2n is Ω(n log n). 

Justification: 3n log n + 2n ≥ 3n log n, for n ≥ 2. 

 

Big-Theta 

In addition, there is a notation that allows us to say that two functions grow at the 
same rate, up to constant factors. We say that f(n) is Θ (g(n)) (pronounced "f(n) is 
big-Theta of g(n)") if f(n) is O(g(n)) and f(n) is Ω(g(n)) , that is, there are real 
constants c ′ > 0 and c ′′ > 0, and an integer constant n0 ≥ 1 such that 

c ′g(n) ≤ f(n) ≤ c ′′g(n),   for n ≥ n0. 

Example 4.16: 3 n log n + 4n + 5log n isΘ(n log n). 

Justification: 3n log n ≤ 3nlog n + 4n + 5log n ≤ (3 + 4 + 5)nlog n for n ≥ 
2. 
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4.2.4  Asymptotic Analysis 

Suppose two algorithms solving the same problem are available: an algorithm A, 
which has a running time of O(n), and an algorithm B, which has a running time of 
O(n2). Which algorithm is better? We know that n is O(n2), which implies that 
algorithm A is asymptotically better than algorithm B, although for a small value of 
n, B may have a lower running time than A. 

We can use the big-Oh notation to order classes of functions by asymptotic growth 
rate. Our seven functions are ordered by increasing growth rate in the sequence 
below, that is, if a function f(n) precedes a function g(n) in the sequence, then f(n) is 
O(g(n)): 

1   log n   n   nlog n   n2   n3   2n. 

We illustrate the growth rates of some important functions in Figure 4.2. 

Table 4.2: Selected values of fundamental functions in 
algorithm analysis. 

n 

logn 

n 

nlogn 

n2 

n3 

2n 

8 

3 

8 

24 

64 

512 
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256 

16 

4 

16 

64 

256 

4,096 

65,536 

32 

5 

32 

160 

1,024 

32,768 

4,294,967,296 

64 

6 

64 

384 

4,096 

262,144 

1.84 × 1019 

128 

7 

128 
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896 

16,384 

2,097,152 

3.40 × 1038 

256 

8 

256 

2,048 

65,536 

16,777,216 

1.15 × 1077 

512 

9 

512 

4,608 

262,144 

134,217,728 

1.34 × 10154 

We further illustrate the importance of the asymptotic viewpoint in Table 4.3. This 
table explores the maximum size allowed for an input instance that is processed by 
an algorithm in 1 second, 1 minute, and 1 hour. It shows the importance of good 
algorithm design, because an asymptotically slow algorithm is beaten in the long 
run by an asymptotically faster algorithm, even if the constant factor for the 
asymptotically faster algorithm is worse. 

Table 4.3: Maximum size of a problem that can be 
solved in 1 second, 1 minute,and 1 hour, for various 
running times measured in microseconds. 
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Running 

Maximum Problem Size (n) 

Time (μs) 

1 second 

1 minute 

1 hour 

400n 

2,500 

150,000 

9,000,000 

2n2 

707 

5,477 

42,426 

2n 

19 

25 

31 

The importance of good algorithm design goes beyond just what can be solved 
effectively on a given computer, however. As shown in Table 4.4, even if we 
achieve a dramatic speed-up in hardware, we still cannot overcome the handicap of 
an asymptotically slow algorithm. This table shows the new maximum problem size 
achievable for any fixed amount of time, assuming algorithms with the given 
running times are now run on a computer 256 times faster than the previous one. 

Table 4.4: Increase in the maximum size of a problem 
that can be solved in a fixed amount of time, by using a 
computer that is 256 times faster than the previous one. 
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Each entry is a function of m, the previous maximum 
problem size. 

Running Time 

New Maximum Problem Size 

400n 

256m 

2n2 

16m 

2n 

m + 8 

4.2.5  Using the Big-Oh Notation 

Having made the case of using the big-Oh notation for analyzing algorithms, let us 
briefly discuss a few issues concerning its use. It is considered poor taste, in 
general, to say "f(n) ≤ O(g(n))," since the big-Oh already denotes the "less-than-or-
equal-to" concept. Likewise, although common, it is not fully correct to say "f(n) = 
O(g(n))" (with the usual understanding of the "=" relation), since there is no way to 
make sense of the statement "O(g(n)) = f(n)." In addition, it is completely wrong to 
say "f(n) ≥ O(g(n))" or "f(n) > O(g(n))," since the g(n) in the big-Oh expresses an 
upper bound on f(n). It is best to say, 

          "f(n) is O(g(n))." 

For the more mathematically inclined, it is also correct to say, 

          "f(n) � O(g(n))," 

for the big-Oh notation is, technically speaking, denoting a whole collection of 
functions. In this book, we will stick to presenting big-Oh statements as "f(n) is 
O(g(n))." Even with this interpretation, there is considerable freedom in how we can 
use arithmetic operations with the big-Oh notation, and with this freedom comes a 
certain amount of responsibility. 

Some Words of Caution 

A few words of caution about asymptotic notation are in order at this point. First, 
note that the use of the big-Oh and related notations can be somewhat misleading 
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should the constant factors they "hide" be very large. For example, while it is true 
that the function 10100n is O(n), if this is the running time of an algorithm being 
compared to one whose running time is 10nlogn, we should prefer the O(nlogn) 
time algorithm, even though the linear-time algorithm is asymptotically faster. 
This preference is because the constant factor, 10100, which is called "one googol," 
is believed by many astronomers to be an upper bound on the number of atoms in 
the observable universe. So we are unlikely to ever have a real-world problem that 
has this number as its input size. Thus, even when using the big-Oh notation, we 
should at least be somewhat mindful of the constant factors and lower order terms 
we are "hiding." 

The observation above raises the issue of what constitutes a "fast" algorithm. 
Generally speaking, any algorithm running in O(nlogn) time (with a reasonable 
constant factor) should be considered efficient. Even an O(n2) time method may 
be fast enough in some contexts, that is, when n is small. But an algorithm 
running in O(2n) time should almost never be considered efficient. 

Exponential Running Times 

There is a famous story about the inventor of the game of chess. He asked only 
that his king pay him 1 grain of rice for the first square on the board, 2 grains for 
the second, 4 grains for the third, 8 for the fourth, and so on. It is an interesting 
test of programming skills to write a program to compute exactly the number of 
grains of rice the king would have to pay. In fact, any Java program written to 
compute this number in a single integer value will cause an integer overflow to 
occur (although the run-time machine will probably not complain). To represent 
this number exactly as an integer requires using a BigInteger class. 

If we must draw a line between efficient and inefficient algorithms, therefore, it is 
natural to make this distinction be that between those algorithms running in 
polynomial time and those running in exponential time. That is, make the 
distinction between algorithms with a running time that is O(nc), for some 
constant c> 1, and those with a running time that is O(bn), for some constant b > 
1. Like so many notions we have discussed in this section, this too should be 
taken with a "grain of salt," for an algorithm running in O(n100) time should 
probably not be considered "efficient." Even so, the distinction between 
polynomial-time and exponential-time algorithms is considered a robust measure 
of tractability. 

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta 
provide a convenient language for us to analyze data structures and algorithms. 
As mentioned earlier, these notations provide convenience because they let us 
concentrate on the "big picture" rather than low-level details. 

Two Examples of Asymptotic Algorithm Analysis 
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We conclude this section by analyzing two algorithms that solve the same 
problem but have rather different running times. The problem we are interested in 
is the one of computing the so-called prefix averages of a sequence of numbers. 
Namely, given an array X storing n numbers, we want to compute an array A such 
that A[i] is the average of elements X[0],…, X[i], for i = 0,…, n − 1, that is, 

 

Computing prefix averages has many applications in economics and statistics. For 
example, given the year-by-year returns of a mutual fund, an investor will 
typically want to see the fund's average annual returns for the last year, the last 
three years, the last five years, and the last ten years. Likewise, given a stream of 
daily Web usage logs, a Web site manager may wish to track average usage trends 
over various time periods. 

A Quadratic-Time Algorithm 

Our first algorithm for the prefix averages problem, called prefixAverages1, 
is shown in Code Fragment 4.1. It computes every element of A separately, 
following the definition. 

Code Fragment 4.1: Algorithm prefixAverages1. 

 

Let us analyze the prefixAverages1 algorithm. 

• Initializing and returning array A at the beginning and end can be done 
with a constant number of primitive operations per element, and takes O(n) 
time. 
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• There are two nested for loops, which are controlled by counters i and j, 
respectively. The body of the outer loop, controlled by counter i, is executed n 
times, for i = 0,…,n − 1. Thus, statements a = 0 and A[i] = a/(i+ 1) are executed 
n times each. This implies that these two statements, plus the incrementing and 
testing of counter i, contribute a number of primitive operations proportional to 
n, that is, O(n) time. 

• The body of the inner loop, which is controlled by counter j, is executed i 
+ 1 times, depending on the current value of the outer loop counter i. Thus, 
statement a = a + X[j] in the inner loop is executed 1 + 2 + 3 +… +n times. By 
recalling Proposition 4.3, we know that 1 + 2 + 3 +… +n, = n(n + 1)/2, which 
implies that the statement in the inner loop contributes O(n2) time. A similar 
argument can be done for the primitive operations associated with the 
incrementing and testing counter j, which also take O(n2)time. 

The running time of algorithm prefixAverages1 is given by the sum of three 
terms. The first and the second term are O(n), and the third term is O(n2). By a 
simple application of Proposition 4.9, the running time of prefixAverages1 
is O(n2). 

A Linear-Time Algorithm 

In order to compute prefix averages more efficiently, we can observe that two 
consecutive averages A[i − 1] and A[i] are similar: 

                                                  A[i − 1] = (X[0] + X[1] + … + X[i − 1])/i 

                                                       A[i] = (X[0] + X[1] + … + X[i − 1] + X[i])/(i + 
1). 

If we denote with Si the prefix sum X[0] + X[1] + … + X[i], we can compute the 
prefix averages as A[i] = Si/(i + 1). It is easy to keep track of the current prefix 
sum while scanning array X with a loop. We are now ready to present Algorithm 
prefixAverages2 in Code Fragment 4.2. 

Code Fragment 4.2: Algorithmprefix Averages2. 
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The analysis of the running time of algorithm prefixAverages2 follows:  

• Initializing and returning array A at the beginning and end can be done 
with a constant number of primitive operations per element, and takes O(n) 
time. 

• Initializing variable s at the beginning takes O(1) time. 

• There is a single for loop, which is controlled by counter i. The body of 
the loop is executed n times, for i = 0,… ,n − 1. Thus, statements s = s + X[i] 
and A[i] = s/(i+ 1) are executed n times each. This implies that these two 
statements plus the incrementing and testing of counter i contribute a number of 
primitive operations proportional to n, that is, O(n) time. 

The running time of algorithm prefixAverages2 is given by the sum of three 
terms. The first and the third term are O(n), and the second term is O(1). By a 
simple application of Proposition 4.9, the running time of prefixAverages2 
is O(n), which is much better than the quadratic-time algorithm 
prefixAverages1. 

4.2.6  A Recursive Algorithm for Computing Powers 

As a more interesting example of algorithm analysis, let us consider the problem of 
raising a number x to an arbitrary nonnegative integer, n. That is, we wish to 
compute the power function p(x,n), defined as p(x,n) = xn. This function has an 
immediate recursive definition based on linear recursion: 
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This definition leads immediately to a recursive algorithm that uses O(n) method 
calls to compute p(x,n). We can compute the power function much faster than this, 
however, by using the following alternative definition, also based on linear 
recursion, which employs a squaring technique: 

 

To illustrate how this definition works, consider the following examples: 

                                                            24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16 

                                                            25 = 21 + (4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32 

                                                            26 = 2(6/2)2 = (26/2)2 = (23)2 = 82 = 64 

                                                            27 = 21 + (6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128. 

This definition suggests the algorithm of Code Fragment 4.3. 

Code Fragment 4.3: Computing the power function 
using linear recursion. 

 

To analyze the running time of the algorithm, we observe that each recursive call of 
method Power(x, n) divides the exponent, n, by two. Thus, there are O(logn) 
recursive calls, not O(n). That is, by using linear recursion and the squaring 
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technique, we reduce the running time for the computation of the power function 
from O(n) to O(logn), which is a big improvement. 

4.3.  Simple Justification Techniques 

Sometimes, we will want to make claims about an algorithm, such as showing that it 
is correct or that it runs fast. In order to rigorously make such claims, we must use 
mathematical language, and in order to back up such claims, we must justify or prove 
our statements. Fortunately, there are several simple ways to do this. 

4.3.1  By Example 

Some claims are of the generic form, "There is an element x in a set S that has 
property P." To justify such a claim, we only need to produce a particular x in S that 
has property P. Likewise, some hard-to-believe claims are of the generic form, 
"Every element x in a set S has property P." To justify that such a claim is false, we 
need to only produce a particular x from S that does not have property P. Such an 
instance is called a counterexample. 

Example 4.17: Professor Amongus claims that every number of the form 2i − 1 
is a prime, when i is an integer greater than 1. Professor Amongus is wrong. 

Justification: To prove Professor Amongus is wrong, we find a counter-
example. Fortunately, we need not look too far, for 24 − 1 = 15 = 3 · 5. 

 

4.3.2  The "Contra" Attack 

Another set of justification techniques involves the use of the negative. The two 
primary such methods are the use of the contrapositive and the contradiction. The 
use of the contrapositive method is like looking through a negative mirror. To 
justify the statement "if p is true, then q is true" we establish that "if q is not true, 
then p is not true" instead. Logically, these two statements are the same, but the 
latter, which is called the contrapositive of the first, may be easier to think about. 

Example 4.18: Let a and b be integers. If ab is even, then a is even or b is even. 

Justification: To justify this cxlaim, consider the contrapositive, "If a is odd 
and b is odd, then ab is odd." So, suppose a = 2i + 1 and b = 2j+1, for some integers 
i and j. Then ab = 4ij + 2i + 2j + 1 = 2(2ij plus; i + j) + 1; hence, ab is odd. 
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Besides showing a use of the contrapositive justification technique, the previous 
example also contains an application of DeMorgan's Law. This law helps us deal 
with negations, for it states that the negation of a statement of the form "p or q" is 
"not p and not q." Likewise, it states that the negation of a statement of the form "p 
and q" is "not p or not q" 

Contradiction 

Another negative justification technique is justification by contradiction, which 
also often involves using DeMorgan's Law. In applying the justification by 
contradicti on technique, we establish that a statement q is true by first supposing 
that q is false and then showing that this assumption leads to a contradiction (such 
as 2 ≠ 2 or 1 > 3). By reaching such a contradiction, we show that no consistent 
situation exists with q being false, so q must be true. Of course, in order to reach 
this conclusion, we must be sure our situation is consistent before we assume q is 
false. 

Example 4.19: Let a and b be integers. If ab is odd, then a is odd and b is 
odd. 

Justification: Let ab be odd. We wish to show that a is odd and b is odd. 
So, with the hope of leading to a contradiction, let us assume the opposite, 
namely, suppose a is even or b is even. In fact, without loss of generality, we can 
assume that a is even (since the case for b is symmetric). Then a = 2i for some 
integer i. Hence, ab = (2i)b = 2(ib), that is, ab is even. But this is a contradiction: 
ab cannot simultaneously be odd and even. Therefore a is odd and b is odd. 

 

4.3.3  Induction and Loop Invariants 

Most of the claims we make about a running time or a space bound involve an 
integer parameter n (usually denoting an intuitive notion of the "size" of the 
problem). Moreover, most of these claims are equivalent to saying some statement 
q(n) is true "for all n ≥ 1." Since this is making a claim about an infinite set of 
numbers, we cannot justify this exhaustively in a direct fashion. 

Induction 

We can often justify claims such as those above as true, however, by using the 
technique of induction. This technique amounts to showing that, for any 
particular n ≥ 1, there is a finite sequence of implications that starts with 
something known to be true and ultimately leads to showing that q(n) is true. 
Specifically, we begin a justification by induction by showing that q(n) is true for 
n = 1 (and possibly some other values n = 2,3,…, k, for some constant k). Then 
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we justify that the inductive "step" is true for n> k, namely, we show "if q(i) is 
true for i > n, then q(n) is true." The combination of these two pieces completes 
the justification by induction. 

Proposition 4.20: Consider the Fibonacci function F(n), where we define 
F(1) = 1, F(2) = 2, and F(n) = F(n − 1) + F(n − 2) for n > 2. (See Section 2.2.3.) 
We claim thatF(n) < 2n. 

Justification: We will show our claim is right by induction. 

Base cases: (n ≤ 2). F(1) = 1< 2 = 21 and F(2) = 2 < 4 = 22. 

Induction step: (n > 2). Suppose our claim is true for n ′ < n. Consider F(n). Since 
n > 2, F(n) = F(n − 1) + F(n − 2). Moreover, since n − 1<n and n − 2 < n, we can 
apply the inductive assumption (sometimes called the "inductive hypothesis") to 
imply that F(n) < 2n − 1 + 2n − 2, since 

2n − 1 + 2n−2 < 2n−1 + 2n−1 = 2 · 2n−1 = 2n. 

 

Let us do another inductive argument, this time for a fact we have seen before. 

Proposition 4.21: (which is the same as Proposition 4.3) 

. 

Justification: We will justify this equality by induction. 

Base case: n = 1. Trivial, for 1 = n(n + 1)/2, if n = 1. 

Induction step: n ≥ 2. Assume the claim is true for n ′ < n. Consider n. 

. 

By the induction hypothesis, then 

, 

which we can simplify as 

n + (n − 1)n/2 = 2n + n2 − n/2 = n2 + n/2 = n(n + 1)/2 
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We may sometimes feel overwhelmed by the task of justifying something true for 
all n≥1. We should remember, however, the concreteness of the inductive 
technique.It shows that, for any particular n, there is a finite step-by-step sequence 
of implications that starts with something true and leads to the truth about n. In 
short, the inductive argument is a formula for building a sequence of direct 
justifications. 

Loop Invariants 

The final justification technique we discuss in this section is the loop invariant. 
To prove some statement S about a loop is correct, define S in terms of a series of 
smaller statements S0,S1, …, Sk, where:  

1. The initial claim, S0, is true before the loop begins. 

2. if Si−1 is true before iteration i, then Si will be true after iteration i. 

3. The final statement, Sk, implies the statement S that we wish to be true. 

We have, in fact, seen a loop-invariant argument in Section 1.9.2 (for the 
correctness of Algorithm arrayMax), but let us give one more example here. In 
particular, let us consider using a loop invariant to justify the correctness of 
arrayFind, shown in Code Fragment 4.4, for finding an element x in an array 
A. 

Code Fragment 4.4: Algorithm arrayFind for 
finding a given element in an array. 

 

To show that arrayFind is correct, we inductively define a series of 
statements, Si, that lead to the correctness of our algorithm. Specifically, we claim 
the following is true at the beginning of iteration i of the while loop: 

Si: x is not equal to any of the first i elements of A. 
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This claim is true at the beginning of the first iteration of the loop, since there are 
no elements among the first 0 in A (this kind of a trivially true claim is said to 
hold vacuously). In iteration i, we compare element x to element A[i] and return 
the index i if these two elements are equal, which is clearly correct and completes 
the algorithm in this case. If the two elements x and A[i] are not equal, then we 
have found one more element not equal to x and we increment the index i. Thus, 
the claim Si will be true for this new value of i; hence, it is true at the beginning 
of the next iteration. If the while-loop terminates without ever returning an index 
in A, then we have i = n. That is, Sn is true—there are no elements of A equal to 
Therefore, the algorithm correctly returns —1 to indicate that x is not in A. 

x. 

4.4.  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-4.1 

Give a pseudo-code description of the O(n)-time algorithm for computing the 
power function p(x, n). Also, draw the recursion trace of this algorithm for the 
computation of p(2,5). 

R-4.2 

Give a Java description of Algorithm Power for computing the power function 
p(x, n) (Code Fragment 4.3). 

R-4.3 

Draw the recursion trace of the Power algorithm (Code Fragment 4.3, which 
computes the power function p(x,n)) for computing p(2,9). 

R-4.4 

Analyze the running time of Algorithm BinarySum (Code Fragment 3.34) for 
arbitrary values of the input parameter n. 

R-4.5 

Graph the functions 8n, 4nlogn, 2n2, n3, and 2n using a logarithmic scale for the 
x- and y-axes , that is, if the function value f(n) is y, plot this as a point with x-
coordinate at log n and y-coordinate at log y. 

R-4.6 
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The number of operations executed by algorithms Aand B is 8nlogn and 2n2, 
respectively. Determine n0 such that A is better than B for n ≥ n0. 

R-4.7 

The number of operations executed by algorithms A and B is 40n2 and 2n3, 
respectively. Determine n0 such that A is better than B for n ≥ n0. 

R-4.8 

Give an example of a function that is plotted the same on a log-log scale as it is 
on a standard scale. 

R-4.9 

Explain why the plot of the function nc is a straight line with slope c on a log-
log scale. 

R-4.10 

What is the sum of all the even numbers from 0 to 2n, for any positive integer 
n? 

R-4.11 

Show that the following two statements are equivalent: 

(a) 

The running time of algorithm A is O(f(n)). 

(b) 

In the worst case, the running time of algorithm A is O(f(n)). 

R-4.12 

Order the following functions by asymptotic growth rate. 

                         4n log n + 2n        210        2logn 

                        3n+100 log n        4n        2n 

                           n2 + 10n        n3        n log n 

R-4.13 

Show that if d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a>0. 

 249



R-4.14 

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product d(n)e(n) is 
O(f(n)g(n)). 

R-4.15 

Give a big-Oh characterization, in terms of n, of the running time of the Ex1 
method shown in Code Fragment 4.5. 

R-4.16 

Give a big-Oh characterization, in terms of n, of the running time of the Ex2 
method shown in Code Fragment 4.5. 

R-4.17 

Give a big-Oh characterization, in terms of n, of the running time of the Ex3 
method shown in Code Fragment 4.5. 

R-4.18 

Give a big-Oh characterization, in terms of n, of the running time of the Ex4 
method shown in Code Fragment 4.5. 

R-4.19 

Give a big-Oh characterization, in terms of n, of the running time of the Ex5 
method shown in Code Fragment 4.5. 

R-4.20 

Bill has an algorithm, find2D, to find an element x in an n × n array A. The 
algorithm find2D iterates over the rows of A, and calls the algorithm array 
Find, of Code Fragment 4.4, on each row, until x is found or it has searched all 
rows of A. What is the worst-case running time of find2D in terms of n? What 
is the worst-case running time of find2D in terms of N, where N is the total 
size of A? Would it be correct to say that Find2D is a linear-time algorithm? 
Why or why not? 

R-4.21 

For each function f(n) and time t in the following table, determine the largest 
size n of a problem P that can be solved in time t if the algorithm for solving P 
takes f(n) microseconds (one entry is already completed). 
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R-4.22 

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + 
g(n)). 

R-4.23 

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) − e(n) is not 
necessarily O( f(n) − g(n)). 

R-4.24 

Show that if d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)). 

R-4.25 

Show that O(max{f(n),g(n)}) = O(f(n) + g(n)). 

R-4.26 

Show that f(n) is O(g(n)) if and only if g(n) is Ω(f(n)). 

R-4.27 

Show that if p(n) is a polynomial in n, then log p(n) is O(logn). 

R-4.28 

Show that (n + 1)5 is O(n5). 

Code Fragment 4.5: Some algorithms. 
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R-4.29 

Show that 2n+1 is O(2n). 

R-4.30 

Show that n is O(nlogn). 

R-4.31 

Show that n2 is Ω(n log n). 

R-4.32 

Show that nlogn is Ω(n). 

R-4.33 

Show that [f(n)] is O(f(n)), if f(n) is a positive nondecreasing function that is 
always greater than 1. 

R-4.34 

Algorithm A executes an O(logn)-time computation for each entry of an n-
element array. What is the worst-case running time of Algorithm A? 

R-4.35 

Given an n-element array X, Algorithm B chooses logn elements in X at random 
and executes an O(n)-time calculation for each. What is the worst-case running 
time of Algorithm B? 

R-4.36 

Given an n-element array X of integers, Algorithm C executes an O(n)-time 
computation for each even number in X, and an O(logn)-time computation for 
each odd number in X. What are the best-case and worst-case running times of 
Algorithm C? 

R-4.37 

Given an n-element array X, Algorithm D calls Algorithm E on each element 
X[i]. Algorithm E runs in O(i) time when it is called on element X[i]. What is 
the worst-case running time of Algorithm D? 

R-4.38 

Al and Bob are arguing about their algorithms. Al claims his O(nlogn)-time 
method is always faster than Bob's O(n2)-time method. To settle the issue, they 
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perform a set of experiments. To Al's dismay, they find that if n <100, the 
O(n2)-time algorithm runs faster, and only when n ≥ 100 is the O(n log n) -time 
one better. Explain how this is possible. 

Creativity 

C-4.1 

Describe a recursive algorithm to compute the integer part of the base-two 
logarithm of n using only addition and integer division. 

C-4.2 

Describe how to implement the queue ADT using two stacks. What is the 
running time of the enqueue() and dequeue() methods in this case? 

C-4.3 

Suppose you are given an n-element array A containing distinct integers that are 
listed in increasing order. Given a number k, describe a recursive algorithm to 
find two integers in A that sum to k, if such a pair exists. What is the running 
time of your algorithm? 

C-4.4 

Given an n-element unsorted array A of n integers and an integer k, describe a 
recursive algorithm for rearranging the elements in A so that all elements less 
than or equal to k come before any elements larger than k. What is the running 
time of your algorithm? 

C-4.5 

Show that  is O(n3). 

C-4.6 

Show that  (Hint: Try to bound this sum term by term with a 
geometric progression.) 

C-4.7 

Show that logb f(n) is θ(logf(n)) if b > 1 is a constant. 

C-4.8 
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Describe a method for finding both the minimum and maximum of n numbers 
using fewer than 3n/2 comparisons. (Hint: First construct a group of candidate 
minimums and a group of candidate maximums.) 

C-4.9 

Bob built a Web site and gave the URL only to his n friends, which he 
numbered from 1 to n. He told friend number i that he/she can visit the Web site 
at most i times. Now Bob has a counter, C, keeping track of the total number of 
visits to the site (but not the identities of who visits). What is the minimum 
value for C such that Bob should know that one of his friends has visited his/her 
maximum allowed number of times? 

C-4.10 

Consider the following "justification" that the Fibonacci function, F(n) (see 
Proposition 4.20) is O(n):Base case (n ≤ 2): F(1) = 1 and F(2) = 2. Induction 
step (n > 2): Assume claim true for n ′ < n. Consider n. F(n) = F(n − 1) + F(n − 
2). By induction, F(n − 1) is O(n − 1) and F(n − 2) is O(n − 2). Then, F(n) is 
O((n − 1) + (n − 2)), by the identity presented in Exercise R-4.22. Therefore, 
F(n) is O(n). What is wrong with this "justification"? 

C-4.11 

Let p(x) be a polynomial of degree n, that is,p(x) = . 

(a) 

Describe a simple O(n2) time method for computing p(x). 

(b) 

Now consider a rewriting of p(x) as 

     p(x) = a0 + x(a1 +x(a2 + x(a3 + …+ x(an−1 +xan) … ))), 

which is known as Horner's method. Using the big-Oh notation, characterize 
the number of arithmetic operations this method executes. 

C-4.12 

Consider the Fibonacci function, F(n) (see Proposition 4.20). Show by induction 
that F(n) is Ω((3/2)n). 

C-4.13 
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Given a set A = {a1,a2, …an} of n integers, describe, in pseudo-code, an 

efficient method for computing each of partial sums sk =  for k= 1,2,…, 
n. What is the running time of this method? 

C-4.14 

Draw a visual justification of Proposition 4.3 analogous to that of Figure 4.1(b) 
for the case when n is odd. 

C-4.15 

An array A contains n − 1 unique integers in the range [0,n − 1] , that is, there is 
one number from this range that is not in A. Design an O(n)-time algorithm for 
finding that number. You are only allowed to use O(1) additional space besides 
the array A itself. 

C-4.16 

Let s be a set of n lines in the plane such that no two are parallel and no three 
meet in the same point. Show, by induction, that the lines in s determine Θ(n2) 
intersection points. 

C-4.17 

Show that the summation  is O(nlogn). 

C-4.18 

An evil king has n bottles of wine, and a spy has just poisoned one of them. 
Unfortunately, they don't know which one it is. The poison is very deadly; just 
one drop diluted even a billion to one will still kill. Even so, it takes a full 
month for the poison to take effect. Design a scheme for determining exactly 
which one of the wine bottles was poisoned in just one month's time while 
expending O(logn) taste testers. 

C-4.19 

Suppose that each row of an n × n array A consists of 1's and 0's such that, in 
any row of A all the 1's come before any 0's in that row. Assuming A is already 
in memory, describe a method running in O(n) time (not O(n2) time) for finding 
the row of A that contains the most 1's. 

C-4.20 
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Describe, in pseudo-code a method for multiplying an n × m matrix A and an m 
× p matrix B. Recall that the product C = AB is defined so that C[i] [j] = 

 What is the running time of your method? 

C-4.21 

Suppose each row of an n × n array A consists of 1's and 0's such that, in any 
row i of A all the 1's come before any 0's. Also suppose that the number of 1's in 
row i is at least the number in row i + 1, for i = 0,1,…, n − 2. Assuming A is 
already in memory, describe a method running in O(n) time (not O(n2)) for 
counting the number of 1's in A. 

C-4.22 

Describe a recursive method for computing the nth Harmonic number, 

 

Projects 

P-4.1 

Implement prefixAverages1 and prefixAverages2 from Section 
4.2.5, and perform an experimental analysis of their running times. Visualize 
their running times as a function of the input size with a log-log chart. 

P-4.2 

Perform a careful experimental analysis that compares the relative running 
times of the methods shown in Code Fragments 4.5. 

Chapter Notes 

The big-Oh notation has prompted several comments about its proper use [16, 47, 
61]. Knuth [62, 61] defines it using the notation f(n) = O(g(n)), but says this 
"equality" is only "one way." We have chosen to take a more standard view of 
equality and view the big-Oh notation as a set, following Brassard [16]. The reader 
interested in studying average-case analysis is referred to the book chapter by Vitter 
and Flajolet [97]. We found the story about Archimedes in [77]. For some additional 
mathematical tools, please refer to Appendix A. 
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Chapter 5  Stacks and Queues 
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5.1  Stacks 

A stack is a collection of objects that are inserted and removed according to the last-
in first-out (LIFO) principle. Objects can be inserted into a stack at any time, but 
only the most recently inserted (that is, "last") object can be removed at any time. The 
name "stack" is derived from the metaphor of a stack of plates in a spring-loaded, 
cafeteria plate dispenser. In this case, the fundamental operations involve the 
"pushing" and "popping" of plates on the stack. When we need a new plate from the 
dispenser, we "pop" the top plate off the stack, and when we add a plate, we "push" it 
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down on the stack to become the new top plate. Perhaps an even more amusing 
metaphor would be a PEZ® candy dispenser, which stores mint candies in a spring-
loaded container that "pops" out the top-most candy in the stack when the top of the 
dispenser is lifted. (See Figure 5.1.) Stacks are a fundamental data structure. They are 
used in many applications, including the following. 

Figure 5.1:  A schematic drawing of a PEZ® 
dispenser; a physical implementation of the stack ADT. 
(PEZ® is a registered trademark of PEZ Candy, Inc.) 

 

Example 5.1: Internet Web browsers store the addresses of recently visited sites 
on a stack. Each time a user visits a new site, that site's address is "pushed" onto the 
stack of addresses. The browser then allows the user to "pop" back to previously 
visited sites using the "back" button. 

Example 5.2: Text editors usually provide an "undo" mechanism that cancels 
recent editing operations and reverts to former states of a document. This undo 
operation can be accomplished by keeping text changes in a stack. 

5.1.1  The Stack Abstract Data Type 

Stacks are the simplest of all data structures, yet they are also among the most 
important, as they are used in a host of different applications that include many 
more sophisticated data structures. Formally, a stack is an abstract data type (ADT) 
that supports the following two methods: 
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               push(e): Insert element e, to be the top of the stack. 

                   pop(): Remove from the stack and return the top element on the 
stack; an error occurs if the stack is empty. 

Additionally, let us also define the following methods: 

                  size(): Return the number of elements in the stack. 

            isEmpty(): Return a Boolean indicating if the stack is empty. 

                top(): Return the top element in the stack, without removing it; an 
error occurs if the stack is empty. 

Example 5.3: The following table shows a series of stack operations and their 
effects on an initially empty stack S of integers. 

Operation 

Output 

Stack Contents 

push(5) 

- 

(5) 

push(3) 

- 

(5, 3) 

pop() 

3 

(5) 

push(7) 

- 

(5, 7) 

pop() 
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7 

(5) 

top() 

5 

(5) 

pop() 

5 

() 

pop() 

"error" 

() 

isEmpty() 

true 

() 

push(9) 

- 

(9) 

push(7) 

- 

(9, 7) 

push(3) 

- 

(9, 7, 3) 

push(5) 

- 
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(9, 7, 3, 5) 

size() 

4 

(9, 7, 3, 5) 

pop() 

5 

(9, 7, 3) 

push(8) 

- 

(9, 7, 3, 8) 

pop() 

8 

(9, 7, 3) 

pop() 

3 

(9, 7) 

A Stack Interface in Java 

Because of its importance, the stack data structure is included as a "built-in" class 
in the java.util package of Java. Class java.util.Stack is a data 
structure that stores generic Java objects and includes, among others, the methods 
push(), pop(), peek() (equivalent to top()), size(), and empty() 
(equivalent to isEmpty()). Methods pop() and peek() throw exception 
EmptyStackException if they are called on an empty stack. While it is 
convenient to just use the built-in class java.util.Stack, it is instructive to 
learn how to design and implement a stack "from scratch." 

Implementing an abstract data type in Java involves two steps. The first step is the 
definition of a Java Application Programming Interface (API), or simply 
interface, which describes the names of the methods that the ADT supports and 
how they are to be declared and used. 

 264



In addition, we must define exceptions for any error conditions that can arise. For 
instance, the error condition that occurs when calling method pop() or top() 
on an empty stack is signaled by throwing an exception of type 
EmptyStackException, which is defined in Code Fragment 5.1. 

Code Fragment 5.1:  Exception thrown by methods 
pop() and top() of the Stack interface when called 
on an empty stack. 

 

A complete Java interface for the stack ADT is given in Code Fragment 5.2. Note 
that this interface is very general since it specifies that elements of any given class 
(and its subclasses) can be inserted into the stack. It achieves this generality by 
using the concept of generics (Section 2.5.2). 

For a given ADT to be of any use, we need to provide a concrete class that 
implements the methods of the interface associated with that ADT. We give a 
simple implementation of the Stack interface in the following subsection. 

Code Fragment 5.2:  Interface Stack documented 
with comments in Javadoc style (Section 1.9.3). Note 
also the use of the generic parameterized type, E, 
which implies that a stack can contain elements of any 
specified class. 
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5.1.2  A Simple Array-Based Stack Implementation 

We can implement a stack by storing its elements in an array. Specifically, the stack 
in this implementation consists of an N-element array S plus an integer variable t 
that gives the the index of the top element in array S. (See Figure 5.2.) 

Figure 5.2:  Implementing a stack with an array S. 
The top element in the stack is stored in the cell S[t]. 

 

Recalling that arrays start at index 0 in Java, we initialize t to −1, and we use this 
value for t to identify an empty stack. Likewise, we can use t to determine the 
number of elements (t + 1). We also introduce a new exception, called 
FullStackException, to signal the error that arises if we try to insert a new 
element into a full array. Exception FullStackException is specific to this 
implementation and is not defined in the stack ADT, however. We give the details 
of the array-based stack implementation in Code Fragment 5.3. 

Code Fragment 5.3:  Implementing a stack using an 
array of a given size, N. 
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Analyzing the Array-Based Stack Implementation 

The correctness of the methods in the array-based implementation follows 
immediately from the definition of the methods themselves. There is, 
nevertheless, a mildly interesting point here involving the implementation of the 
pop method. 

Note that we could have avoided resetting the old S[t] to null and we would still 
have a correct method. There is a trade-off in being able to avoid this assignment 
should we be thinking about implementing these algorithms in Java, however. 
The trade-off involves the Java garbage collection mechanism that searches 
memory for objects that are no longer referenced by active objects, and reclaims 
their space for future use. (For more details, see Section 14.1.3.) Let e = S[t] be 
the top element before the pop method is called. By making S[t] a null reference, 
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we indicate that the stack no longer needs to hold a reference to object e. Indeed, 
if there are no other active references to e, then the memory space taken by e will 
be reclaimed by the garbage collector. 

Table 5.1 shows the running times for methods in a realization of a stack by an 
array. Each of the stack methods in the array realization executes a constant 
number of statements involving arithmetic operations, comparisons, and 
assignments. In addition, pop also calls isEmpty, which itself runs in constant 
time. Thus, in this implementation of the Stack ADT, each method runs in 
constant time, that is, they each run in O(1) time. 

Table 5.1:  Performance of a stack realized by an 
array. The space usage is O(N), where N is the size of 
the array, determined at the time the stack is 
instantiated. Note that the space usage is independent 
from the number n ≤ N of elements that are actually 
in the stack. 

Method 

Time 

size 

O(1) 

is Empty 

O(1) 

top 

O(1) 

push 

O(1) 

pop 

O(1) 

A concrete Java implementation of the pseudo-code of Code Fragment 5.3, with 
Java class ArrayStack implementing the Stack interface, is given in Code 
Fragments 5.4 and 5.5. Unfortunately, due to space considerations, we omit most 
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javadoc comments for this and most other Java code fragments presented in the 
remainder of this book. Note that we use a symbolic name, CAPACITY, to 
specify the capacity of the array. This allows us to specify the capacity of the 
array in one place in our code and have that value reflected throughout. 

Code Fragment 5.4:  Array-based Java 
implementation of the Stack interface. (Continues in 
Code Fragment 5.5.) 
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Code Fragment 5.5:  Array-based Stack. (Continued 
from Code Fragment 5.4.) 
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Example Output 

Below, we show the output from the above ArrayStack program. Note that, 
through the use of generic types, we are able to create an ArrayStack A for 
storing integers and another ArrayStack B that stores character strings. 

------> new ArrayStack<Integer> A, returns null 

result: size = 0, isEmpty = true, stack: [] 

------> A.push(7), returns null 

result: size = 1, isEmpty = false, stack: [7] 

------> A.pop(), returns 7 

result: size = 0, isEmpty = true, stack: [] 

------> A.push(9), returns null 

result: size = 1, isEmpty = false, stack: [9] 

------> A.pop(), returns 9 

result: size = 0, isEmpty = true, stack: [] 

------> new ArrayStack<String> B, returns null 

result: size = 0, isEmpty = true, stack: [] 

------> B.push("Bob"), returns null 

result: size = 1, isEmpty = false, stack: [Bob] 

------> B.push("Alice"), returns null 

result: size = 2, isEmpty = false, stack: [Bob, Alice] 

------> B.pop(), returns Alice 

result: size = 1, isEmpty = false, stack: [Bob] 

------> B.push("Eve"), returns null 

result: size = 2, isEmpty = false, stack: [Bob, Eve] 

A Drawback with the Array-Based Stack Implementation 
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The array implementation of a stack is simple and efficient. Nevertheless, this 
implementation has one negative aspect—it must assume a fixed upper bound, 
CAPACITY, on the ultimate size of the stack. In Code Fragment 5.4, we chose the 
capacity value 1,000 more or less arbitrarily. An application may actually need 
much less space than this, which would waste memory. Alternatively, an 
application may need more space than this, which would cause our stack 
implementation to generate an exception as soon as a client program tries to push 
its 1,001st object on the stack. Thus, even with its simplicity and efficiency, the 
array-based stack implementation is not necessarily ideal. 

Fortunately, there is another implementation, which we discuss next, that does not 
have a size limitation and use space proportional to the actual number of elements 
stored in the stack. Still, in cases where we have a good estimate on the number of 
items needing to go in the stack, the array-based implementation is hard to beat. 
Stacks serve a vital role in a number of computing applications, so it is helpful to 
have a fast stack ADT implementation such as the simple array-based 
implementation. 

5.1.3  Implementing a Stack with a Generic Linked List 

In this section, we explore using a singly linked list to implement the stack ADT. In 
designing such an implementation, we need to decide if the top of the stack is at the 
head or at the tail of the list. There is clearly a best choice here, however, since we 
can insert and delete elements in constant time only at the head. Thus, it is more 
efficient to have the top of the stack at the head of our list. Also, in order to perform 
operation size in constant time, we keep track of the current number of elements in 
an instance variable. 

Rather than use a linked list that can only store objects of a certain type, as we 
showed in Section 3.2, we would like, in this case, to implement a generic stack 
using a generic linked list. Thus, we need to use a generic kind of node to 
implement this linked list. We show such a Node class in Code Fragment 5.6. 

Code Fragment 5.6:  Class Node, which implements 
a generic node for a singly linked list. 
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A Generic NodeStack Class 

A Java implementation of a stack, by means of a generic singly linked list, is 
given in Code Fragment 5.7. All the methods of the Stack interface are executed 
in constant time. In addition to being time efficient, this linked list 
implementation has a space requirement that is O(n), where n is the current 
number of elements in the stack. Thus, this implementation does not require that a 
new exception be created to handle size overflow problems. We use an instance 
variable top to refer to the head of the list (which points to the null object if the 
list is empty). When we push a new element e on the stack, we simply create a 
new node v for e, reference e from v, and insert v at the head of the list. Likewise, 
when we pop an element from the stack, we simply remove the node at the head 
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of the list and return its element. Thus, we perform all insertions and removals of 
elements at the head of the list. 

Code Fragment 5.7:  Class NodeStack, which 
implements the Stack interface using a singly linked 
list, whose nodes are objects of class Node from Code 
Fragment 5.6. 

 

5.1.4  Reversing an Array Using a Stack 

We can use a stack to reverse the elements in an array, thereby producing a 
nonrecursive algorithm for the array-reversal problem introduced in Section 3.5.1. 
The basic idea is simply to push all the elements of the array in order into a stack 
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and then fill the array back up again by popping the elements off of the stack. In 
Code Fragment 5.8, we give a Java implementation of this algorithm. Incidentally, 
this method also illustrates how we can use generic types in a simple application 
that uses a generic stack. In particular, when the elements are popped off the stack 
in this example, they are automatically returned as elements of the E type; hence, 
they can be immediately returned to the input array. We show an example use of 
this method in Code Fragment 5.9. 

Code Fragment 5.8:  A generic method that 
reverses the elements in an array of type E objects, 
using a stack declared using the Stack<E> interface. 

 
Code Fragment 5.9:  A test of the reverse 
method using two arrays. 
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5.1.5  Matching Parentheses and HTML Tags 

In this subsection, we explore two related applications of stacks, the first of which 
is for matching parentheses and grouping symbols in arithmetic expressions. 

Arithmetic expressions can contain various pairs of grouping symbols, such as 

• Parentheses: "(" and ")" 

• Braces: "{" and "}" 

• Brackets: "[" and "]" 

• Floor function symbols: " �" and "�" 

• Ceiling function symbols: "�" and "�," 

and each opening symbol must match with its corresponding closing symbol. For 
example, a left bracket, "[," must match with a corresponding right bracket, "]," as 
in the following expression: 

[(5 + x) − (y + z)]. 
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The following examples further illustrate this concept:  

• Correct: ( )(( )){([( )])} 

• Correct: ((( )(( )){([( )])})) 

• Incorrect: )(( )){([( )])} 

• Incorrect: ({[])} 

• Incorrect: (. 

We leave the precise definition of matching of grouping symbols to Exercise R-5.5. 

An Algorithm for Parentheses Matching 

An important problem in processing arithmetic expressions is to make sure their 
grouping symbols match up correctly. We can use a stack S to perform the 
matching of grouping symbols in an arithmetic expression with a single left-to-
right scan. The algorithm tests that left and right symbols match up and also that 
the left and right symbols are both of the same type. 

Suppose we are given a sequence X = x0x1x2…xn−1, where each xi is a token that
can be a grouping symbol, a variable name, an arithmetic operator, or a number. 
The basic idea behind checking that the grouping symbols in S match correctly, is 
to process the tokens in X in order. Each time we encounter an opening symbol, 
we push that symbol onto S, and each time we encounter a closing symbol, we 
pop the top symbol from the stack S (assuming S is not empty) and we check that 
these two symbols are of the same type. If the stack is empty after we have 
processed the whole sequence, then the symbols in X match. Assuming that the 
push and pop operations are implemented to run in constant time, this algorithm 
runs in O(n), that is linear, time. We give a pseudo-code description of this 
algorithm in 

 

Code Fragment 5.10. 

Code Fragment 5.10:  Algorithm for matching 
grouping symbols in an arithmetic expression. 
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Matching Tags in an HTML Document 

Another application in which matching is important is in the validation of HTML 
documents. HTML is the standard format for hyperlinked documents on the 
Internet. In an HTML document, portions of text are delimited by HTML tags. A 
simple opening HTML tag has the form "<name>" and the corresponding closing 
tag has the form "</name>." Commonly used HTML tags include 

• body: document body 

• h1: section header 

• center: center justify 

• p: paragraph 

• ol: numbered (ordered) list 

• li: list item. 

Ideally, an HTML document should have matching tags, although most browsers 
tolerate a certain number of mismatching tags. 

We show a sample HTML document and a possible rendering in Figure 5.3. 
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Figure 5.3:  Illustrating HTML tags. (a) An HTML 
document; (b) its rendering. 

 

Fortunately, more or less the same algorithm as in Code Fragment 5.10 can be 
used to match the tags in an HTML document. In Code Fragments 5.11 and 5.12, 
we give a Java program for matching tags in an HTML document read from 
standard input. For simplicity, we assume that all tags are the simple opening or 
closing tags defined above and that no tags are formed incorrectly. 

Code Fragment 5.11:  A complete Java program for 
testing if an HTML document has fully matching tags. 
(Continues in Code Fragment 5.12.) 
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Code Fragment 5.12:  Java program for testing for 
matching tags in an HTML document. (Continued from 
5.11.) Method isHTMLMatched uses a stack to store 
the names of the opening tags seen so far, similar to 
how the stack was used in Code Fragment 5.10. 
Method parseHTML uses a Scanner s to extract the 
tags from the HTML document, using the pattern 
"<[^>]*>," which denotes a string that starts with '<', 
followed by zero or more characters that are not '>', 
followed by a '>'. 

 283



 

5.2  Queues 
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Another fundamental data structure is the queue. It is a close "cousin" of the stack, as 
a queue is a collection of objects that are inserted and removed according to the first-
in first-out (FIFO) principle. That is, elements can be inserted at any time, but only 
the element that has been in the queue the longest can be removed at any time. 

We usually say that elements enter a queue at the rear and are removed from the 
front. The metaphor for this terminology is a line of people waiting to get on an 
amusement park ride. People waiting for such a ride enter at the rear of the line and 
get on the ride from the front of the line. 

5.2.1  The Queue Abstract Data Type 

Formally, the queue abstract data type defines a collection that keeps objects in a 
sequence, where element access and deletion are restricted to the first element in the 
sequence, which is called the front of the queue, and element insertion is restricted 
to the end of the sequence, which is called the rear of the queue. This restriction 
enforces the rule that items are inserted and deleted in a queue according to the 
first-in first-out (FIFO) principle. 

The queue abstract data type (ADT) supports the following two fundamental 
methods: 

               enqueue(e): Insert element e at the rear of the queue. 

                dequeue(): Remove and return from the queue the object at the front; 
an error occurs if the queue is empty. 

Additionally, similar to the case with the Stack ADT, the queue ADT includes the 
following supporting methods: 

                   size(): Return the number of objects in the queue. 

               isEmpty(): Return a Boolean value that indicates whether the queue is 
empty. 

                   front(): Return, but do not remove, the front object in the queue; an 
error occurs if the queue is empty. 

Example 5.4: The following table shows a series of queue operations and their 
effects on an initially empty queue Q of integer objects. For simplicity, we use 
integers instead of integer objects as arguments of the operations. 

Operation 

Output 

front ← Q ← rear 
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enqueue(5) 

- 

(5) 

enqueue(3) 

- 

(5, 3) 

dequeue( ) 

5 

(3) 

enqueue(7) 

- 

(3, 7) 

dequeue( ) 

3 

(7) 

front( ) 

7 

(7) 

dequeue( ) 

7 

( ) 

dequeue( ) 

"error" 

( ) 

isEmpty( ) 
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true 

( ) 

enqueue(9) 

- 

(9) 

enqueue(7) 

- 

(9, 7) 

size() 

2 

(9, 7) 

enqueue(3) 

- 

(9, 7, 3) 

enqueue(5) 

- 

(9, 7, 3, 5) 

dequeue( ) 

9 

(7, 3, 5) 

Example Applications 

There are several possible applications for queues. Stores, theaters, reservation 
centers, and other similar services typically process customer requests according 
to the FIFO principle. A queue would therefore be a logical choice for a data 
structure to handle transaction processing for such applications. For example, it 
would be a natural choice for handling calls to the reservation center of an airline 
or to the box office of a theater. 
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A Queue Interface in Java 

A Java interface for the queue ADT is given in Code Fragment 5.13. This generic 
interface specifies that objects of arbitrary object types can be inserted into the 
queue. Thus, we don't have to use explicit casting when removing elements. 

Note that the size and isEmpty methods have the same meaning as their 
counterparts in the Stack ADT. These two methods, as well as the front method, 
are known as accessor methods, for they return a value and do not change the 
contents of the data structure. 

Code Fragment 5.13:  Interface Queue documented 
with comments in Javadoc style. 
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5.2.2  A Simple Array-Based Queue Implementation 

We present a simple realization of a queue by means of an array, Q, of fixed 
capacity, storing its elements. Since the main rule with the queue ADT is that we 
insert and delete objects according to the FIFO principle, we must decide how we 
are going to keep track of the front and rear of the queue. 
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One possibility is to adapt the approach we used for the stack implementation, 
letting Q[0] be the front of the queue and then letting the queue grow from there. 
This is not an efficient solution, however, for it requires that we move all the 
elements forward one array cell each time we perform a dequeue operation. Such an 
implementation would therefore take O(n) time to perform the dequeue method, 
where n is the current number of objects in the queue. If we want to achieve 
constant time for each queue method, we need a different approach. 

Using an Array in a Circular Way 

To avoid moving objects once they are placed in Q, we define two variables f and 
r, which have the following meanings:  

• f is an index to the cell of Q storing the first element of the queue (which 
is the next candidate to be removed by a dequeue operation), unless the queue is 
empty (in which case f = r). 

• r is an index to the next available array cell in Q. 

Initially, we assign f = r = 0, which indicates that the queue is empty. Now, when 
we remove an element from the front of the queue, we increment f to index the 
next cell. Likewise, when we add an element, we store it in cell Q[r] and 
increment r to index the next available cell in Q. This scheme allows us to 
implement methods front, enqueue, and dequeue in constant time, that is, 
O(1) time. However, there is still a problem with this approach. 

Consider, for example, what happens if we repeatedly enqueue and dequeue a 
single element N different times. We would have f = r = N. If we were then to try 
to insert the element just one more time, we would get an array-out-of-bounds 
error (since the N valid locations in Q are from Q[0] to Q[N − 1]), even though 
there is plenty of room in the queue in this case. To avoid this problem and be 
able to utilize all of the array Q, we let the f and r indices "wrap around" the end 
of Q. That is, we now view Q as a "circular array" that goes from Q[0] to Q[N − 
1] and then immediately back to Q[0] again. (See Figure 5.4.) 

Figure 5.4:  Using array Q in a circular fashion: (a) 
the "normal" configuration with f ≤ r; (b) the "wrapped 
around" configuration with r < f. The cells storing 
queue elements are highlighted. 
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Using the Modulo Operator to Implement a Circular 
Array 

Implementing this circular view of Q is actually pretty easy. Each time we 
increment f or r, we compute this increment as "(f + 1) mod N" or "(r + 1) mod 
N," respectively. 

Recall that operator "mod" is the modulo operator, which is computed by taking 
the remainder after an integral division. For example, 14 divided by 4 is 3 with 
remainder 2, so 14 mod 4 = 2. Specifically, given integers x and y such that x ≥ 0 
and y > 0, we have x mod y = x − �x/y�y. That is, if r = x mod y, then there is a 
nonnegative integer q, such that x = qy + r. Java uses "%" to denote the modulo 
operator. By using the modulo operator, we can view Q as a circular array and 
implement each queue method in a constant amount of time (that is, O(1) time). 
We describe how to use this approach to implement a queue in Code Fragment 
5.14. 

Code Fragment 5.14:  Implementation of a queue 
using a circular array. The implementation uses the 
modulo operator to "wrap" indices around the end of 
the array and it also includes two instance variables, f 
and r, which index the front of the queue and first 
empty cell after the rear of the queue respectively. 
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The implementation above contains an important detail, which might be missed at 
first. Consider the situation that occurs if we enqueue N objects into Q without 
dequeuing any of them. We would have f = r, which is the same condition that 
occurs when the queue is empty. Hence, we would not be able to tell the 
difference between a full queue and an empty one in this case. Fortunately, this is 
not a big problem, and a number of ways for dealing with it exist. 

The solution we describe here is to insist that Q can never hold more than N − 1 
objects. This simple rule for handling a full queue takes care of the final problem 
with our implementation, and leads to the pseudo-coded descriptions of the queue 
methods given in Code Fragment 5.14. Note our introduction of an 
implementation-specific exception, called FullQueueException, to signal 
that no more elements can be inserted in the queue. Also note the way we 
compute the size of the queue by means of the expression (N − f + r) mod N, 
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which gives the correct result both in the "normal" configuration (when f ≤ r) and 
in the "wrapped around" configuration (when r < f). The Java implementation of a 
queue by means of an array is similar to that of a stack, and is left as an exercise 
(P-5.4). 

Table 5.2 shows the running times of methods in a realization of a queue by an 
array. As with our array-based stack implementation, each of the queue methods 
in the array realization executes a constant number of statements involving 
arithmetic operations, comparisons, and assignments. Thus, each method in this 
implementation runs in O(1) time. 

Table 5.2:  Performance of a queue realized by an 
array. The space usage is O(N), where N is the size of 
the array, determined at the time the queue is created. 
Note that the space usage is independent from the 
number n < N of elements that are actually in the 
queue. 

Method 

Time 

size 

O(1) 

isEmpty 

O(1) 

front 

O(1) 

enqueue 

O(1) 

dequeue 

O(1) 

As with the array-based stack implementation, the only real disadvantage of the 
array-based queue implementation is that we artificially set the capacity of the 
queue to be some fixed value. In a real application, we may actually need more or 
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less queue capacity than this, but if we have a good capacity estimate, then the 
array-based implementation is quite efficient. 

5.2.3  Implementing a Queue with a Generic Linked List 

We can efficiently implement the queue ADT using a generic singly linked list. For 
efficiency reasons, we choose the front of the queue to be at the head of the list, and 
the rear of the queue to be at the tail of the list. In this way, we remove from the 
head and insert at the tail. (Why would it be bad to insert at the head and remove at 
the tail?) Note that we need to maintain references to both the head and tail nodes of 
the list. Rather than go into every detail of this implementation, we simply give a 
Java implementation for the fundamental queue methods in Code Fragment 5.15. 

Code Fragment 5.15:  Methods enqueue and 
dequeue in the implementation of the queue ADT by 
means of a singly linked list, using nodes from class 
Node of Code Fragment 5.6. 
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Each of the methods of the singly linked list implementation of the queue ADT runs 
in O(1) time. We also avoid the need to specify a maximum size for the queue, as 
was done in the array-based queue implementation, but this benefit comes at the 
expense of increasing the amount of space used per element. Still, the methods in 
the singly linked list queue implementation are more complicated than we might 
like, for we must take extra care in how we deal with special cases where the queue 
is empty before an enqueue or where the queue becomes empty after a dequeue. 

5.2.4  Round Robin Schedulers 

A popular use of the queue data structure is to implement a round robin scheduler, 
where we iterate through a collection of elements in a circular fashion and "service" 
each element by performing a given action on it. Such a schedule is used, for 
example, to fairly allocate a resource that must be shared by a collection of clients. 
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For instance, we can use a round robin scheduler to allocate a slice of CPU time to 
various applications running concurrently on a computer. 

We can implement a round robin scheduler using a queue, Q, by repeatedly 
performing the following steps (see Figure 5.5):  

1. e ← Q.dequeue() 

2. Service element e 

3. Q.enqueue(e) 

Figure 5.5:  The three iterative steps for using a 
queue to implement a round robin scheduler. 

 

The Josephus Problem 

In the children's game "hot potato," a group of n children sit in a circle passing an 
object, called the "potato," around the circle. The potato begins with a starting 
child in the circle, and the children continue passing the potato until a leader rings 
a bell, at which point the child holding the potato must leave the game after 
handing the potato to the next child in the circle. After the selected child leaves, 
the other children close up the circle. This process is then continued until there is 
only one child remaining, who is declared the winner. If the leader always uses 
the strategy of ringing the bell after the potato has been passed k times, for some 
fixed value k, then determining the winner for a given list of children is known as 
the Josephus problem. 

Solving the Josephus Problem Using a Queue 

We can solve the Josephus problem for a collection of n elements using a queue, 
by associating the potato with the element at the front of the queue and storing 
elements in the queue according to their order around the circle. Thus, passing the 
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potato is equivalent to dequeuing an element and immediately enqueuing it again. 
After this process has been performed k times, we remove the front element by 
dequeuing it from the queue and discarding it. We show a complete Java program 
for solving the Josephus problem using this approach in Code Fragment 5.16, 
which describes a solution that runs in O(nk) time. (We can solve this problem 
faster using techniques beyond the scope of this book.) 

Code Fragment 5.16: A complete Java program for 
solving the Josephus problem using a queue. Class 
NodeQueue is shown in Code Fragment 5.15. 
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5.3  Double-Ended Queues 

Consider now a queue-like data structure that supports insertion and deletion at both 
the front and the rear of the queue. Such an extension of a queue is called a double-
ended queue, or deque, which is usually pronounced "deck" to avoid confusion with 
the dequeue method of the regular queue ADT, which is pronounced like the 
abbreviation "D.Q." 

5.3.1  The Deque Abstract Data Type 

The deque abstract data type is richer than both the stack and the queue ADTs. The 
fundamental methods of the deque ADT are as follows: 

                addFirst(e): Insert a new element e at the beginning of the deque. 

                 addLast(e): Insert a new element e at the end of the deque. 

            removeFirst(): Remove and return the first element of the deque; an 
error occurs if the deque is empty. 

             removeLast(): Remove and return the last element of the deque; an 
error occurs if the deque is empty. 

Additionally, the deque ADT may also include the following support methods: 

               getFirst(): Return the first element of the deque; an error occurs if 
the deque is empty. 

               getLast(): Return the last element of the deque; an error occurs if the 
deque is empty. 

                     size(): Return the number of elements of the deque. 

                isEmpty(): Determine if the deque is empty. 

Example 5.5: The following table shows a series of operations and their effects 
on an initially empty deque D of integer objects. For simplicity, we use integers 
instead of integer objects as arguments of the operations. 

Operation 

Output 

D 

addFirst(3) 
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- 

(3) 

addFirst(5) 

- 

(5,3) 

removeFirst() 

5 

(3) 

addLast(7) 

- 

(3,7) 

removeFirst() 

3 

(7) 

removeLast() 

7 

() 

removeFirst() 

"error" 

() 

isEmpty() 

true 

() 

5.3.2  Implementing a Deque 
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Since the deque requires insertion and removal at both ends of a list, using a singly 
linked list to implement a deque would be inefficient. We can use a doubly linked 
list, however, to implement a deque efficiently. As discussed in Section 3.3, 
inserting or removing elements at either end of a doubly linked list is 
straightforward to do in O(1) time, if we use sentinel nodes for the header and 
trailer. 

For an insertion of a new element e, we can have access to the node p before the 
place e should go and the node q after the place e should go. To insert a new 
element between the two nodes p and q (either or both of which could be sentinels), 
we create a new node t, have t's prev and next links respectively refer to p and q, 
and then have p's next link refer to t, and have q's prev link refer to t. 

Likewise, to remove an element stored at a node t, we can access the nodes p and q 
on either side of t (and these nodes must exist, since we are using sentinels). To 
remove node t between nodes p and q, we simply have p and q point to each other 
instead of t. We need not change any of the fields in t, for now t can be reclaimed 
by the garbage collector, since no one is pointing to t. 

Table 5.3 shows the running times of methods for a deque implemented with a 
doubly linked list. Note that every method runs in O(1) time. 

Table 5.3:  Performance of a deque realized by a 
doubly linked list. 

Method 

Time 

size, isEmpty 

O(1) 

getFirst, getLast 

O(1) 

add First, addLast 

O(1) 

removeFirst, removeLast 

O(1) 
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Thus, a doubly linked list can be used to implement each method of the deque ADT 
in constant time. We leave the details of implementing the deque ADT efficiently in 
Java as an exercise (P-5.7). 

Incidentally, all of the methods of the deque ADT, as described above, are included 
in the java.util.LinkedList<E> class. So, if we need to use a deque and 
would rather not implement one from scratch, we can simply use the built-in 
java.util.LinkedList<E> class. 

In any case, we show a Deque interface in Code Fragment 5.17 and an 
implementation of this interface in Code Fragment 5.18. 

Code Fragment 5.17:  Interface Deque documented 
with comments in Javadoc style (Section 1.9.3). Note 
also the use of the generic parameterized type, E, which 
implies that a deque can contain elements of any 
specified class. 
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Code Fragment 5.18:  Class NodeDeque 
implementing the Deque interface, except that we have 
not shown the class DLNode, which is a generic doubly 
linked list node, nor have we shown methods getLast, 
addLast, and removeFirst. 
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5.4  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-5.1 

Suppose an initially empty stack S has performed a total of 25 push operations, 
12 top operations, and 10 pop operations, 3 of which generated 
StackEmptyExceptions, which were caught and ignored. What is the current 
size of S? 

R-5.2 

If we implemented the stack S from the previous problem with an array, as 
described in this chapter, then what is the current value of the top instance 
variable? 

R-5.3 

Describe the output of the following series of stack operations: push(5), 
push(3), pop(), push(2), push(8), pop(), pop(), 
push(9), push(1), pop(), push(7), push(6), pop(), 
pop(), push(4), pop(), pop(). 

R-5.4 

Give a recursive method for removing all the elements in a stack. 

R-5.5 

Give a precise and complete definition of the concept of matching for grouping 
symbols in an arithmetic expression. 

R-5.6 

Describe the output for the following sequence of queue operations: 
enqueue(5), enqueue(3), dequeue(), enqueue(2), 
enqueue(8), dequeue(), dequeue(), enqueue(9), 
enqueue(1), dequeue(), enqueue(7), enqueue(6), 
dequeue(), dequeue(), enqueue(4), dequeue(), 
dequeue(). 

R-5.7 
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Suppose an initially-empty queue Q has performed a total of 32 enqueue 
operations, 10 front operations, and 15 dequeue operations, 5 of which 
generated QueueEmptyExceptions, which were caught and ignored. What is the 
current size of Q? 

R-5.8 

If the queue of the previous problem was implemented with an array of capacity 
N = 30, as described in the chapter, and it never generated a 
FullQueueException, what would be the current values of f and r? 

R-5.9 

Describe the output for the following sequence of deque ADT operations: 
addFirst(3), addLast(8), addLast(9), addFirst(5), 
removeFirst(), remove-Last(), first(), addLast(7), 
removeFirst(), last(), removeLast(). 

R-5.10 

Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8), in this 
order. Suppose further that you have an initially empty queue Q. Give a pseudo-
code description of a method that uses only D and Q (and no other variables or 
objects) and results in D storing the elements (1,2,3,5,4,6,7,8), in this order. 

R-5.11 

Repeat the previous problem using the deque D and an initially empty stack S. 

Creativity 

C-5.1 

Suppose you have a stack S containing n elements and a queue Q that is initially 
empty. Describe how you can use Q to scan S to see if it contains a certain 
element x, with the additional constraint that your algorithm must return the 
elements back to S in their original order. You may not use an array or linked 
list—only S and Q and a constant number of reference variables. 

C-5.2 

Give a pseudo-code description for an array-based implementation of the 
double-ended queue ADT. What is the running time for each operation? 

C-5.3 
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Suppose Alice has picked three distinct integers and placed them into a stack S 
in random order. Write a short, straightline piece of pseudo-code (with no loops 
or recursion) that uses only one comparison and only one variable x, yet 
guarantees with probability 2/3 that at the end of this code the variable x will 
store the largest of Alice's three integers. Argue why your method is correct. 

C-5.4 

Describe how to implement the stack ADT using two queues. What is the 
running time of the push() and pop() methods in this case? 

C-5.5 

Show how to use a stack S and a queue Q to generate all possible subsets of an 
n-element set T nonrecursively. 

C-5.6 

Suppose we have an n × n two-dimensional array A that we want to use to store 
integers, but we don't want to spend the O(n2) work to initialize it to all 0's (the 
way Java does), because we know in advance that we are only going to use up 
to n of these cells in our algorithm, which itself runs in O(n) time (not counting 
the time to initialize A). Show how to use an array-based stack S storing (i, j, k) 
integer triples to allow us to use the array A without initializing it and still 
implement our algorithm in O(n) time, even though the initial values in the cells 
of A might be total garbage. 

C-5.7 

Describe a nonrecursive algorithm for enumerating all permutations of the 
numbers {1,2,…,n}. 

C-5.8 

Postfix notation is an unambiguous way of writing an arithmetic expression 
without parentheses. It is defined so that if "(exp1 )op(exp2)" is a normal fully 
parenthesized expression whose operation is op, then the postfix version of this 
is "pexp1 pexp2 op", where pexp1 is the postfix version of exp1 and pexp2 is the
postfix version of exp

 

 an 

2. The postfix version of a single number or variable is 
just that number or variable. So, for example, the postfix version of "((5 + 2) * 
(8 − 3))/4" is "5 2 + 8 3 − * 4 /". Describe a nonrecursive way of evaluating
expression in postfix notation. 

C-5.9 

Suppose you have two nonempty stacks S and T and a deque D. Describe how 
to use D so that S stores all the elements of T below all of its original elements, 
with both sets of elements still in their original order. 
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C-5.10 

Alice has three array-based stacks, A, B, and C, such that A has capacity 100, B 
has capacity 5, and C has capacity 3. Initially, A is full, and B and C are empty. 
Unfortunately, the person who programmed the class for these stacks made the 
push and pop methods private. The only method Alice can use is a static 
method, transfer(S,T), which transfers (by itera-tively applying the private pop 
and push methods) elements from stack S to stack T until either S becomes 
empty or T becomes full. So, for example, starting from our initial configuration 
and performing transfer(A, C) results in A now holding 97 elements and C 
holding 3. Describe a sequence of transfer operations that starts from the 
initial configuration and results in B holding 4 elements at the end. 

C-5.11 

Alice has two queues, S and T, which can store integers. Bob gives Alice 50 odd 
integers and 50 even integers and insists that she stores all 100 integers in S and 
T. They then play a game where Bob picks S or T at random and then applies 
the round-robin scheduler, described in the chapter, to the chosen queue a 
random number of times. If the number left out of the queue at the end of this 
game is odd, Bob wins. Otherwise, Alice wins. How can Alice allocate integers 
to queues to optimize her chances of winning? What is her chance of winning? 

C-5.12 

Suppose Bob has four cows that he wants to take across a bridge, but only one 
yoke, which can hold up to two cows, side by side, tied to the yoke. The yoke is 
too heavy for him to carry across the bridge, but he can tie (and untie) cows to it 
in no time at all. Of his four cows, Mazie can cross the bridge in 2 minutes, 
Daisy can cross it in 4 minutes, Crazy can cross it in 10 minutes, and Lazy can 
cross it in 20 minutes. Of course, when two cows are tied to the yoke, they must 
go at the speed of the slower cow. Describe how Bob can get all his cows across 
the bridge in 34 minutes. 

Projects 

P-5.1 

Implement the stack ADT with a doubly linked list. 

P-5.2 

Implement the stack ADT using the Java ArrayList class (without using the 
built-in Java Stack class). 

P-5.3 
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Implement a program that can input an expression in postfix notation (see 
Exercise C-5.8) and output its value. 

P-5.4 

Implement the queue ADT using an array. 

P-5.5 

Implement the entire queue ADT using a singly linked list. 

P-5.6 

Design an ADT for a two-color, double-stack ADT that consists of two stacks—
one "red" and one "blue"—and has as its operations color-coded versions of the 
regular stack ADT operations. For example, this ADT should allow for both a 
red push operation and a blue push operation. Give an efficient implementation 
of this ADT using a single array whose capacity is set at some value N that is 
assumed to always be larger than the sizes of the red and blue stacks combined. 

P-5.7 

Implement the deque ADT with a doubly linked list. 

P-5.8 

Implement the deque ADT with an array used in a circular fashion. 

P-5.9 

Implement the Stack and Queue interfaces with a unique class that extends 
class NodeDeque (Code Fragment 5.18). 

P-5.10 

When a share of common stock of some company is sold, the capital gain (or, 
sometimes, loss) is the difference between the share's selling price and the price 
originally paid to buy it. This rule is easy to understand for a single share, but if 
we sell multiple shares of stock bought over a long period of time, then we must 
identify the shares actually being sold. A standard accounting principle for 
identifying which shares of a stock were sold in such a case is to use a FIFO 
protocol—the shares sold are the ones that have been held the longest (indeed, 
this is the default method built into several personal finance software packages). 
For example, suppose we buy 100 shares at $20 each on day 1, 20 shares at $24 
on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day 4 at $30 
each. Then applying the FIFO protocol means that of the 150 shares sold, 100 
were bought on day 1, 20 were bought on day 2, and 30 were bought on day 3. 
The capital gain in this case would therefore be 100 · 10 + 20 · 6 + 30 · (−6), or 
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$940. Write a program that takes as input a sequence of transactions of the form 
"buy x; share(s) at $y each" or "sell x share(s) at $y 
each," assuming that the transactions occur on consecutive days and the 
values x and y are integers. Given this input sequence, the output should be the 
total capital gain (or loss) for the entire sequence, using the FIFO protocol to 
identify shares. 

Chapter Notes 

We were introduced to the approach of defining data structures first in terms of their 
ADTs and then in terms of concrete implementations by the classic books by Aho, 
Hopcroft, and Ullman [4, 5], which incidentally is where we first saw aproblem 
similar to Exercise C-5.6. Exercises C-5.10, C-5.11, and C-5.12 are similar to 
interview questions said to be from a well-known software company. For further 
study of abstract data types, see Liskov and Guttag [69], Cardelli and Wegner [20], or 
Demurjian [28]. 
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6.1  Array Lists 

Suppose we have a collection S of n elements stored in a certain linear order, so that 
we can refer to the elements in S as first, second, third, and so on. Such a collection is 
generically referred to as a list or sequence. We can uniquely refer to each element e 
in S using an integer in the range [0,n − 1] that is equal to the number of elements of S 
that precede e in S. The index of an element e in S is the number of elements that are 
before e in S. Hence, the first element in S has index 0 and the last element has index 
n − 1. Also, if an element of S has index i, its previous element (if it exists) has index 
i − 1, and its next element (if it exists) has index i + 1. This concept of index is related 

 313



to that of the rank of an element in a list, which is usually defined to be one more 
than its index; so the first element is at rank 1, the second is at rank 2, and so on. 

A sequence that supports access to its elements by their indices is called an array list 
(or vector, using an older term). Since our index definition is more consistent with the 
way arrays are indexed in Java and other programming languages (such as C and 
C++), we will be referring to the place where an element is stored in an array list as 
its "index," not its "rank" (although we may use r to denote this index, if the letter "i" 
is being used as a for-loop counter). 

This index concept is a simple yet powerful notion, since it can be used to specify 
where to insert a new element into a list or where to remove an old element. 

6.1.1  The Array List Abstract Data Type 

As an ADT, an array list S has the following methods (besides the standard 
size() and isEmpty() methods): 

                      get(i): Return the element of S with index i; an error condition 
occurs if i < 0 or i > size() − 1. 

                  set(i, e): Replace with e and return the element at index i; an error 
condition occurs if i < 0 or i > size() − 1. 

                 add(i, e): Insert a new element e into S to have index i; an error 
condition occurs if i < 0 or i > size(). 

               remove(i): Remove from S the element at index i; an error condition 
occurs if i < 0 or i > size() − 1. 

We do not insist that an array should be used to implement an array list, so that the 
element at index 0 is stored at index 0 in the array, although that is one (very 
natural) possibility. The index definition offers us a way to refer to the "place" 
where an element is stored in a sequence without having to worry about the exact 
implementation of that sequence. The index of an element may change whenever 
the sequence is updated, however, as we illustrate in the following example. 

Example 6.1: We show below some operations on an initially empty array list 
S. 

Operation 

Output 

S 

add(0,7) 
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- 

(7) 

add(0,4) 

- 

(4,7) 

  get(1) 

7 

(4,7) 

add(2,2) 

- 

(4,7,2) 

  get(3) 

"error" 

(4,7,2) 

remove(1) 

7 

(4,2) 

add(1,5) 

- 

(4,5,2) 

add(1,3) 

- 

(4,3,5,2) 

add(4,9) 

- 
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(4,3,5,2,9) 

  get(2) 

5 

(4,3,5,2,9) 

set(3,8) 

2 

(4,3,5,8,9) 

6.1.2  The Adapter Pattern 

Classes are often written to provide similar functionality to other classes. The 
adapter design pattern applies to any context where we want to modify an existing 
class so that its methods match those of a related, but different, class or interface. 
One general way for applying the adapter pattern is to define the new class in such a 
way that it contains an instance of the old class as a hidden field, and implement 
each method of the new class using methods of this hidden instance variable. The 
result of applying the adapter pattern is that a new class that performs almost the 
same functions as a previous class, but in a more convenient way, has been created. 

With respect to our discussion of the array list ADT, we note that this ADT is 
sufficient to define an adapter class for the deque ADT, as shown in Table 6.1. (See 
also Exercise C-6.8.) 

Table 6.1:  Realization of a deque by means of an 
array list. 

Deque Method   

Realization with Array-List Methods   

size(), isEmpty()   

size(), isEmpty()   

getFirst()   

get(0)   

getLast()   
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get(size() −1)   

addFirst(e)   

add(0,e)   

addLast(e)   

add(size(),e)   

removeFirst()   

remove(0)   

removeLast()   

remove(size() − 1)   

6.1.3  A Simple Array-Based Implementation 

An obvious choice for implementing the array list ADT is to use an array A, where 
A[i] stores (a reference to) the element with index i. We choose the size N of array 
A sufficiently large, and we maintain the number of elements in an instance 
variable, n < N. 

The details of this implementation of the array list ADT are simple. To implement 
the get(i) operation, for example, we just return A[i]. Implementations of 
methods add(i, e) and remove(i) are given in Code Fragment 6.1. An 
important (and time-consuming) part of this implementation involves the shifting of 
elements up or down to keep the occupied cells in the array contiguous. These 
shifting operations are required to maintain our rule of always storing an element 
whose list index is i at index i in the array A. (See Figure 6.1 and also Exercise R-
6.12.) 

Code Fragment 6.1:  Methods add(i, e) and 
remove(i) in the array implementation of the array 
list ADT. We denote, with n, the instance variable 
storing the number of elements in the array list. 
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Figure 6.1:  Array-based implementation of an array 
list S that is storing n elements: (a) shifting up for an 
insertion at index i(b); shifting down for a removal at 
index i 

 

The Performance of a Simple Array-Based 
Implementation 

Table 6.2 shows the worst-case running times of the methods of an array list with 
n elements realized by means of an array. Methods isEmpty, size, get and 
set clearly run in O(1) time, but the insertion and removal methods can take 
much longer than this. In particular, add(i, e) runs in time O(n). Indeed, the 
worst case for this operation occurs when i = 0, since all the existing n elements 
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have to be shifted forward. A similar argument applies to method remove(i), 
which runs in O(n) time, because we have to shift backward n − 1 elements in the 
worst case (i = 0). In fact, assuming that each possible index is equally likely to be 
passed as an argument to these operations, their average running time is O(n), for 
we will have to shift n/2 elements on average. 

Table 6.2:  Performance of an array list with n 
elements realized by an array. The space usage is O(N), 
where N is the size of the array. 

Method 

Time 

size() 

O(1) 

isEmpty() 

O(1) 

get(i) 

O(1) 

set(i, e) 

O(1) 

add(i, e) 

O(n) 

remove(i) 

O(n) 

Looking more closely at add(i, e) and remove(i), we note that they each run 
in time O(n − i + 1), for only those elements at index i and higher have to be 
shifted up or down. Thus, inserting or removing an item at the end of an array list, 
using the methods add(n, e) and remove(n − 1), respectively take O(1) 
time each. Moreover, this observation has an interesting consequence for the 
adaptation of the array list ADT to the deque ADT given in Section 6.1.1. If the 
array list ADT in this case is implemented by means of an array as described 
above, then methods addLast and removeLast of the deque each run in O(1) 
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time. However, methods addFirst and removeFirst of the deque each run 
in O(n) time. 

Actually, with a little effort, we can produce an array-based implementation of the 
array list ADT that achieves O(1) time for insertions and removals at index 0, as 
well as insertions and removals at the end of the array list. Achieving this requires 
that we give up on our rule that an element at index i is stored in the array at index 
i, however, as we would have to use a circular array approach like the one we 
used in Section 5.2 to implement a queue. We leave the details of this 
implementation for an exercise (C-6.9). 

6.1.4  A Simple Interface and the java. util. ArrayList Class 

To prepare for constructing a Java implementation of the array list ADT, we show, 
in Code Fragment 6.2, a Java interface, IndexList, that captures the main 
methods from the array list ADT. In this case, we use a 
IndexOutOfBoundsException to signal an invalid index argument. 

Code Fragment 6.2:  The IndexList interface for 
the array list ADT. 

 

The java.util.ArrayList Class 

Java provides a class, java.util.ArrayList, that implements all the 
methods that we give above for our array list ADT. That is, it includes all of the 
methods included in Code Fragment 6.2 for the IndexList interface. 
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Moreover, the java.util.ArrayList class has features in addition to those 
of our simplified array list ADT. For example, the class 
java.util.ArrayList also includes a method, clear(), which removes 
all the elements from the array list, and a method, toArray(), which returns an 
array containing all the elements of the array list in the same order. In addition, 
the class java.util.ArrayList also has methods for searching the list, 
including a method indexOf(e), which returns the index of the first occurrence 
of an element equal to e in the array list, and a method lastIndexOf(e), 
which returns the index of the last occurrence of an element equal to e in the array 
list. Both of these methods return the (invalid) index value − 1 if an element equal 
to e is not found. 

6.1.5  Implementing an Array List Using Extendable 
Arrays 

In addition to implementing the methods of the IndexList interface (and some 
other useful methods), the class java.util.ArrayList provides an an 
interesting feature that overcomes a weakness in the simple array implementation. 

Specifically, a major weakness of the simple array implementation for the array list 
ADT given in Section 6.1.3, is that it requires advance specification of a fixed 
capacity, N, for the total number of elements that may be stored in the array list. If 
the actual number of elements, n, of the array list is much smaller than N, then this 
implementation will waste space. Worse, if n increases past N, then this 
implementation will crash. 

Instead, the java.util.ArrayList uses an interesting extendable-array 
technique so that we never have to worry about array overflows when using this 
class. 

As with the java.util.ArrayList class, let us provide a means to grow the 
array A that stores the elements of an array list S. Of course, in Java (and other 
programming languages), we cannot actually grow the array A; its capacity is fixed 
at some number N, as we have already observed. Instead, when an overflow occurs, 
that is, when n = N and we make a call to the method add, we perform the 
following additional steps:  

1. Allocate a new array B of capacity 2N 

2. Let B[i ]← A[i], for i = 0,... , N − 1 

3. Let A ← B, that is, we use B as the array supporting S 

4. Insert the new element in A. 
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This array replacement strategy is known as an extendable array, for it can be 
viewed as extending the end of the underlying array to make room for more 
elements. (See Figure 6.2.) Intuitively, this strategy is much like that of the hermit 
crab, which moves into a larger shell when it outgrows its previous one. 

Figure 6.2:  An illustration of the three steps for 
"growing" an extendable array: (a) create new array B; 
(b) copy elements from A to B; (c) reassign reference A 
to the new array. Not shown is the future garbage 
collection of the old array. 

 

Implementing the IndexList Interface with an 
Extendable Array 

We give portions of a Java implementation of the array list ADT using an 
extendable array in Code Fragment 6.3. This class only provides means for the 
array to grow. Exercise C-6.2 explores an implementation that can also shrink. 

Code Fragment 6.3:  Portions of class 
ArrayIndexList realizing the array list ADT by 
means of an extendable array. Method 
checkIndex(r, n) (not shown) checks whether an 
index r is in the range [0, n − 1]. 
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An Amortized Analysis of Extendable Arrays 

This array replacement strategy might at first seem slow, for performing a single 
array replacement required by some element insertion can take O(n) time. Still, 
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notice that after we perform an array replacement, our new array allows us to add 
n new elements to the array list before the array must be replaced again. This 
simple fact allows us to show that performing a series of operations on an initially 
empty array list is actually quite efficient. As a shorthand notation, let us refer to 
the insertion of an element to be the last element in an array list as a push 
operation. (See Figure 6.3.) 

Figure 6.3:  Running times of a series of push 
operations on a java.util.ArrayList of initial 
size 1. 

 

Using an algorithmic design pattern called amortization, we can show that 
performing a sequence of such push operations on an array list implemented with 
an extendable array is actually quite efficient. To perform an amortized analysis, 
we use an accounting technique where we view the computer as a coin-operated 
appliance that requires the payment of one cyber-dollar for a constant amount of 
computing time. When an operation is executed, we should have enough cyber-
dollars available in our current "bank account" to pay for that operation's running 
time. Thus, the total amount of cyber-dollars spent for any computation will be 
proportional to the total time spent on that computation. The beauty of using this 
analysis method is that we can overcharge some operations in order to save up 
cyber-dollars to pay for others. 
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Proposition 6.2: Let S be an array list implemented by means of an 
extendable array with initial length one. The total time to perform a series of n 
push operations in S, starting from S being empty is O(n). 

Justification: Let us assume that one cyber-dollar is enough to pay for the 
execution of each push operation in S, excluding the time spent for growing the 
array. Also, let us assume that growing the array from size k to size 2k requires k 
cyber-dollars for the time spent copying the elements. We shall charge each push 
operation three cyber-dollars. Thus, we overcharge each push operation that does 
not cause an overflow by two cyber-dollars. Think of the two cyber-dollars 
profited in an insertion that does not grow the array as being "stored" at the 
element inserted. An overflow occurs when the array list S has 2i elements, for 
some integer i ≥ 0, and the size of the array used by the array list representing S is 
2i. Thus, doubling the size of the array will require 2i cyber-dollars. Fortunately, 
these cyber-dollars can be found at the elements stored in cells 2i−1 through 2i − 1. 
(See Figure 6.4.) Note that the previous overflow occurred when the number of 
elements became larger than 2i−1 for the first time, and thus the cyber-dollars 
stored in cells 2i−1 through 2i − 1 were not previously spent. Therefore, we have a 
valid amortization scheme in which each operation is charged three cyber-dollars 
and all the computing time is paid for. That is, we can pay for the execution of n 
push operations using 3n cyber-dollars. In other words, the amortized running 
time of each push operation is O(1); hence, the total running time of n push 
operations is O(n). 

 
Figure 6.4:  Illustration of a series of push operations 
on an array list: (a) an 8-cell array is full, with two 
cyber-dollars "stored" at cells 4 through 7; (b) a push 
operation causes an overflow and a doubling of 
capacity. Copying the eight old elements to the new 
array is paid for by the cyber-dollars already stored in 
the table. Inserting the new element is paid for by one 
of the cyber-dollars charged to the push operation, 
and the two cyber-dollars profited are stored at cell 8. 
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6.2  Node Lists 

Using an index is not the only means of referring to the place where an element 
appears in a sequence. If we have a sequence S implemented with a (singly or doubly) 
linked list, then it could possibly be more natural and efficient to use a node instead 
of an index as a means of identifying where to access and update S. In this section, we 
define the node list ADT, which abstracts the concrete linked list data structure 
(Sections 3.2 and 3.3) using a related position ADT that abstracts the notion of 
"place" in a node list. 

6.2.1  Node-Based Operations 

Let S be a (singly or doubly) linked list. We would like to define methods for S that 
take nodes as parameters and provide nodes as return types. Such methods could 
provide significant speedups over index-based methods, because finding the index 
of an element in a linked list requires searching through the list incrementally from 
its beginning or end, counting elements as we go. 

For instance, we could define a hypothetical method remove(v) that removes the 
element of S stored at node v of the list. Using a node as a parameter allows us to 
remove an element in O(1) time by simply going directly to the place where that 
node is stored and then "linking out" this node through an update of the next and 
prev links of its neighbors. Similarly, we could insert, in O(1) time, a new element e 
into S with an operation such as addAfter(v, e), which specifies the node v 
after which the node of the new element should be inserted. In this case, we simply 
"link in" the new node. 

Defining methods of a list ADT by adding such node-based operations raises the 
issue of how much information we should be exposing about the implementation of 
our list. Certainly, it is desirable for us to be able to use either a singly or doubly 
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linked list without revealing this detail to a user. Likewise, we do not wish to allow 
a user to modify the internal structure of a list without our knowledge. Such 
modification would be possible, however, if we provided a reference to a node in 
our list in a form that allowed the user to access internal data in that node (such as a 
next or prev field). 

To abstract and unify the different ways of storing elements in the various 
implementations of a list, we introduce the concept of position, which formalizes 
the intuitive notion of "place" of an element relative to others in the list. 

6.2.2  Positions 

So as to safely expand the set of operations for lists, we abstract a notion of 
"position" that allows us to enjoy the efficiency of doubly or singly linked list 
implementations without violating object-oriented design principles. In this 
framework, we view a list as a collection of elements that stores each element at a 
position and that keeps these positions arranged in a linear order. A position is itself 
an abstract data type that supports the following simple method: 

               element(): Return the element stored at this position. 

A position is always defined relatively, that is, in terms of its neighbors. In a list, a 
position p will always be "after" some position q and "before" some position s 
(unless p is the first or last position). A position p, which is associated with some 
element e in a list S, does not change, even if the index of e changes in S, unless we 
explicitly remove e (and, hence, destroy position p). Moreover, the position p does 
not change even if we replace or swap the element e stored at p with another 
element. These facts about positions allow us to define a set of position-based list 
methods that take position objects as parameters and also provide position objects 
as return values. 

6.2.3  The Node List Abstract Data Type 

Using the concept of position to encapsulate the idea of "node" in a list, we can 
define another type of sequence ADT called the node list ADT. This ADT supports 
the following methods for a list S: 

first(): 

Return the position of the first element of S; an error occurs if S is empty. 

last(): 

Return the position of the last element of S; an error occurs if S is empty. 

prev(p): 
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Return the position of the element of S preceding the one at position p; an 
error occurs if p is the first position. 

next(p): 

Return the position of the element of S following the one at position p; an 
error occurs if p is the last position. 

The above methods allow us to refer to relative positions in a list, starting at the 
beginning or end, and to move incrementally up or down the list. These positions 
can intuitively be thought of as nodes in the list, but note that there are no specific 
references to node objects. Moreover, if we provide a position as an argument to a 
list method, then that position must represent a valid position in that list. 

Node List Update Methods 

In addition to the above methods and the generic methods size and isEmpty, 
we also include the following update methods for the node list ADT, which take 
position objects as parameters and/or provide position objects as return values. 

set(p, e): 

Replace the element at position p with e, returning the element formerly 
at position p. 

addFirst(e): 

Insert a new element e into S as the first element. 

addLast(e): 

Insert a new element e into S as the last element. 

addBefore(p, e): 

Insert a new element e into S before position p. 

addAfter(p, e): 

Insert a new element e into S after position p. 

remove(p): 

Remove and return the element at position p in S, invalidating this 
position in S. 
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The node list ADT allows us to view an ordered collection of objects in terms of 
their places, without worrying about the exact way those places are 
represented.(See Figure 6.5.) 

Figure 6.5:  A node list. The positions in the current 
order are p, q, r, and s. 

 

There may at first seem to be redundancy in the above repertory of operations for 
the node list ADT, since we can perform operation addFirst(e) with 
addBefore(first(), e), and operation addLast(e) with 
addAfter(getLast(), e). But these substitutions can only be done for a 
nonempty list. 

Note that an error condition occurs if a position passed as argument to one of the 
list operations is invalid. Reasons for a position p to be invalid include:  

• p = null 

• p was previously deleted from the list 

• p is a position of a different list 

• p is the first position of the list and we call prev(p) 

• p is the last position of the list and we call next(p). 

We illustrate the operations of the node list ADT in the following example. 

Example 6.3: We show below a series of operations for an initially empty list 
node S. We use variables p1, p2, and so on, to denote different positions, and we 
show the object currently stored at such a position in parentheses. 

Operation 

Output 

S 

addFirst(8) 
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- 

(8) 

first() 

p1 (8) 

(8) 

addAfter(p1,5) 

- 

(8,5) 

next(p1) 

p2(5) 

(8,5) 

addBefore(p2,3) 

- 

(8,3,5) 

prev(p2) 

p3(3) 

(8,3,5) 

addFirst(9) 

- 

(9,8,3,5) 

last() 

p2(5) 

(9,8,3,5) 

remove(first()) 

9 
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(8,3,5) 

set(p3,7) 

3 

(8,7,5) 

addAfter(first(),2) 

- 

(8,2,7,5) 

The node list ADT, with its built-in notion of position, is useful in a number of 
settings. For example, a program that simulates a game of cards could model each 
person's hand as a node list. Since most people keep cards of the same suit 
together, inserting and removing cards from a person's hand could be 
implemented using the methods of the node list ADT, with the positions being 
determined by a natural ordering of the suits. Likewise, a simple text editor 
embeds the notion of positional insertion and removal, since such editors typically 
perform all updates relative to a cursor, which represents the current position in 
the list of characters of text being edited. 

A Java interface representing the position ADT is given in Code Fragment 6.4. 

Code Fragment 6.4:  Java interface for the position 
ADT. 

 

An interface for the node list ADT, called Position List, is given in Code 
Fragment 6.5. This interface uses the following exceptions to indicate error 
conditions. 

BoundaryViolationException: Thrown if an attempt is made at 
accessing an element whose position is outside the range of positions of the list 
(for example, calling method next on the last position of the sequence). 

Invalid Position Exception: Thrown if a position provided as 
argument is not valid (for example, it is a null reference or it has no associated 
list). 
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Code Fragment 6.5:  Java interface for the node list 
ADT. 

 

Yet Another Deque Adapter 

With respect to our discussion of the node list ADT, we note that this ADT is 
sufficient to define an adapter class for the deque ADT, as shown in Table 6.3. 

Table 6.3:  Realization of a deque by means of a 
node list. 
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Deque Method 

Realization with Node-List Methods 

size(), isEmpty() 

size(), isEmpty() 

getFirst() 

first()·element() 

getLast() 

last()·element() 

addFirst(e) 

addFirst(e) 

addLast(e) 

addLast(e) 

removeFirst() 

remove(first()) 

removeLast() 

remove(last()) 

6.2.4  Doubly Linked List Implementation 

Suppose we would like to implement the node list ADT using a doubly linked list 
(Section 3.3). We can simply make the nodes of the linked list implement the 
position ADT. That is, we have each node implement the Position interface and 
therefore define a method, element(), which returns the element stored at the 
node. Thus, the nodes themselves act as positions. They are viewed internally by 
the linked list as nodes, but from the outside, they are viewed only as positions. In 
the internal view, we can give each node v instance variables prev and next that 
respectively refer to the predecessor and successor nodes of v (which could in fact 
be header or trailer sentinel nodes marking the beginning and end of the list). 
Instead of using variables prev and next directly, we define methods getPrev, 
setPrev, getNext, and setNext of a node to access and modify these 
variables.  
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In Code Fragment 6.6, we show a Java class DNode for the nodes of a doubly 
linked list implementing the position ADT. This class is similar to class DNode 
shown in Code Fragment 3.17, except that now our nodes store a generic element 
instead of a character string. Note that the prev and next instance variables in the 
DNode class below are private references to other DNode objects.  

Code Fragment 6.6:  Class DNode realizing a node 
of a doubly linked list and implementing the Position 
interface (ADT). 

 

Given a position p in S, we can "unwrap" p to reveal the underlying node v. This is 
accomplished by casting the position to a node. Once we have node v, we can, for 
example, implement method prev(p) with v.getPrev (unless the node 
returned by v.getPrev is the header, in which case we signal an error). 
Therefore, positions in a doubly linked list implementation can be supported in an 
object-oriented way without any additional time or space overhead. 

Consider how we might implement the addAfter(p, e) method, for inserting 
an element e after position p. Similar to the discussion in Section 3.3.1, we create a 
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new node v to hold the element e, link v into its place in the list, and then update the 
next and prev references of v's two new neighbors. This method is given in Code 
Fragment 6.7, and is illustrated (again) in Figure 6.6. Recalling the use of sentinels 
(Section 3.3), note that this algorithm works even if p is the last real position. 

Code Fragment 6.7:  Inserting an element e after a 
position p in a linked list. 

 
Figure 6.6:  Adding anew node after the position for 
"JFK": (a) before the insertion; (b) creating node v with 
element "BWI" and linking it in; (c) after the insertion. 

 

The algorithms for methods addBefore, addFirst, and addLast are similar 
to that for method addAfter. We leave their details as an exercise (R-6.5). 
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Next, consider the remove(p) method, which removes the element e stored at 
position p. Similar to the discussion in Section 3.3.2, to perform this operation, we 
link the two neighbors of p to refer to one another as new neighbors—linking out p. 
Note that after p is linked out, no nodes will be pointing to p; hence, the garbage 
collector can reclaim the space for p. This algorithm is given in Code Fragment 6.8 
and is illustrated in Figure 6.7. Recalling our use of header and trailer sentinels, 
note that this algorithm works even if p is the first, last, or only real position in the 
list. 

Code Fragment 6.8:  Removing an element e stored 
at a position p in a linked list. 

 
Figure 6.7:  Removing the object stored at the 
position for "PVD": (a) before the removal; (b) linking 
out the old node; (c) after the removal (and garbage 
collection). 

 

 336



In conclusion, using a doubly linked list, we can perform all the methods of the list 
ADT in O(1) time. Thus, a doubly linked list is an efficient implementation of the 
list ADT. 

A Node List Implementation in Java 

Portions of the Java class NodePositionList, which implements the node list 
ADT using a doubly linked list, are shown in Code Fragments 6.9–6.11. Code 
Fragment 6.9 shows NodePosition List's instance variables, its 
constructor, and a method, checkPosition, which performs safety checks and 
"unwraps" a position, casting it back to a DNode. Code Fragment 6.10 shows 
additional accessor and update methods. Code Fragment 6.11 shows additional 
update methods. 

Code Fragment 6.9:  Portions of the 
NodePositionList class implementing the node list 
ADT with a doubly linked list. (Continues in Code 
Fragments 6.10 and 6.11.) 
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Code Fragment 6.10:  Portions of the 
NodePositionList class implementing the node list 
ADT with a doubly linked list. (Continued from Code 
Fragment 6.9. Continues in Code Fragment 6.11.) 
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Code Fragment 6.11:  Portions of the 
NodePositionList class implementing the node list 
ADT with a doubly linked list. (Continued from Code 
Fragments 6.9 and 6.10.) Note that the mechanism 
used to invalidate a position in the remove method is 
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consistent with one of the checks performed in the 
checkPosition convenience function. 

 

6.3  Iterators 

A typical computation on an array list, list, or sequence is to march through its 
elements in order, one at a time, for example, to look for a specific element. 

6.3.1  The Iterator and Iterable Abstract Data Types 
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An iterator is a software design pattern that abstracts the process of scanning 
through a collection of elements one element at a time. An iterator consists of a 
sequence S, a current element in S, and a way of stepping to the next element in S 
and making it the current element. Thus, an iterator extends the concept of the 
position ADT we introduced in Section 6.2. In fact, a position can be thought of as 
an iterator that doesn't go anywhere. An iterator encapsulates the concepts of 
"place" and "next" in a collection of objects. 

We define the iterator ADT as supporting the following two methods: 

               hasNext(): Test whether there are elements left in the iterator. 

                    next(): Return the next element in the iterator. 

Note that the iterator ADT has the notion of the "current" element in a traversal of a 
sequence. The first element in an iterator is returned by the first call to the method 
next, assuming of course that the iterator contains at least one element. 

An iterator provides a unified scheme to access all the elements of a collection of 
objects in a way that is independent from the specific organization of the collection. 
An iterator for an array list, list, or sequence should return the elements according 
to their linear ordering. 

Simple Iterators in Java 

Java provides an iterator through its java.util.Iterator interface. We 
note that the java.util.Scanner class (Section 1.6) implements this 
interface. This interface supports an additional (optional) method to remove the 
previously returned element from the collection. This functionality (removing 
elements through an iterator) is somewhat controversial from an object-oriented 
viewpoint, however, and it is not surprising that its implementation by classes is 
optional. Incidentally, Java also provides the java.util.Enumeration 
interface, which is historically older than the iterator interface and uses names 
hasMoreElements() and nextElement(). 

The Iterable Abstract Data Type 

In order to provide a unified generic mechanism for scanning through a data 
structure, ADTs storing collections of objects should support the following 
method: 

               iterator(): Return an iterator of the elements in the collection. 

This method is supported by the java.util.ArrayList class. In fact, this 
method is so important, that there is a whole interface, 
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java.lang.Iterable, which has only this method in it. This method can 
make it simple for us to specify computations that need to loop through the 
elements of a list. To guarantee that a node list supports the above methods, for 
example, we could add this method to the Position List interface, as shown 
in Code Fragment 6.12. In this case, we would also want to state that Position 
List extends Iterable. Therefore, let us assume that our array lists and 
node lists lists support the iterator() method. 

Code Fragment 6.12:  Adding the iterator method to 
the Position List interface. 

 

Given such a Position List definition, we could use an iterator 
returned by the iterator() method to create a string representation of a node 
list, as shown in Code Fragment 6.13. 

Code Fragment 6.13:  Example of a Java iterator 
used to convert a node list to a string. 

 

6.3.2  The Java For-Each Loop 
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Since looping through the elements returned by an iterator is such a common 
construct, Java provides a shorthand notation for such loops, called the for-each 
loop. The syntax for such a loop is as follows: 

    for (Type name : expression) 

        loop statement 

where expression evaluates to a collection that implements the 
java.lang.Iterable interface, Type is the type of object returned by the 
iterator for this class, and name is the name of a variable that will take on the values 
of elements from this iterator in the loop_statement. This notation is really just 
shorthand for the following: 

    for (Iterator<Type> it = expression.iterator(); 
it.hasNext(); ) { 

        Type name = it.next(); 

        loop_statement 

    } 

For example, if we had a list, values, of Integer objects, and values implements 
java.lang.Iterable, then we can add up all the integers in values as 
follows: 

    List<Integer> values; 

    // … statements that create a new values list and fill 
it with Integers… 

    int sum = 0; 

    for (Integer i : values) 

      sum += i; // unboxing allows this 

We would read the above loop as, "for each Integer i in values, do the loop 
body (in this case, add i to sum)." 

In addition to the above form of for-each loop, Java also allows a for-each loop to 
be defined for the case when expression is an array of type Type, which, in this 
case, can be either a base type or an object type. For example, we can total up the 
integers in an array, v, which stores the first ten positive integers, as follows: 

    int[] v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 
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    int total = 0; 

    for (int i : v) 

      total += i; 

6.3.3  Implementing Iterators 

One way to implement an iterator for a collection of elements is to make a 
"snapshot" of it and iterate over that. This approach would involve storing the 
collection in a separate data structure that supports sequential access to its elements. 
For example, we could insert all the elements of the collection into a queue, in 
which case method hasNext() would correspond to !isEmpty() and next() 
would correspond to enqueue(). With this approach, the method iterator() 
takes O(n) time for a collection of size n. Since this copying overhead is relatively 
costly, we prefer, in most cases, to have iterators operate on the collection itself, not 
a copy. 

In implementing this direct approach, we need only to keep track of where in the 
collection the iterator's cursor points. Thus, creating a new iterator in this case 
simply involves creating an iterator object that represents a cursor placed just before 
the first element of the collection. Likewise, performing the next() method 
involves returning the next element, if it exists, and moving the cursor just past this 
element's position. Thus, in this approach, creating an iterator takes O(1) time, as do 
each of the iterator's methods. We show a class implementing such an iterator in 
Code Fragment 6.14, and we show in Code Fragment 6.15 how this iterator could 
be used to implement the iterator() method in the NodePositionList 
class. 

Code Fragment 6.14:  An element iterator class for a 
Position List. 
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Code Fragment 6.15:  The iterator() method of 
class NodePositionList. 

 

Position Iterators 

For ADTs that support the notion of position, such as the list and sequence ADTs, 
we can also provide the following method: 

             positions(): Return an Iterable object (like an array list or node 
list) containing the positions in the collection as elements. 

An iterator returned by this method allows us to loop through the positions of a 
list. To guarantee that a node list supports this method, we could add it to the 
PositionList interface, as shown in Code Fragment 6.16. Then we could, for 
example, add an implementation of this method to the NodePositionList, as 
shown in Code Fragment 6.17. This method uses the NodePositionList 
class itself to create a list that contains the positions of the original list as its 
elements. Returning this list of positions as our Iterable object allows us to 
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then call iterator() on this object to get an iterator of positions from the 
original list. 

Code Fragment 6.16:  Adding iterator methods to 
the Position List interface. 

 
Code Fragment 6.17:  The positions() method of 
class NodePositionList. 

 

The iterator() method returned by this and other Iterable objects defines 
a restricted type of iterator that allows only one pass through the elements. More 
powerful iterators can also be defined, however, which allows us to move forward 
and backward over a certain ordering of the elements. 

6.3.4  List Iterators in Java 

The java.util.Linked List class does not expose a position concept to 
users in its API. Instead, the preferred way to access and update a LinkedList 
object in Java, without using indices, is to use a ListIterator that is generated 
by the linked list, using a listIterator() method. Such an iterator provides 
forward and backward traversal methods as well as local update methods. It views 
its current position as being before the first element, between two elements, or after 
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the last element. That is, it uses a list cursor, much like a screen cursor is viewed as 
being located between two characters on a screen. Specifically, the 
java.util.ListIterator interface includes the following methods: 

add(e): 

Add the element e at the current position of the iterator. 

hasNext(): 

True if and only if there is an element after the current position of the 
iterator. 

hasPrevious(): 

True if and only if there is an element before the current position of the 
iterator. 

previous(): 

Return the element e before the current position and sets the current 
position to be before e. 

next(): 

Return the element e after the current position and sets the current position 
to be after e. 

nextIndex(): 

Return the index of the next element. 

previousIndex(): 

Return the index of the previous element. 

set(e): 

Replace the element returned by the previous next or previous operation 
with e. 

remove(): 

Remove the element returned by the previous next or previous operation. 

It is risky to use multiple iterators over the same list while modifying its contents. If 
insertions, deletions, or replacements are required at multiple "places" in a list, it is 
safer to use positions to specify these locations. But the 
java.util.LinkedList class does not expose its position objects to the user. 
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So, to avoid the risks of modifying a list that has created multiple iterators (by calls 
to its iterator() method), java.util.Iterator objects have a "fail-fast" 
feature that immediately invalidates such an iterator if its underlying collection is 
modified unexpectedly. For example, if a java.util.LinkedList object L 
has returned five different iterators and one of them modifies L, then the other four 
all become immediately invalid. That is, Java allows many list iterators to be 
traversing a linked list L at the same time, but if one of them modifies L (using an 
add, set, or remove method), then all the other iterators for L become invalid. 
Likewise, if L is modified by one of its own update methods, then all existing 
iterators for L immediately become invalid. 

The java.util.List Interface and Its Implementations 

Java provides functionality similar to our array list and node lists ADT in the 
java.util.List interface, which is implemented with an array in 
java.util.ArrayList and with a linked list in 
java.util.LinkedList. There are some trade-offs between these two 
implementations, which we explore in more detail in the next section. Moreover, 
Java uses iterators to achieve a functionality similar to what our node list ADT 
derives from positions. Table 6.4 shows corresponding methods between our 
(array and node) list ADTs and the java.util interfaces List and 
ListIterator interfaces, with notes about their implementations in the 
java.util classes ArrayList and LinkedList. 

Table 6.4:  Correspondences between methods in 
the array list and node list ADTs and the java.util 
interfaces List and ListIterator. We use A and L 
as abbreviations for java.util.ArrayList and 
java.util.Linked List (or their running times). 

List ADT Method 

java.util.List Method 

ListIterator Method 

Notes 

size() 

size() 

O(1) time 
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isEmpty() 

isEmpty() 

O(1) time 

get(i) 

get(i) 

A is O(1), L is O(min{i, n − i}) 

first() 

listIterator() 

first element is next 

last() 

listIterator(size()) 

last element is previous 

prev(p) 

previous() 

O(1) time 

next(p) 

next() 

O(1) time 

set(p, e) 

set(e) 

O(1) time 

set(i,e) 

set(i, e) 

A is O(1), L is O (min{i,n − i}) 

add(i,e) 
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add(i,e) 

O(n) time 

remove(i) 

remove(i) 

A is O(1), L is O(min{i, n − i}) 

addFirst(e) 

add(0,e) 

A is O(n),L is O(1) 

addFirst(e) 

addFirst(e) 

only exists in L, O(1) 

addLast(e) 

add(e) 

O(1) time 

addLast(e) 

addLast(e) 

only exists in L, O(1) 

addAfter(p, e) 

add(e) 

insertion is at cursor; A is O(n), L is O(1) 

addBefore(p,e) 

add(e) 

insertion is at cursor; A is O(n),L is O(1) 

remove(p) 

remove() 
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deletion is at cursor; A is O(n),L is O(1) 

6.4  List ADTs and the Collections Framework 

In this section, we discuss general list ADTs, which combine methods of the deque, 
array list, and/or node list ADTs. Before describing such ADTs, we mention a larger 
context in which they exist. 

6.4.1  The Java Collections Framework 

Java provides a package of data structure interfaces and classes, which together 
define the Java Collections Framework. This package, java.util, includes 
versions of several of the data structures discussed in this book, some of which we 
have already discussed and others of which we discuss in the remainder of this 
book. In particular, the java.util package includes the following interfaces: 

Collection: 

A general interface for any data structure that contains a collection of 
elements. It extends java.lang.Iterable; hence, it includes an 
iterator() method, which returns an iterator of the elements in this 
collection. 

Iterator: 

An interface for the simple iterator ADT. 

List: 

An interface extending Collection to include the array list ADT. It also 
includes a method listIterator for returning a ListIterator object for 
this list. 

ListIterator: 

An iterator interface that provides both forward and backward traversal 
over a list, as well as cursor-based update methods. 

Map: 

An interface for mapping keys to values. This concept and interface are 
discussed in Section 9.1. 

Queue: 
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An interface for a queue ADT, but using different method names. Methods 
include peek() (same as front()), offer(e) (same as 
enqueue(e)), and poll() (same as dequeue()). 

Set: 

An interface extending Collection to sets. 

The Java Collections Framework also includes several concrete classes 
implementing various combinations of the above interfaces. Rather than list each of 
these classes here, however, we discuss them at more appropriate places in this 
book. One topic we would like to stress now, however, is that any class 
implementing the java.util.Collection interface also implements the 
java.lang.Iterable interface; hence, it includes an iterator() method 
and can be used in a for-each loop. In addition, any class implementing the 
java.util.List interface also includes a listIterator() method, as well. 
As we observed above, such interfaces are useful for looping through the elements 
of a collection or list. 

6.4.2  The java. util.LinkedList Class 

The java.util.Linked List class contains a lot of methods, including all of 
the methods of the deque ADT (Section 5.3) and all of the methods from the array 
list ADT (Section 6.1). In addition, as we mentioned above, it also provides 
functionality similar to that of the node list ADT through the use of its list iterator. 

Performance of the java.util.LinkedList Class 

The documentation for the java.util.LinkedList class makes it clear that 
this class is implemented with a doubly linked list. Thus, all of the update 
methods of the associated list iterator run in O(1) time each. Likewise, all of the 
methods of the deque ADT also run in O(1) time each, since they merely involve 
updating or querying the list at its ends. But the methods from the array list ADT 
are also included in the java.util.LinkedList, which are, in general, not 
well-suited to an implementation of a doubly linked list. 

In particular, since a linked list does not allow for indexed access to its elements, 
performing the operation get(i), to return the element at a given index i, requires 
that we perform link "hopping" from one of the ends of the list, counting up or 
down, until we locate the node storing the element with index i. As a slight 
optimization, we observe that we can start this hopping from the closer end of the 
list, thus achieving a running time that is 

O(min(i + 1, n − i)), 
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where n is the number of elements in the list. The worst case for this kind of 
search occurs when 

r= �n/2�. 

Thus, the running time is still O(n). 

Operations add(i,e) and remove(i) also must perform link hopping to 
locate the node storing the element with index i, and then insert or delete a node. 
The running times of these implementations of add(i,e) and remove(i) are 
likewise 

O(min(i+ 1, n−i+1)), 

which is O(n). One advantage of this approach is that, if i = 0 or i = n − 1, as is the 
case in the adaptation of the array list ADT to the deque ADT given in Section 
6.1.1, then add and remove run in O(1) time. But, in general, using array-list 
methods with a java.util. LinkedList object is inefficient. 

6.4.3  Sequences 

A sequence is an ADT that supports all of the methods of the deque ADT (Section 
5.3), the array list ADT (Section 6.1), and the node list ADT (Section 6.2). That is, 
it provides explicit access to the elements in the list either by their indices or by 
their positions. Moreover, since it provides this dual access capability, we also 
include, in the sequence ADT, the following two "bridging" methods that provide 
connections between indices and positions: 

             atIndex(i): Return the position of the element with index i; an error 
condition occurs if i < 0 or i > size() − 1. 

            indexOf(p): Return the index of the element at position p. 

Multiple Inheritance in the Sequence ADT 

The definition of the sequence ADT as including all the methods from three 
different ADTs is an example of multiple inheritance (Section 2.4.2). That is, the 
sequence ADT inherits methods from three "super" abstract data types. In other 
words, its methods include the union of the methods of these super ADTs. See 
Code Fragment 6.18 for a Java specification of the sequence ADT as a Java 
interface. 

Code Fragment 6.18:  The Sequence interface 
defined via multiple inheritance. It includes all the 
methods of the Deque, IndexList, and 
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PositionList interfaces (defined for any generic 
type E), and adds two more methods. 

 

Implementing a Sequence with an Array 

If we implement the sequence S ADT with a doubly linked list, we would get 
similar performance to that of the java.util.LinkedList class. So suppose 
instead we want to implement a sequence S by storing each element e of S in a 
cell A[i] of an array A. We can define a position object p to hold an index i and a 
reference to array A, as instance variables, in this case. We can then implement 
method element(p) simply by returning A[i]. A major drawback with this 
approach, however, is that the cells in A have no way to reference their 
corresponding positions. Thus, after performing an add First operation, we 
have no way of informing the existing positions in S that their indices each went 
up by 1 (remember that positions in a sequence are always defined relative to their 
neighboring positions, not their indices). Hence, if we are going to implement a 
general sequence with an array, we need a different approach. 

Consider an alternate solution, then, in which, instead of storing the elements of S 
in array A, we store a new kind of position object in each cell of A, and we store 
elements in positions. The new position object p holds the index i and the element 
e associated with p. 

With this data structure, illustrated in Figure 6.8, we can easily scan through the 
array to update the index variable i for each position whose index changes 
because of an insertion or deletion. 

Figure 6.8:  An array-based implementation of the 
sequence ADT. 
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Efficiency Trade-Offs with an Array-Based Sequence 

In this array implementation of a sequence, the addFirst, addBefore, 
addAfter, and remove methods take O(n) time, because we have to shift 
position objects to make room for the new position or to fill in the hole created by 
the removal of the old position (just as in the insert and remove methods based on 
index). All the other position-based methods take O(1) time. 

6.5 Case Study: The Move-to-Front Heuristic 

Suppose we would like to maintain a collection of elements while keeping track of 
the number of times each element is accessed. Keeping such access counts allows us 
to know which elements are among the "top ten" most popular, for instance. 
Examples of such scenarios include a Web browser that keeps track of the most 
popular Web addresses (or URLs) a user visits or a photo album program that 
maintains a list of the most popular images a user views. In addition, a favorites list 
could be used in a graphical user interface (GUI) to keep track of the most popular 
buttons used in a pull-down menu, and then present the user with condensed pull-
downs containing the most popular options. 

Therefore, in this section, we consider how we can implement a favorite list ADT, 
which supports the size() and isEmpty() methods as well as the following: 

access(e): 

Access the element e, incrementing its access count, and adding it to the 
favorites list if it is not already present. 

remove(e): 

Remove element e from the favorites list, provided it is already there. 
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top(k): 

Return an iterable collection of the k most accessed elements. 

6.5.1  Using a Sorted List and a Nested Class 

The first implementation of a favorite list that we consider (in Code Fragments 
6.19–6.20) is to build a class, FavoriteList, storing references to accessed 
objects in a linked list ordered by nonincreasing access counts. This class also uses 
a feature of Java that allows us to define a related class nested inside an enclosing 
class definition. Such a nested class must be declared static, to indicate that this 
definition is related to the enclosing class, not any specific instance of that class. 
Using nested classes allows us to define "helper" or "support" classes that can be 
protected from outside use. 

In this case, the nested class, Entry, stores, for each element e in our list, a pair 
(c,v), where c is the access count for e and v is a value reference to the element e 
itself. Each time an element is accessed, we find it in the linked list (adding it if it is 
not already there) and increment its access count. Removing an element amounts to 
finding it and taking it out of our linked list. Returning the k most accessed 
elements simply involves our copying the entry values into an output list according 
to their order in the internal linked list. 

Code Fragment 6.19:  Class FavoritesList. 
(Continues in Code Fragment 6.20.) 
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Code Fragment 6.20:  Class FavoriteList, 
including a nested class, Entry, for representing 
elements and their access count. (Continued from Code 
Fragment 6.19.) 

 

6.5.2  Using a List with the Move-to-Front Heuristic 
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The previous implementation of a favorite list performs the access(e) method in 
time proportional to the index of e in the favorite list. That is, if e is the kth most 
popular element in the favorite list, then accessing it takes O(k) time. In many real-
life access sequences, including those formed by the visits that users make to Web 
pages, it is common that, once an element is accessed, it is likely to be accessed 
again in the near future. Such scenarios are said to possess locality of reference. 

A heuristic, or rule of thumb, that attempts to take advantage of the locality of 
reference that is present in an access sequence is the move-to-front heuristic. To 
apply this heuristic, each time we access an element we move it all the way to the 
front of the list. Our hope, of course, is that this element will then be accessed again 
in the near future. Consider, for example, a scenario in which we have n elements 
and the following series of n2 accesses:  

• element 1 is accessed n times 

• element 2 is accessed n times 

• … 

• element n is accessed n times. 

If we store the elements sorted by their access counts, inserting each element the 
first time it is accessed, then  

• each access to element 1 runs in O(1) time 

• each access to element 2 runs in O(2) time 

• … 

• each access to element n runs in O(n) time. 

Thus, the total time for performing the series of accesses is proportional to 

     n + 2n + 3n+ ... n·n = n(1 + 2 + 3 +...+n) = n· (n + 1)/2, 

which is O(n3). 

On the other hand, if we use the move-to-front heuristic, inserting each element the 
first time it is accessed, then 

• each access to element 1 takes O(1) time 

• each access to element 2 takes O(1) time 

• … 

• each access to element n runs in O(1) time. 
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So the running time for performing all the accesses in this case is O(n2). Thus, the 
move-to-front implementation has faster access times for this scenario. This benefit 
comes at a cost, however. 

Implementing the Move-to-Front Heuristic in Java 

In Code Fragment 6.21, we give an implementation of a favorite list using the 
move-to-front heuristic. We implement the move-to-front approach in this case by 
defining a new class, FavoriteListMTF, which extends the FavoriteList 
class and then overrides the definitions of the moveUp and top methods. The 
moveUp method in this case simply removes the accessed element from its 
present position in the linked list and then inserts this element back in this list at 
the front. The top method, on the other hand, is more complicated. 

The Trade-Offs with the Move-to-Front Heuristic 

Now that we are no longer maintaining the favorite list as a list of entries ordered 
by their value's access counts, when we are asked to find the k most accessed 
elements, we need to search for them. In particular, we can implement method 
top(k) as follows:  

1. We copy the entries of our favorite list into another list, C, and we create 
an empty list, T. 

2. We scan list C k times. In each scan, we find an entry of C with the largest 
access count, remove this entry from C, and insert its value at the end of T. 

3. We return list T. 

This implementation of method top takes O(kn) time. Thus, when k is a constant, 
method top runs in O(n) time. This occurs, for example, when we want to get the 
"top ten" list. However, if k is proportional to n, then top runs in O(n2) time. This 
occurs, for example, when we want a "top 25%" list. 

Still, the move-to-front approach is just a heuristic, or rule of thumb, for there are 
access sequences where using the move-to-front approach is slower than simply 
keeping the favorite list ordered by access counts. In addition, it trades off the 
potential speed of performing accesses that possess locality of reference, for a 
slower reporting of the top elements. 

6.5.3  Possible Uses of a Favorites List 

In Code Fragment 6.22, we use an example application of our favorite list 
implementations to solve the problem of maintaining the most popular URLs in a 
simulated sequence of Web page accesses. This program accesses a set of URLs in 
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decreasing order and then pops up a window showing the most popular Web page 
accessed in the simulation. 

Code Fragment 6.21:  Class FavoriteListMTF 
implementing the move-to-front heuristic. This class 
extends FavoriteList (Code Fragments 6.19–6.20) 
and overrides methods moveUp and top. 
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Code Fragment 6.22:  Illustrating the use of the 
FavoritesList and FavoriteListMTF classes for counting 
Web page access counts. This simulation randomly 
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accesses several Web pages and then displays the most 
popular page. 
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6.6  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-6.1 

Draw a representation of an initially empty array list A after performing the 
following sequence of operations: add(0,4), add(0,3), add(0,2), 
add(2,1), add(1,5), add(1,6), add(3,7), add(0,8). 

R-6.2 

Give a justification of the running times shown in Table 6.2 for the methods of 
an array list implemented with a (nonexpanding) array. 

R-6.3 

Give an adapter class to support the Stack interface using the methods of the 
array list ADT. 

R-6.4 

Redo the justification of Proposition 6.2 assuming that the the cost of growing 
the array from size k to size 2k is 3k cyber-dollars. How much should each push 
operation be charged to make the amortization work? 

R-6.5 

Give pseudo-code descriptions of algorithms for performing the methods 
addBefore(p,e), addFirst(e), and addLast(e) of the node list 
ADT, assuming the list is implemented using a doubly linked list. 

R-6.6 

Draw pictures illustrating each of the major steps in the algorithms given in the 
previous exercise. 

R-6.7 

Provide the details of an array implementation of the node list ADT, including 
how to perform the methods add Before and addAfter. 

R-6.8 
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Provide Java code fragments for the methods of the PositionList interface 
of Code Fragment 6.5 that are not included in Code Fragments 6.9-6.11. 

R-6.9 

Describe a nonrecursive method for reversing a node list represented with a 
doubly linked list using a single pass through the list (you may use the internal 
node pointers). 

R-6.10 

Given the set of element {a, b, c, d, e, f} stored in a list, show the final state of 
the list, assuming we use the move-to-front heuristic and access the elements 
according to the following sequence: (a, b, c, d, e, f, a, c, f,b,d,e). 

R-6.11 

Suppose we are keeping track of access counts in a list L of n elements. Suppose 
further that we have made kn total accesses to the elements in L, for some 
integer k ≥ 1. What are the minimum and maximum number of elements that 
have been accessed fewer than k times? 

R-6.12 

Give pseudo-code describing how to implement all the operations in the array 
list ADT using an array in a circular fashion. What is the running time for each 
of these methods? 

R-6.13 

Using the Sequence interface methods, describe a recursive method for 
determining if a sequence S of n integers contains a given integer k. Your 
method should not contain any loops. How much space does your method use in 
addition to the space used for S? 

R-6.14 

Briefly describe how to perform a new sequence method makeFirst(p) that 
moves an element of a sequence S at position p to be the first element in S while 
keeping the relative ordering of the remaining elements in S unchanged. That is, 
makeFirst(p) performs a move-to-front. Your method should run in O(1) 
time if S is implemented with a doubly linked list. 

R-6.15 

Describe how to use an array list and an int field to implement an iterator. 
Include pseudo-code fragments describing hasNext() and next(). 
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R-6.16 

Describe how to create an iterator for a node list that returns every other 
element in the list. 

R-6.17 

Suppose we are maintaining a collection C of elements such that, each time we 
add a new element to the collection, we copy the contents of C into a new array 
list of just the right size. What is the running time of adding n elements to an 
initially empty collection C in this case? 

R-6.18 

Describe an implementation of the methods addLast and add Before 
realized by using only methods in the set {isEmpty, checkPosition, 
first, last, prev, next, addAfter, addFirst}. 

R-6.19 

Let L be maintained to be a list of n items ordered by decreasing access count. 
Describe a series of O(n2) accesses that will reverse L. 

R-6.20 

Let L be a list of n items maintained according to the move-to-front heuristic. 
Describe a series of O(n) accesses that will reverse L. 

Creativity 

C-6.1 

Give pseudo-code for the methods of a new class, ShrinkingArrayList, 
that extends the class ArrayIndexList shown in Code Fragment 6.3 and 
adds a method, shrinkToFit(), which replaces the underlying array with an 
array whose capacity is exactly equal to the number of elements currently in the 
array list. 

C-6.2 

Describe what changes need to be made to the extendable array implementation 
given in Code Fragment 6.3 in order to shrink by half the size N of the array any 
time the number of elements in the array list goes below N/4. 

C-6.3 
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Show that, using an extendable array that grows and shrinks as described in the 
previous exercise, the following series of 2n operations takes O(n) time: (i) n 
push operations on an array list with initial capacity N = 1; (ii) n pop (removal 
of the last element) operations. 

C-6.4 

Show how to improve the implementation of method add in Code Fragment 6.3 
so that, in case of an overflow, the elements are copied into their final place in 
the new array, that is, no shifting should be done in this case. 

C-6.5 

Consider an implementation of the array list ADT using an extendable array, but 
instead of copying the elements of the array list into an array of double the size 
(that is, from N to 2N) when its capacity is reached, we copy the elements into 
an array with �N/4� additional cells, going from capacity N to N + �N/4�. 
Show that performing a sequence of n push operations (that is, insertions at the 
end) still runs in O(n) time in this case. 

C-6.6 

The NodePositionList implementation given in Code Fragments 6.9-6.11 
does not do any error checks to test if a given position p is actually a member of 
this particular list. For example, if p is a position in list S and we call 
T.addAfter(p, e) on a different list T, then we actually will add the 
element to S just after p. Describe how to change the NodePositionList 
implementation in an efficient manner to disallow such misuses. 

C-6.7 

Suppose we want to extend the Sequence abstract data type with methods 
indexOfElement(e) and positionOfElement(e), which respectively 
return the index and the position of the (first occurrence of) element e in the 
sequence. Show how to implement these methods by expressing them in terms 
of other methods of the Sequence interface. 

C-6.8 

Give an adaptation of the array list ADT to the deque ADT that is different from 
that given in Table 6.1. 

C-6.9 

Describe the structure and pseudo-code for an array-based implementation of 
the array list ADT that achieves O(1) time for insertions and removals at index 
0, as well as insertions and removals at the end of the array list. Your 
implementation should also provide for a constant-time get method. (Hint: 
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Think about how to extend the circular array implementation of the queue ADT 
given in the previous chapter.) 

C-6.10 

Describe an efficient way of putting an array list representing a deck of n cards 
into random order. You may use a function, randomInteger(n), which 
returns a random number between 0 and n − 1, inclusive. Your method should 
guarantee that every possible ordering is equally likely. What is the running 
time of your method? 

C-6.11 

Describe a method for maintaining a favorites list L such that every element in L 
has been accessed at least once in the last n accesses, where n is the size of L. 
Your scheme should add only O(1) additional amortized time to each operation. 

C-6.12 

Suppose we have an n-element list L maintained according to the move-to-front 
heuristic. Describe a sequence of n2 accesses that is guaranteed to take Ω(n3) 
time to perform on L. 

C-6.13 

Design a circular node list ADT that abstracts a circularly linked list in the -
same way that the node list ADT abstracts a doubly linked list. 

C-6.14 

Describe how to implement an iterator for a circularly linked list. Since 
hasNext() will always return true in this case, describe how to perform 
hasNewNext(), which returns true if and only if the next node in the list 
has not previously had its element returned by this iterator. 

C-6.15 

Describe a scheme for creating list iterators that fail fast, that is, they all 
become invalid as soon as the underlying list changes. 

C-6.16 

An array is sparse if most of its entries are null. A list L can be used to 
implement such an array, A, efficiently. In particular, for each nonnull cell A[i], 
we can store an entry (i, e) in L, where e is the element stored at A[i]. This 
approach allows us to represent A using O(m) storage, where m is the number of 
nonnull entries in A. Describe and analyze efficient ways of performing the 

 369



methods of the array list ADT on such a representation. Is it better to store the 
entries in L by increasing indices or not? 

C-6.17 

There is a simple, but inefficient, algorithm, called bubble-sort, for sorting a 
sequence S of n comparable elements. This algorithm scans the sequence n−1 
times, where, in each scan, the algorithm compares the current element with the 
next one and swaps them if they are out of order. Give a pseudo-code 
description of bubble-sort that is as efficient as possible assuming S is 
implemented with a doubly linked list. What is the running time of this 
algorithm? 

C-6.18 

Answer Exercise C-6.17 assuming S is implemented with an array list. 

C-6.19 

A useful operation in databases is the natural join. If we view a database as a 
list of ordered pairs of objects, then the natural join of databases A and B is the 
list of all ordered triples (x,y,z) such that the pair (x,y) is in A and the pair (y,z) is 
in B. Describe and analyze an efficient algorithm for computing the natural join 
of a list A of n pairs and a list B of m pairs. 

C-6.20 

When Bob wants to send Alice a message M on the Internet, he breaks M into n 
data packets, numbers the packets consecutively, and injects them into the 
network. When the packets arrive at Alice's computer, they may be out of order, 
so Alice must assemble the sequence of n packets in order before she can be 
sure she has the entire message. Describe an efficient scheme for Alice to do 
this. What is the running time of this algorithm? 

C-6.21 

Given a list L of n positive integers, each represented with k = �logn� + 1 bits, 
describe an O(n)-time method for finding a k-bit integer not in L. 

C-6.22 

Argue why any solution to the previous problem must run in Ω(n) time. 

C-6.23 

Given a list L of n arbitrary integers, design an O(n)-time method for finding an 
integer that cannot be formed as the sum of two integers in L. 
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C-6.24 

Isabel has an interesting way of summing up the values in an array A of n 
integers, where n is a power of two. She creates an array B of half the size of A 
and sets B[i] = A[2i] +A[2i+ 1], for i = 0,1,..., (n/2) − 1. If B has size 1, then she 
outputs B[0]. Otherwise, she replaces A with B, and repeats the process. What is 
the running time of her algorithm? 

Projects 

P-6.1 

Implement the array list ADT by means of an extendable array used in a circular 
fashion, so that insertions and deletions at the beginning and end of the array list 
run in constant time. 

P-6.2 

Implement the array list ADT using a doubly linked list. Show experimentally 
that this implementation is worse than the array-based approach. 

P-6.3 

Write a simple text editor, which stores and displays a string of characters using 
the list ADT, together with a cursor object that highlights a position in this 
string. Your editor should support the following operations: 

• 

left: Move cursor left one character (do nothing if at text end). 

• 

right: Move cursor right one character (do nothing if at text end). 

• 

cut: Delete the character right of the cursor (do nothing at text end). 

• 

paste c: Insert the character c just after the cursor. 

P-6.4 

Implement a phased favorites list. A phase consists of N accesses in the list, for 
a given parameter N. During a phase, the list should maintain itself so that 
elements are ordered by decreasing access counts during that phase. At the end 
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of a phase, it should clear all the access counts and start the next phase. 
Experimentally, determine what are the best values of N for various list sizes. 

P-6.5 

Write a complete adapter class that implements the sequence ADT using a 
java.util.ArrayList object. 

P-6.6 

Implement the favorites list application using an array list instead of a list. 
Compare it experimentally to the list-based implementation. 

Chapter Notes 

The concept of viewing data structures as collections (and other principles of object-
oriented design) can be found in object-oriented design books by Booch [14], Budd 
[17], Golberg and Robson [40], and Liskov and Guttag [69]. Lists and iterators are 
pervasive concepts in the Java Collections Framework. Our node list ADT is derived 
from the "position" abstraction introduced by Aho, Hopcroft, and Ullman [5], and the 
list ADT of Wood [100]. Implementations of lists via arrays and linked lists are 
discussed by Knuth [62]. 
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7.1  General Trees 

Productivity experts say that breakthroughs come by thinking "nonlinearly." In this 
chapter, we discuss one of the most important nonlinear data structures in 
computing—trees. Tree structures are indeed a breakthrough in data organization, for 
they allow us to implement a host of algorithms much faster than when using linear 
data structures, such as list. Trees also provide a natural organization for data, and 
consequently have become ubiquitous structures in file systems, graphical user 
interfaces, databases, Web sites, and other computer systems. 
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It is not always clear what productivity experts mean by "nonlinear" thinking, but 
when we say that trees are "nonlinear," we are referring to an organizational 
relationship that is richer than the simple "before" and "after" relationships between 
objects in sequences. The relationships in a tree are hierarchical, with some objects 
being "above" and some "below" others. Actually, the main terminology for tree data 
structures comes from family trees, with the terms "parent," "child," "ancestor," and 
"descendent" being the most common words used to describe relationships. We show 
an example of a family tree in Figure 7.1. 

Figure 7.1:  A family tree showing some 
descendents of Abraham, as recorded in Genesis, 
chapters 25–36. 

 

7.1.1  Tree Definitions and Properties 

A tree is an abstract data type that stores elements hierarchically. With the 
exception of the top element, each element in a tree has a parent element and zero 
or more children elements. A tree is usually visualized by placing elements inside 
ovals or rectangles, and by drawing the connections between parents and children 
with straight lines. (See Figure 7.2.) We typically call the top element the root of 
the tree, but it is drawn as the highest element, with the other elements being 
connected below (just the opposite of a botanical tree). 

Figure 7.2:  A tree with 17 nodes representing the 
organization of a fictitious corporation. The root stores 
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Electronics R'Us. The children of the root store R&D, 
Sales, Purchasing, and Manufacturing. The internal 
nodes store Sales, International, Overseas, Electronics 
R'Us, and Manufacturing. 

 

Formal Tree Definition 

Formally, we define a tree T as a set of nodes storing elements such that the nodes 
have a parent-child relationship, that satisfies the following properties:  

• If T is nonempty, it has a special node, called the root of T, that has no 
parent. 

• Each node v of T different from the root has a unique parent node w; 
every node with parent w is a child of w. 

Note that according to our definition, a tree can be empty, meaning that it doesn't 
have any nodes. This convention also allows us to define a tree recursively, such 
that a tree T is either empty or consists of a node r, called the root of T, and a 
(possibly empty) set of trees whose roots are the children of r. 

Other Node Relationships 
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Two nodes that are children of the same parent are siblings. A node v is external 
if v has no children. A node v is internal if it has one or more children. External 
nodes are also known as leaves. 

Example 7.1: In most operating systems, files are organized hierarchically 
into nested directories (also called folders), which are presented to the user in the 
form of a tree. (See Figure 7.3.) More specifically, the internal nodes of the tree 
are associated with directories and the external nodes are associated with regular 
files. In the UNIX and Linux operating systems, the root of the tree is 
appropriately called the "root directory," and is represented by the symbol "/." 

Figure 7.3:  Tree representing a portion of a file 
system. 

 

A node u is an ancestor of a node v if u = v or u is an ancestor of the parent of v. 
Conversely, we say that a node v is a descendent of a node u if u is an ancestor of 
v. For example, in Figure 7.3, cs252/ is an ancestor of papers/, and pr3 is a 
descendent of cs016/. The subtree of T rooted at a node v is the tree consisting 
of all the descendents of v in T (including v itself). In Figure 7.3, the subtree 
rooted at cs016/ consists of the nodes cs016/, grades, homeworks/, 
programs/, hw1, hw2, hw3, pr1, pr2, and pr3. 
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Edges and Paths in Trees 

An edge of tree T is a pair of nodes (u, v) such that u is the parent of v, or vice 
versa. A path of T is a sequence of nodes such that any two consecutive nodes in 
the sequence form an edge. For example, the tree in Figure 7.3 contains the path 
(cs252/, projects/, demos/, market). 

Example 7.2: The inheritance relation between classes in a Java program 
forms a tree. The root, java. lang. Object, is an ancestor of all other 
classes. Each class, C, is a descendent of this root and is the root of a subtree of 
the classes that extend C. Thus, there is a path from C to the root, 
java.lang.Object, in this inheritance tree. 

Ordered Trees 

A tree is ordered if there is a linear ordering defined for the children of each node; 
that is, we can identify the children of a node as being the first, second, third, and 
so on. Such an ordering is usually visualized by arranging siblings left to right, 
according to their ordering. Ordered trees typically indicate the linear order 
among siblings by listing them in the correct order. 

Example 7.3: The components of a structured document, such as a book, are 
hierarchically organized as a tree whose internal nodes are parts, chapters, and 
sections, and whose external nodes are paragraphs, tables, figures, and so on. 
(See Figure 7.4.) The root of the tree corresponds to the book itself. We could, in 
fact, consider expanding the tree further to show paragraphs consisting of 
sentences, sentences consisting of words, and words consisting of characters. 
Such a tree is an example of an ordered tree, because there is a well-defined 
ordering among the children of each node. 

Figure 7.4:  An ordered tree associated with a book. 
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7.1.2  The Tree Abstract Data Type 

The tree ADT stores elements at positions, which, as with positions in a list, are 
defined relative to neighboring positions. The positions in a tree are its nodes, and 
neighboring positions satisfy the parent-child relationships that define a valid tree. 
Therefore, we use the terms "position" and "node" interchangeably for trees. As 
with a list position, a position object for a tree supports the method: 

               element(): return the object stored at this position. 

The real power of node positions in a tree, however, comes from the accessor 
methods of the tree ADT that return and accept positions, such as the following: 

root(): 

return the tree's root; an error occurs if the tree is empty. 

parent (v): 

return the parent of v; an error occurs if v is the root. 

children(v): 

return an iterable collection containing the children of node v. 

If a tree T is ordered, then the iterable collection, children(v), stores the children of 
v in order. If v is an external node, then children(v) is empty. 

In addition to the above fundamental accessor methods, we also include the 
following query methods: 

isInternal(v): 

Test whether node v is internal. 

isExternal(v): 

Test whether node v is external. 

isRoot(v): 

Test whether node v is the root. 

These methods make programming with trees easier and more readable, since we 
can use them in the conditionals of if statements and while loops, rather than 
using a nonintuitive conditional. 
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There are also a number of generic methods a tree should probably support that are 
not necessarily related to its tree structure, including the following: 

size(): 

return the number of nodes in the tree. 

isEmpty(): 

Test whether the tree has any nodes or not. 

iterator(): 

return an iterator of all the elements stored at nodes of the tree. 

positions(): 

return an iterable collection of all the nodes of the tree. 

replace(v,e): 

Replace with e and return the element stored at node v. 

Any method that takes a position as an argument should generate an error condition 
if that position is invalid. We do not define any specialized update methods for trees 
here. Instead, we prefer to describe different tree update methods in conjunction 
with specific applications of trees in subsequent chapters. In fact, we can imagine 
several kinds of tree update operations beyond those given in this book. 

7.1.3  Implementing a Tree 

The Java interface shown in Code Fragment 7.1 represents the tree ADT. Error 
conditions are handled as follows: Each method that can take a position as an 
argument, may throw an InvalidPositionException, to indicate that the 
position is invalid. Method parent throws a BoundaryViolationException 
if it is called on the root. Method root throws an EmptyTreeException if it is 
called on an empty tree. 

Code Fragment 7.1:  Java interface Tree 
representing the tree ADT. Additional update methods 
may be added, depending on the application. We do 
not include such methods in the interface, however. 
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A Linked Structure for General Trees 

A natural way to realize a tree T is to use a linked structure, where we represent 
each node v of T by a position object (see Figure 7.5a) with the following fields: 
A reference to the element stored at v, a link to the parent of v, and a some kind of 
collection (for example, a list or array) to store links to the children of v. If v is the 
root of T, then the parent field of v is null. Also, we store a reference to the root of 
T and the number of nodes of T in internal variables. This structure is 
schematically illustrated in Figure 7.5b. 
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Figure 7.5:  The linked structure for a general tree: 
(a) the position object associated with a node; (b) the 
portion of the data structure associated with a node 
and its children. 

 

Table 7.1 summarizes the performance of the implementation of a general tree 
using a linked structure. The analysis is left as an exercise (C-7.25), but we note 
that, by using a collection to store the children of each node v, we can implement 
children(v) simply by returning a reference to this collection. 

Table 7.1:  Running times of the methods of an n-
node general tree implemented with a linked 
structure. We let cv denote the number of children of a 
node v. The space usage is O(n). 

Operation 

Time 

size, isEmpty 

O(1) 

iterator, positions 

O(n) 
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replace 

O(1) 

root, parent 

O(1) 

children(v) 

O(cv) 

isInternal, isExternal, isRoot 

O(1) 

7.2  Tree Traversal Algorithms 

In this section, we present algorithms for performing traversal computations on a tree 
by accessing it through the tree ADT methods. 

7.2.1  Depth and Height 

Let v be a node of a tree T. The depth of v is the number of ancestors of v, 
excluding v itself. For example, in the tree of Figure 7.2, the node storing 
International has depth 2. Note that this definition implies that the depth of the root 
of T is 0. 

The depth of a node v can also be recursively defined as follows:  

• If v is the root, then the depth of v is 0 

• Otherwise, the depth of v is one plus the depth of the parent of v. 

Based on this definition, we present a simple, recursive algorithm, depth, in Code 
Fragment 7.2, for computing the depth of a node v in T. This method calls itself 
recursively on the parent of v, and adds 1 to the value returned. A simple Java 
implementation of this algorithm is shown in Code Fragment 7.3. 

Code Fragment 7.2:  Algorithm for computing the 
depth of a node v in a tree T. 
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Code Fragment 7.3:  Method depth written in Java. 

 

The running time of algorithm depth(T, v) is O(dv), where dv denotes the depth of 
the node v in the tree T, because the algorithm performs a constant-time recursive 
step for each ancestor of v. Thus, algorithm depth (T, v) runs in O(n) worst-case 
time, where n is the total number of nodes of T, since a node of T may have depth n 
− 1 in the worst case. Although such a running time is a function of the input size, it 
is more accurate to characterize the running time in terms of the parameter dv, since 
this parameter can be much smaller than n. 

Height 

The height of a node v in a tree T is also defined recursively:  

• If v is an external node, then the height of v is 0 

• Otherwise, the height of v is one plus the maximum height of a child of v. 

The height of a nonempty tree T is the height of the root of T. For example, the 
tree of Figure 7.2 has height 4. In addition, height can also be viewed as follows. 

Proposition 7.4: The height of a nonempty tree T is equal to the maximum 
depth of an external node of T. 

We leave the justification of this fact to an exercise (R-7.6). We present here an 
algorithm, height1, shown in Code Fragment 7.4 and implemented in Java in 
Code Fragment 7.5, for computing the height of a nonempty tree T based on the 
proposition above and the algorithm depth from Code Fragment 7.2. 
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Code Fragment 7.4:  Algorithm height1 for 
computing the height of a nonempty tree T. Note that 
this algorithm calls algorithm depth (Code Fragment 
7.2). 

 
Code Fragment 7.5:  Method height1 written in 
Java. Note the use of the max method of class 
java.lang. Math. 

 

Unfortunately, algorithm height1 is not very efficient. Since height1 calls 
algorithm depth (v) on each external node v of T, the running time of height1 is 
given by O(n + Σv(1 + dv)), where n is the number of nodes of T, dv is the depth 
of node v, and E is the set of external nodes of T. In the worst case, the sumΣv(1 
d

+ 
v) is proportional to n2. (See Exercise C-7.6.) Thus, algorithm height1 runs in 

O(n2) time. 

Algorithm height2, shown in Code Fragment 7.6 and implemented in Java in 
Code Fragment 7.7, computes the height of tree T in a more efficient manner by 
using the recursive definition of height. 
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Code Fragment 7.6:  Algorithm height2 for 
computing the height of the subtree of tree T rooted 
at a node v. 

 
Code Fragment 7.7:  Method height2 written in 
Java. 

 

Algorithm height2 is more efficient than height1 (from Code Fragment 7.4). 
The algorithm is recursive, and, if it is initially called on the root of T, it will 
eventually be called on each node of T. Thus, we can determine the running time 
of this method by summing, over all the nodes, the amount of time spent at each 
node (on the nonrecursive part). Processing each node in children(v) takes O(cv) 
time, where cv denotes the number of children of node v. Also, the while loop 
has cv iterations and each iteration of the loop takes O(1) time plus the time for 
the recursive call on a child of v. Thus, algorithm height2 spends O(1 + cv) 
time at each node v, and its running time is O(Σv(1 + cv)). In order to complete the 
analysis, we make use of the following property. 

Proposition 7.5: Let T be a tree with n nodes, and let cv denote the 
number of children of a node v of T. Then, summing over the vertices in T, Σvcv= 
n − 1. 
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Justification: Each node of T, with the exception of the root, is a child of 
another node, and thus contributes one unit to the above sum. 

 

By Proposition 7.5, the running time of algorithm height2, when called on the 
root of T, is O(n), where n is the number of nodes of T. 

7.2.2  Preorder Traversal 

A traversal of a tree T is a systematic way of accessing, or "visiting," all the nodes 
of T. In this section, we present a basic traversal scheme for trees, called preorder 
traversal. In the next section, we will study another basic traversal scheme, called 
postorder traversal. 

In a preorder traversal of a tree T, the root of T is visited first and then the subtrees 
rooted at its children are traversed recursively. If the tree is ordered, then the 
subtrees are traversed according to the order of the children. The specific action 
associated with the "visit" of a node v depends on the application of this traversal, 
and could involve anything from incrementing a counter to performing some 
complex computation for v. The pseudo-code for the preorder traversal of the 
subtree rooted at a node v is shown in Code Fragment 7.8. We initially call this 
algorithm with preorder(T,T.root()). 

Code Fragment 7.8:  Algorithm preorder for 
performing the preorder traversal of the subtree of a 
tree T rooted at a node v. 

 

The preorder traversal algorithm is useful for producing a linear ordering of the 
nodes of a tree where parents must always come before their children in the 
ordering. Such orderings have several different applications. We explore a simple 
instance of such an application in the next example. 

Figure 7.6:  Preorder traversal of an ordered tree, 
where the children of each node are ordered from left 
to right. 
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Example 7.6: The preorder traversal of the tree associated with a document, as 
in Example 7.3, examines an entire document sequentially, from beginning to end. 
If the external nodes are removed before the traversal, then the traversal examines 
the table of contents of the document. (See Figure 7.6.) 

The preorder traversal is also an efficient way to access all the nodes of a tree. To 
justify this, let us consider the running time of the preorder traversal of a tree T with 
n nodes under the assumption that visiting a node takes O(1) time. The analysis of 
the preorder traversal algorithm is actually similar to that of algorithm height2 
(Code Fragment 7.7), given in Section 7.2.1. At each node v, the nonrecursive part 
of the preorder traversal algorithm requires time O(1 + cv), where cv is the number 
of children of v. Thus, by Proposition 7.5, the overall running time of the preorder 
traversal of T is O(n). 

Algorithm toStringPreorder(T, v), implemented in Java in Code 
Fragment 7.9, performs a preorder printing of the subtree of a node v of T, that is, it 
performs the preorder traversal of the subtree rooted at v and prints the element 
stored at a node when the node is visited. Recall that, for an ordered tree T, method 
T.children(v) returns an iterable collection that accesses the children of v in 
order. 

Code Fragment 7.9:  Method toStringPreorder(T, v) 
that performs a preorder printing of the elements in the 
subtree of node v of T. 
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There is an interesting application of the preorder traversal algorithm that produces 
a string representation of an entire tree. Let us assume again that for each element e 
stored in tree T, calling e.toString() returns a string associated with e. The 
parenthetic string representation P(T) of tree T is recursively defined as follows. If 
T consists of a single node v, then 

P(T) = v.element().toString(). 

Otherwise, 

P(T) = v.element().toString() + " (" + P(T1) + "," + ··· + ", "+ P(Tk) +")", 

where v is the root of T and T1, T2,..., Tk are the subtrees rooted at the children of v, 
which are given in order if T is an ordered tree. 

Note that the above definition of P(T) is recursive. Also, we are using "+" here to 
denote string concatenation. The parenthetic representation of the tree of Figure 7.2 
is shown in Figure 7.7. 

Figure 7.7:  Parenthetic representation of the tree of 
Figure 7.2. Indentation, line breaks and spaces have 
been added for clarity. 

 

Note that, technically speaking, there are some computations that occur between 
and after the recursive calls at a node's children in the above algorithm. We still 
consider this algorithm to be a preorder traversal, however, since the primary action 
of printing a node's contents occurs prior to the recursive calls. 

The Java method parentheticRepresentation, shown in Code Fragment 
7.10, is a variation of method toStringPreorder (Code Fragment 7.9). It 
implements the definition given above to output a parenthetic string representation 
of a tree T. As with the method toStringPreorder, the method 
parentheticRepresentation makes use of the toString method that 
is defined for every Java object. In fact, we can view this method as a kind of 
toString() method for tree objects. 
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Code Fragment 7.10:  Algorithm 
parentheticRepresentation. Note the use of the + 
operator to concatenate two strings. 

 

We explore a modification to Code Fragment 7.10 in Exercise R-7.9, to display a 
tree in a fashion more closely matching that given in Figure 7.7. 

7.2.3  Postorder Traversal 

Another important tree traversal algorithm is the postorder traversal. This 
algorithm can be viewed as the opposite of the preorder traversal, because it 
recursively traverses the subtrees rooted at the children of the root first, and then 
visits the root. It is similar to the preorder traversal, however, in that we use it to 
solve a particular problem by specializing an action associated with the "visit" of a 
node v. Still, as with the preorder traversal, if the tree is ordered, we make recursive 
calls for the children of a node v according to their specified order. Pseudo-code for 
the postorder traversal is given in Code Fragment 7.11. 

Code Fragment 7.11:  Algorithm postorder for 
performing the postorder traversal of the subtree of a 
tree T rooted at a node v. 
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The name of the postorder traversal comes from the fact that this traversal method 
will visit a node v after it has visited all the other nodes in the subtree rooted at v. 
(See Figure 7.8.) 

Figure 7.8:  Postorder traversal of the ordered tree 
of Figure 7.6. 

 

The analysis of the running time of a postorder traversal is analogous to that of a 
preorder traversal. (See Section 7.2.2.) The total time spent in the nonrecursive 
portions of the algorithm is proportional to the time spent visiting the children of 
each node in the tree. Thus, a postorder traversal of a tree T with n nodes takes O(n) 
time, assuming that visiting each node takes O(1) time. That is, the postorder 
traversal runs in linear time. 

As an example of postorder traversal, we show a Java method 
toStringPostorder in Code Fragment 7.12, which performs a postorder 
traversal of a tree T. This method prints the element stored at a node when it is 
visited. 

Code Fragment 7.12:  Method 
toStringPostorder(T, v) that performs a 
postorder printing of the elements in the subtree of 
node v of T. The method implicitly calls toString on 
elements, when they are involved in a string 
concatenation operation. 
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The postorder traversal method is useful for solving problems where we wish to 
compute some property for each node v in a tree, but computing that property for v 
requires that we have already computed that same property for v's children. Such an 
application is illustrated in the following example. 

Example 7.7: Consider a file system tree T, where external nodes represent 
files and internal nodes represent directories (Example 7.1). Suppose we want to 
compute the disk space used by a directory, which is recursively given by the sum 
of: 

• The size of the directory itself 

• The sizes of the files in the directory 

• The space used by the children directories. 

(See Figure 7.9.) This computation can be done with apostorder traversal of tree T. 
After the subtrees of an internal node v have been traversed, we compute the space 
used by v by adding the sizes of the directory v itself and of the files contained in v 
to the space used by each internal child of v, which was computed by the recursive 
postorder traversals of the children of v. 

A Recursive Java Method for Computing Disk Space 

Motivated by Example 7.7, Java method diskSpace, shown in Code Fragment 7.13, 
performs a postorder traversal of a file-system tree T, printing the name and disk 
space used by the directory associated with each internal node of T. When called on 
the root of tree T, diskSpace runs in time O(n), where n is the number of nodes of T, 
provided the auxiliary methods name and size take O(1) time. 

Figure 7.9:  The tree of Figure 7.3 representing a file 
system, showing the name and size of the associated 
file/directory inside each node, and the disk space used 
by the associated directory above each internal node. 
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Code Fragment 7.13:  Method diskSpace prints 
the name and disk space used by the directory 
associated with each internal node of a file-system tree. 
This method calls the auxiliary methods name and size, 
which should be defined to return the name and size of 
the file/directory associated with a node. 

 

Other Kinds of Traversals 

 394



Although the preorder and postorder traversals are common ways of visiting the 
nodes of a tree, we can also imagine other traversals. For example, we could 
traverse a tree so that we visit all the nodes at depth d before we visit the nodes at 
depth d + 1. Consecutively numbering the nodes of a tree T as we visit them in 
this traversal is called the level numbering of the nodes of T (see Section 7.3.5). 

7.3  Binary Trees 

A binary tree is an ordered tree with the following properties:  

1. Every node has at most two children. 

2. Each child node is labeled as being either a left child or a right child. 

3. A left child precedes a right child in the ordering of children of a node. 

The subtree rooted at a left or right child of an internal node v is called a left subtree 
or right subtree, respectively, of v. A binary tree is proper if each node has either 
zero or two children. Some people also refer to such trees as being full binary trees. 
Thus, in a proper binary tree, every internal node has exactly two children. A binary 
tree that is not proper is improper. 

Example 7.8: An important class of binary trees arises in contexts where we wish 
to represent a number of different outcomes that can result from answering a series of 
yes-or-no questions. Each internal node is associated with a question. Starting at the 
root, we go to the left or right child of the current node, depending on whether the 
answer to the question is "Yes" or "No." With each decision, we follow an edge from 
a parent to a child, eventually tracing a path in the tree from the root to an external 
node. Such binary trees are known as decision trees, because each external node v in 
such a tree represents a decision of what to do if the questions associated with v's 
ancestors are answered in a way that leads to v. A decision tree is a proper binary 
tree. Figure 7.10 illustrates a decision tree that provides recommendations to a 
prospective investor. 

Figure 7.10:  A decision tree providing investment 
advice. 
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Example 7.9: An arithmetic expression can be represented by a binary tree 
whose external nodes are associated with variables or constants, and whose internal 
nodes are associated with one of the operators +, −, ×, and /. (See Figure 7.11.) 
Each node in such a tree has a value associated with it. 

• If a node is external, then its value is that of its variable or constant. 

• If a node is internal, then its value is defined by applying its operation to the 
values of its children. 

An arithmetic expression tree is a proper binary tree, since each operator +, −, ×, and / 
takes exactly two operands. Of course, if we were to allow for unary operators, like 
negation (−), as in "−x," then we could have an improper binary tree. 

Figure 7.11:  A binary tree representing an arithmetic 
expression. This tree represents the expression ((((3 + 1) 
× 3)/((9 −5) +2)) − ((3 × (7 −4)) + 6)). The value 
associated with the internal node labeled "/" is 2. 
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A Recursive Binary Tree Definition 

Incidentally, we can also define a binary tree in a recursive way such that a binary 
tree is either empty or consists of:  

• A node r, called the root of T and storing an element 

• A binary tree, called the left subtree of T 

• A binary tree, called the right subtree of T. 

We discuss some of the specialized topics for binary trees below. 

7.3.1  The Binary Tree ADT 

As an abstract data type, a binary tree is a specialization of a tree that supports three 
additional accessor methods: 

left(v): 

Return the left child of v; an error condition occurs if v has no left child. 

right(v): 

Return the right child of v; an error condition occurs if v has no right child. 

hasLeft(v): 

Test whether v has a left child. 
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hasRight(v): 

Test whether v has a right child. 

Just as in Section 7.1.2 for the tree ADT, we do not define specialized update 
methods for binary trees here. Instead, we will consider some possible update 
methods when we describe specific implementations and applications of binary 
trees. 

7.3.2  A Binary Tree Interface in Java 

We model a binary tree as an abstract data type that extends the tree ADT and adds 
the three specialized methods for a binary tree. In Code Fragment 7.14, we show the 
simple Java interface we can define using this approach. By the way, since binary 
trees are ordered trees, the iterable collection returned by method children(v) 
(inherited from the Tree interface) stores the left child of v before the right child of 
v. 

Code Fragment 7.14:  Java interface Binary Tree 
for the binary tree ADT. Interface Binary Tree 
extends interface Tree (Code Fragment 7.1). 

 

7.3.3  Properties of Binary Trees 

Binary trees have several interesting properties dealing with relationships between 
their heights and number of nodes. We denote the set of all nodes of a tree T at the 
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same depth d as the level dof T. In a binary tree, level 0 has at most one node (the 
root), level 1 has at most two nodes (the children of the root), level 2 has at most 
four nodes, and so on. (See Figure 7.12.) In general, level d has at most 2d nodes. 

Figure 7.12:  Maximum number of nodes in the levels 
of a binary tree. 

 

We can see that the maximum number of nodes on the levels of a binary tree grows 
exponentially as we go down the tree. From this simple observation, we can derive 
the following properties relating the height of a binary T with its number of nodes. 
A detailed justification of these properties is left as an exercise (R-7.15). 

Proposition 7.10: Let T be a nonempty binary tree, and let n, nE, nI and h 
denote the number of nodes, number of external nodes, number of internal nodes, 
and height of T, respectively. Then T has the following properties: 

1. h+1 ≤ n ≤ 2 h+1 −1 

2. 1≤nE≤2h 

3. h≤nI≤2h−1 

4. log(n+1)−1 ≤h≤n−1. 

Also, if T is proper, then T has the following properties: 
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1. 2h+1 ≤ n≤2h+1−1 

2. h+1≤nE≤2h 

3. h≤nI≤2h−1 

4. log(n + 1) − 1 ≤ h ≤ (n − 1)/2. 

Relating Internal Nodes to External Nodes in a Proper 
Binary Tree 

In addition to the binary tree properties above, we also have the following 
relationship between the number of internal nodes and external nodes in a proper 
binary tree. 

Proposition 7.11: In a nonempty proper binary tree T, with nE external 
nodes and nI internal nodes, we have ne = nI + 1. 

Justification: We justify this proposition by removing nodes from T and 
dividing them up into two "piles", an internal-node pile and an external-node pile, 
until T becomes empty. The piles are initially empty. At the end, the external-
node pile will have one more node than the internal-node pile. We consider two 
cases: 

Case 1: If T has only one node v, we remove v and place it on the external-node 
pile. Thus, the external-node pile has one node and the internal-node pile is 
empty. 

Case 2: Otherwise (T has more than one node), we remove from T an (arbitrary) 
external node w and its parent v, which is an internal node. We place w on the 
external-node pile and v on the internal-node pile. If v has a parent u, then we 
reconnect u with the former sibling z of w, as shown in Figure 7.13. This 
operation, removes one internal node and one external node, and leaves the tree 
being a proper binary tree. 

Repeating this operation, we eventually are left with a final tree consisting of a 
single node. Note that the same number of external and internal nodes have been 
removed and placed on their respective piles by the sequence of operations 
leading to this final tree. Now, we remove the node of the final tree and we place 
it on the external-node pile. Thus, the the external-node pile has one more node 
than the internal-node pile. 
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Figure 7.13:  Operation that removes an external 
node and its parent node, used in the justification of 
Proposition 7.11. 

 

Note that the above relationship does not hold, in general, for improper binary 
trees and nonbinary trees, although there are other interesting relationships that 
can hold, as we explore in an exercise (C-7.7). 

7.3.4  A Linked Structure for Binary 
Trees 

As with a general tree, a natural way to realize a binary tree T is to use a linked 
structure, where we represent each node v of T by a position object (see Figure 
7.14a) with fields providing references to the element stored at v and to the position 
objects associated with the children and parent of v. If v is the root of T, then the 
parent field of v is null. If v has no left child, then the left field of v is null. If v has 
no right child, then the right field of v is null. Also, we store the number of nodes of 
T in a variable, called size. We show the linked structure representation of a binary 
tree in Figure 7.14b. 

Figure 7.14:  A node (a) and a linked structure (b) for 
representing a binary tree. 
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Java Implementation of a Binary Tree Node 
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We use a Java interface BTPosition (not shown) to represent a node of a 
binary tree. This interfaces extends Position, thus inheriting method element, 
and has additional methods for setting the element stored at the node 
(setElement) and for setting and returning the left child (setLeft and 
getLeft), right child (setRight and getRight), and parent (setParent 
and getParent) of the node. Class BTNode (Code Fragment 7.15) implements 
interface BTPosition by an object with fields element, left, right, and parent, 
which, for a node v, reference the element at v, the left child of v, the right child of 
v, and the parent of v, respectively. 

Code Fragment 7.15:  Auxiliary class BTNode for 
implementing binary tree nodes. 
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Java Implementation of the Linked Binary Tree Structure 

In Code Fragments 7.16–7.18, we show portions of class Linked Binary 
Tree that implements the Binary Tree interface (Code Fragment 7.14) 
using a linked data structure. This class stores the size of the tree and a reference 
to the BTNode object associated with the root of the tree in internal variables. In 
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addition to the Binary Tree interface methods, LinkedBinaryTree has 
various other methods, including accessor method sibling(v), which returns 
the sibling of a node v, and the following update methods: 

addRoot(e): 

Create and return a new node r storing element e and make r the root of 
the tree; an error occurs if the tree is not empty. 

insertLeft(v,e): 

Create and return a new node w storing element e, add w as the the left 
child of v and return w; an error occurs if v already has a left child. 

insertRight(v,e): 

Create and return a new node z storing element e, add z as the the right 
child of v and return z; an error occurs if v already has a right child. 

remove(v): 

Remove node v, replace it with its child, if any, and return the element 
stored at v; an error occurs if v has two children. 

attach(v,T1,T2): 

Attach T1 and T2, respectively, as the left and right subtrees of the 
external node v; an error condition occurs if v is not external. 

Class LinkedBinaryTree has a constructor with no arguments that returns an 
empty binary tree. Starting from this empty tree, we can build any binary tree by 
creating the first node with method addRoot and repeatedly applying the 
insertLeft and insertRight methods and/or the attach method. Likewise, 
we can dismantle any binary tree T using the remove operation, ultimately 
reducing such a tree T to an empty binary tree. 

When a position v is passed as an argument to one of the methods of class 
LinkedBinaryTree, its validity is checked by calling an auxiliary helper 
method, checkPosition(v). A list of the nodes visited in a preorder traversal 
of the tree is constructed by recursive method preorderPositions. Error 
conditions are indicated by throwing exceptions Invalid Position 
Exception, BoundaryViolation Exception, 
EmptyTreeException, and NonEmptyTreeException. 

Code Fragment 7.16:  Portions of the Linked 
Binary Tree class, which implements the Binary 
Tree interface. (Continues in Code Fragment 7.17.) 
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Code Fragment 7.17:  Portions of the Linked 
Binary Tree class, which implements the Binary 
Tree interface. (Continues in Code Fragment 7.18.) 
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Code Fragment 7.18:  Portions of the Linked 
Binary Tree class, which implements the Binary 
Tree interface. (Continues in Code Fragment 7.19.) 
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Code Fragment 7.19:  Portions of the 
LinkedBinaryTree class, which implements the 
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Binary Tree interface. (Continues in Code Fragment 
7.20.) 

 
Code Fragment 7.20:  Portions of the Linked 
Binary Tree class, which implements the Binary 
Tree interface. (Continued from Code Fragment 7.19.) 
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Performance of the Linked Binary Tree Implementation 

Let us now analyze the running times of the methods of class Linked Binary 
Tree, which uses a linked structure representation:  
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• Methods size() and isEmpty() use an instance variable storing the 
number of nodes of T, and each take O(1) time. 

• The accessor methods root, left, right, sibling and parent take O(1) time. 

• Method replace(v,e) takes O(1) time. 

• Methods iterator() and positions() are implemented by performing a pre-
order traversal of the tree (using the auxiliary method preorderPositions). The 
nodes visited by the traversal are stored in a position list implemented by class 
NodePositionList (Section 6.2.4) and the output iterator is generated with 
method iterator() of class NodePositionList. Methods 
iterator() and positions() take O(n) time and methods hasNext() and 
next() of the returned iterators run in O(1) time. 

• Method children uses a similar approach to construct the returned iterable 
collection, but it runs in O(1) time, since there are at most two children for any 
node in a binary tree. 

• The update methods insertLeft, insertRight, attach, and 
remove all run in O(1) time, as they involve constant-time manipulation of a 
constant number of nodes. 

Considering the space required by this data structure for a tree with n nodes, note 
that there is an object of class BTNode (Code Fragment 7.15) for every node of 
tree T. Thus, the overall space requirement is O(n). Table 7.2 summarizes the 
performance of the linked structure implementation of a binary tree. 

Table 7.2:  Running times for the methods of an n-
node binary tree implemented with a linked structure. 
Methods hasNext() and next() of the iterators returned 
by iterator(), positions().iterator(), and 
children(v).iterator() run in O(1) time. The 
space usage is O(n). 

Operation 

Time 

size, isEmpty 

O(1) 

iterator, positions 
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O(n) 

replace 

O(1) 

root, parent, children, left, right, sibling 

O(1) 

hasLeft, hasRight, isInternal, isExternal, 
isRoot 

O(1) 

insertLeft, insertRight, attach, remove 

O(1) 

7.3.5  An Array-List Representation of a 
Binary Tree 

An alternative representation of a binary tree T is based on a way of numbering the 
nodes of T. For every node v of T, let p(v) be the integer defined as follows. 

• If v is the root of T, then p(v) = 1. 

• If v is the left child of node u, then p(v) = 2p(u). 

• If v is the right child of node u, then p(v) = 2p(u) + 1. 

The numbering function p is known as a level numbering of the nodes in a binary 
tree T, for it numbers the nodes on each level of T in increasing order from left to 
right, although it may skip some numbers. (See Figure 7.15.) 

Figure 7.15:  Binary tree level numbering: (a) general 
scheme; (b) an example. 
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The level numbering function p suggests a representation of a binary tree T by 
means of an array list S such that node v of T is the element of S at index p(v). As 
mentioned in the previous chapter, we realize the array list S by means of an 
extendable array. (See Section 6.1.4.) Such an implementation is simple and 
efficient, for we can use it to easily perform the methods root, parent, 
left, right, hasLeft, hasRight, isInternal, isExternal, 
and isRoot by using simple arithmetic operations on the numbers p(v) associated 
with each node v involved in the operation. We leave the details of this 
implementation as an exercise (R-7.26). 

We show an example array-list representation of a binary tree in Figure 7.16. 

Figure 7.16:  Representation of a binary tree T by 
means of an array list S. 
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Let n be the number of nodes of T, and let pM be the maximum value of p(v) over 
all the nodes of T. The array list S has size N = pM + 1 since the element of S at 
index 0 is not associated with any node of T. Also, S will have, in general, a number 
of empty elements that do not refer to existing nodes of T. In fact, in the worst case, 
N = 2n, the justification of which is left as an exercise (R-7.23). In Section 8.3, we 
will see a class of binary trees, called "heaps" for which N = n + 1. Thus, in spite of 
the worst-case space usage, there are applications for which the array-list 
representation of a binary tree is space efficient. Still, for general binary trees, the 
exponential worst-case space requirement of this representation is prohibitive. 

Table 7.3 summarizes running times of the methods of a binary tree implemented 
with an array list. We do not include any tree update methods here. 

Table 7.3:  Running times for a binary tree T 
implemented with an array list S. We denote the 
number of nodes of T with n, and N denotes the size of 
S. The space usage is O(N), which is O(2n) in the worst 
case. 

Operation 
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Time 

size, isEmpty 

O(1) 

iterator, positions 

O(n) 

replace 

O(1) 

root, parent, children, left, right 

O(1) 

hasLeft, hasRight, isInternal, isExternal, isRoot 

O(1) 

7.3.6  Traversals of Binary Trees 

As with general trees, binary tree computations often involve traversals. 

Building an Expression Tree 

Consider the problem of constructing an expression tree from a fully 
parenthesized arithmetic expression of size n. (Recall Example 7.9 and Code 
Fragment 7.24.) In Code Fragment 7.21, we give algorithm buildExpression 
for building such an expression tree, assuming all arithmetic operations are binary 
and variables are not parenthesized. Thus, every parenthesized subexpression 
contains an operator in the middle. The algorithm uses a stack S while scanning 
the input expression E looking for variables, operators, and right parentheses. 

• When we see a variable or operator x, we create a single-node binary tree 
T, whose root stores x and we push T on the stack. 

• When we see a right parenthesis, ")", we pop the top three trees from the 
stack S, which represent a subexpression (E1 o E2). We then attach the trees for 
E1 and E2 to the one for o, and push the resulting tree back on S. 

We repeat this until the expression E has been processed, at which time the top 
element on the stack is the expression tree for E. The total running time is O(n). 
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Code Fragment 7.21:  Algorithm 
buildExpression. 

 

Preorder Traversal of a Binary Tree 

Since any binary tree can also be viewed as a general tree, the preorder traversal 
for general trees (Code Fragment 7.8) can be applied to any binary tree. We can 
simplify the algorithm in the case of a binary tree traversal, however, as we show 
in Code Fragment 7.22. 

Code Fragment 7.22:  Algorithm binaryPreorder 
for performing the preorder traversal of the subtree of 
a binary tree T rooted at a node v. 
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As is the case for general trees, there are many applications of the preorder 
traversal for binary trees. 

Postorder Traversal of a Binary Tree 

Analogously, the postorder traversal for general trees (Code Fragment 7.11) can 
be specialized for binary trees, as shown in Code Fragment 7.23. 

Code Fragment 7.23:  Algorithm 
binaryPostorder for performing the postorder 
traversal of the subtree of a binary tree T rooted at 
node v. 

 

Expression Tree Evaluation 

The postorder traversal of a binary tree can be used to solve the expression tree 
evaluation problem. In this problem, we are given an arithmetic expression tree, 
that is, a binary tree where each external node has a value associated with it and 
each internal node has an arithmetic operation associated with it (see Example 
7.9), and we want to compute the value of the arithmetic expression represented 
by the tree. 

Algorithm evaluateExpression, given in Code Fragment 7.24, evaluates 
the expression associated with the subtree rooted at a node v of an arithmetic 
expression tree T by performing a postorder traversal of T starting at v. In this 

 419



case, the "visit" action consists of performing a single arithmetic operation. Note 
that we use the fact that an arithmetic expression tree is a proper binary tree. 

Code Fragment 7.24:  Algorithm 
evaluateExpression for evaluating the expression 
represented by the subtree of an arithmetic expression 
tree T rooted at node v. 

 

The expression-tree evaluation application of the postorder traversal provides an 
O(n)-time algorithm for evaluating an arithmetic expression represented by a 
binary tree with n nodes. Indeed, like the general postorder traversal, the 
postorder traversal for binary trees can be applied to other "bottom-up" evaluation 
problems (such as the size computation given in Example 7.7) as well. 

Inorder Traversal of a Binary Tree 

An additional traversal method for a binary tree is the inorder traversal. In this 
traversal, we visit a node between the recursive traversals of its left and right 
subtrees. The inorder traversal of the subtree rooted at a node v in a binary tree T 
is given in Code Fragment 7.25. 

Code Fragment 7.25:  Algorithm inorder for 
performing the inorder traversal of the subtree of a 
binary tree T rooted at a node v. 
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The inorder traversal of a binary tree T can be informally viewed as visiting the 
nodes of T "from left to right." Indeed, for every node v, the inorder traversal 
visits v after all the nodes in the left subtree of v and before all the nodes in the 
right subtree of v. (See Figure 7.17.) 

Figure 7.17:  Inorder traversal of a binary tree. 

 

Binary Search Trees 

Let S be a set whose elements have an order relation. For example, S could be a 
set of integers. A binary search tree for S is a proper binary tree T such that 

• Each internal node v of T stores an element of S, denoted with x(v). 

• For each internal node v of T, the elements stored in the left subtree of v 
are less than or equal to x(v) and the elements stored in the right subtree of v are 
greater than or equal to x(v). 

• The external nodes of T do not store any element. 

An inorder traversal of the internal nodes of a binary search tree T visits the 
elements in nondecreasing order. (See Figure 7.18.) 
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Figure 7.18:  A binary search tree storing integers. 
The blue solid path is traversed when searching 
(successfully) for 36. The blue dashed path is traversed 
when searching (unsuccessfully) for 70. 

 

We can use a binary search tree T for set S to find whether a given search value y 
is in S, by traversing a path down the tree T, starting at the root. (See Figure 7.18.) 
At each internal node v encountered, we compare our search value y with the 
element x(v) stored at v. If y = x(v), then the search continues in the left subtree of 
v. If y = x(v), then the search terminates successfully. If y ≥ x(v), then the search 
continues in the right subtree of v. Finally, if we reach an external node, the 
search terminates unsuccessfully. In other words, a binary search tree can be 
viewed as a binary decision tree (recall Example 7.8), where the question asked at 
each internal node is whether the element at that node is less than, equal to, or 
larger than the element being searched for. Indeed, it is exactly this 
correspondence to a binary decision tree that motivates restricting binary search 
trees to be proper binary trees (with "place-holder" external nodes). 

Note that the running time of searching in a binary search tree T is proportional to 
the height of T. Recall from Proposition 7.10 that the height of a proper binary 
tree with n nodes can be as small as log(n + 1) − 1 or as large as (n − 1)/2. Thus, 
binary search trees are most efficient when they have small height. We illustrate 
an example search operation in a binary search tree in Figure 7.18, and we study 
binary search trees in more detail in Section 10.1. 

Using Inorder Traversal for Tree Drawing 
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The inorder traversal can also be applied to the problem of computing a drawing 
of a binary tree. We can draw a binary tree T with an algorithm that assigns x- and 
y-coordinates to a node v of T using the following two rules (see Figure 7.19):  

• x(v) is the number of nodes visited before v in the inorder traversal of T 

• y(v) is the depth of v in T. 

In this application, we take the convention common in computer graphics that x-
coordinates increase left to right and y-coordinates increase top to bottom. So the 
origin is in the upper left corner of the computer screen. 

Figure 7.19:  An inorder drawing of a binary tree. 

 

The Euler Tour Traversal of a Binary Tree 

The tree-traversal algorithms we have discussed so far are all forms of iterators. 
Each traversal visits the nodes of a tree in a certain order, and is guaranteed to 
visit each node exactly once. We can unify the tree-traversal algorithms given 
above into a single framework, however, by relaxing the requirement that each 
node be visited exactly once. The resulting traversal method is called the Euler 
tour traversal, which we study next. The advantage of this traversal is that it 
allows for more general kinds of algorithms to be expressed easily. 

The Euler tour traversal of a binary tree T can be informally defined as a "walk" 
around T, where we start by going from the root toward its left child, viewing the 
edges of T as being "walls" that we always keep to our left. (See Figure 7.20.) 
Each node v of T is encountered three times by the Euler tour:  

• "On the left" (before the Euler tour of v's left subtree) 

• "From below" (between the Euler tours of v's two subtrees) 

• "On the right" (after the Euler tour of v's right subtree). 
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if v is external, then these three "visits" actually all happen at the same time. We 
describe the Euler tour of the subtree rooted at v in Code Fragment 7.26. 

Figure 7.20:  Euler tour traversal of a binary tree. 

 
Code Fragment 7.26:  The Euler tour of the subtree 
of a binary tree T rooted at v. 

 

The running time of the Euler tour traversal of an n-node tree is easy to analyze, 
assuming each visit action takes O(1) time. Since we spend a constant amount of 
time at each node of the tree during the traversal, the overall running time is O(n). 

The preorder traversal of a binary tree is equivalent to an Euler tour traversal such 
that each node has an associated "visit" action occur only when it is encountered 
on the left. Likewise, the inorder and postorder traversals of a binary tree are 
equivalent to an Euler tour such that each node has an associated "visit" action 
occur only when it is encountered from below or on the right, respectively. The 
Euler tour traversal extends the preorder, inorder, and postorder traversals, but it 
can also perform other kinds of traversals. For example, suppose we wish to 
compute the number of descendents of each node v in an n-node binary tree. We 
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start an Euler tour by initializing a counter to 0, and then increment the counter 
each time we visit a node on the left. To determine the number of descendents of 
a node v, we compute the difference between the values of the counter when v is 
visited on the left and when it is visited on the right, and add 1. This simple rule 
gives us the number of descendents of v, because each node in the subtree rooted 
at v is counted between v's visit on the left and v's visit on the right. Therefore, we 
have an O(n)-time method for computing the number of descendents of each 
node. 

Another application of the Euler tour traversal is to print a fully parenthesized 
arithmetic expression from its expression tree (Example 7.9). Algorithm printEx-
pression, shown in Code Fragment 7.27, accomplishes this task by performing the 
following actions in an Euler tour:  

• "On the left" action: if the node is internal, print "(" 

• "From below" action: print the value or operator stored at the node 

• "On the right" action: if the node is internal, print ")". 

Code Fragment 7.27:  An algorithm for printing the 
arithmetic expression associated with the subtree of 
an arithmetic expression tree T rooted at v. 

 

7.3.7  The Template Method Pattern 
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The tree traversal methods described above are actually examples of an interesting 
object-oriented software design pattern, the template method pattern. The template 
method pattern describes a generic computation mechanism that can be specialized 
for a particular application by redefining certain steps. Following the template 
method pattern, we design an algorithm that implements a generic Euler tour 
traversal of a binary tree. This algorithm, called templateEulerTour, is shown 
in Code Fragment 7.28. 

Code Fragment 7.28:  An Euler tour traversal of the 
subtree of a binary tree T rooted at a node v, following 
the template method pattern. 

 

When called on a node v, method templateEulerTour calls several other 
auxiliary methods at different phases of the traversal. Namely, it 

• Creates a local variable r of type TourResult, which is used to store 
intermediate results of the computation and has fields left, right and out 

• Calls auxiliary method visitLeft(T,v,r), which performs the 
computations associated with encountering the node on the left 

• If v has a left child, recursively calls itself on the left child of v and stores 
the returned value in r.left 

• Calls auxiliary method visitBelow(T, v, r), which performs the 
computations associated with encountering the node from below 

• If v has a right child, recursively calls itself on the right child and stores 
the returned value in r.right 
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• Calls auxiliary method visitRight(T, v, r), which performs the 
computations associated with encountering the node on the right 

• Returns r.out. 

Method templateEulerTour can be viewed as a template or "skeleton" of an 
Euler tour. (See Code Fragment 7.28.) 

Java Implementation 

Java class EulerTour, shown in Code Fragment 7.29, implements an Euler tour 
traversal using the template method pattern. The recursive traversal is performed 
by method eulerTour. The auxiliary methods called by eulerTour are 
empty place holders. That is, they have an empty body or they just return null. 
Class EulerTour is abstract and thus cannot be instantiated. It contains an 
abstract method, called execute, which needs to be specified in the concrete 
subclass of EulerTour. Class TourResult, with fields left, right, and 
out, is not shown. 

Code Fragment 7.29:  Java class EulerTour 
defining a generic Euler tour of a binary tree. This class 
realizes the template method pattern and must be 
specialized in order to get an interesting computation. 
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The class, EulerTour, itself does not perform any useful computation. 
Nevertheless, we can extend it and override the empty auxiliary methods to do 
useful tasks. We illustrate this concept using arithmetic expression trees (see 
Example 7.9). We assume that an arithmetic expression tree has objects of type 
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ExpressionTerm at each node. Class ExpressionTerm has subclasses 
ExpressionVariable (for variables) and ExpressionOperator (for 
operators). In turn, class ExpressionOperator has subclasses for the 
arithmetic operators, such as AdditionOperator and 
MultiplicationOperator. Method value of ExpressionTerm is 
overridden by its subclasses. For a variable, it returns the value of the variable. 
For an operator, it returns the result of applying the operator to its operands. The 
operands of an operator are set by method setOperands of 
ExpressionOperator. In Code Fragment 7.30, we show the classes 
ExpressionTerm, ExpressionVariable, ExpressionOperator and 
AdditionOperator. 

Code Fragment 7.30:  Classes for a variable, generic 
operator, and addition operator of an arithmetic 
expression. 
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In Code Fragments 7.31 and 7.32, we show classes 
EvaluateExpressionTour and PrintExpressionTour, specializing 
EulerTour, that evaluate and print the arithmetic expression stored in a binary 
tree, respectively. Class EvaluateExpressionTour overrides auxiliary 
method visitRight(T, v, r) with the following computation:  

• If v is an external node, set r.out equal to the value of the variable stored 
at v 

• Else (v is an internal node), combine r.left and r.right with the 
operator stored at v, and set r.out equal to the result of the operation. 

Class PrintExpressionTour overrides methods visitLeft, 
visitBelow, and visitRight following the approach of pseudo-code 
version shown in Code Fragment 7.27. 
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Code Fragment 7.31:  Class EvaluateExpressionTour 
that specializes EulerTour to evaluate the expression 
associated with an arithmetic expression tree. 

 
Code Fragment 7.32:  Class PrintExpressionTour that 
specializes EulerTour to print the expression 
associated with an arithmetic expression tree. 

 

7.4  Exercises 
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For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-7.1 

The following questions refer to the tree of Figure 7.3. 

a. 

Which node is the root? 

b. 

What are the internal nodes? 

c. 

How many descendents does node cs016/ have? 

d. 

How many ancestors does node cs016/ have? 

e. 

What are the siblings of node homeworks/? 

f. 

Which nodes are in the subtree rooted at node projects/? 

g. 

What is the depth of node papers/? 

h. 

What is the height of the tree? 

R-7.2 

Find the value of the arithmetic expression associated with each subtree of the 
binary tree of Figure 7.11. 

R-7.3 
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Let T be an n-node binary tree that may be improper. Describe how to represent 
T by means of a proper binary tree T ′ with O(n) nodes. 

R-7.4 

What are the minimum and maximum number of internal and external nodes in 
an improper binary tree with n nodes? 

R-7.5 

Show a tree achieving the worst-case running time for algorithm depth. 

R-7.6 

Give a justification of Proposition 7.4. 

R-7.7 

What is the running time of algorithm height2(T, v) (Code Fragment 7.6) 
when called on a node v distinct from the root of T? 

R-7.8 

Let T be the tree of Figure 7.3, and refer to Code Fragments 7.9 and 7.10. 

a. 

Give the output of toStringPostorder(T, T.root()). 

b. 

Give the output of parentheticRepresentation(T, T.root()). 

R-7.9 

Describe a modification to parentheticRepresentation, from Code 
Fragment 7.10, so that it uses the length() method for String objects to 
output the parenthetic representation of a tree with line breaks and spaces added 
to display the tree in a text window that is 80 characters wide. 

R-7.10 

Draw an arithmetic expression tree that has four external nodes, storing the 
numbers 1, 5, 6, and 7 (with each number stored in a distinct external node, but 
not necessarily in this order), and has three internal nodes, each storing an 
operator from the set { + , − , ×, /}, so that the value of the root is 21. The 
operators may return and act on fractions, and an operator may be used more 
than once. 
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R-7.11 

Let T be an ordered tree with more than one node. Is it possible that the preorder 
traversal of T visits the nodes in the same order as the postorder traversal of T? 
If so, give an example; otherwise, argue why this cannot occur. Likewise, is it 
possible that the preorder traversal of T visits the nodes in the reverse order of 
the postorder traversal of T? If so, give an example; otherwise, argue why this 
cannot occur. 

R-7.12 

Answer the previous question for the case when T is a proper binary tree with 
more than one node. 

R-7.13 

What is the running time of parentheticRepresentation(T, T.root()) 
(Code Fragment 7.10) for a tree T with n nodes? 

R-7.14 

Draw a (single) binary tree T such that 

• 

Each internal node of T stores a single character 

• 

A preorder traversal of T yields EXAMFUN 

• 

An inorder traversal of T yields MAFXUEN. 

R-7.15 

Answer the following questions so as to justify Proposition 7.10. 

a. 

What is the minimum number of external nodes for a proper binary tree with 
height h? Justify your answer. 

b. 

What is the maximum number of external nodes for a proper binary tree 
with height h? Justify your answer. 
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c. 

Let T be a proper binary tree with height h and n nodes. Show that 

log(n + 1) −1 ≤ h ≤ (n − 1)/2. 

d. 

For which values of n and h can the above lower and upper bounds on h be 
attained with equality? 

R-7.16 

Describe a generalization of the Euler tour traversal to trees such that each 
internal node has three children. Describe how you could use this traversal to 
compute the height of each node in such a tree. 

R-7.17 

Compute the output of algorithm toStringPostorder(T,T.root()), from 
Code Fragment 7.12, on the tree T of Figure 7.3. 

R-7.18 

Illustrate the execution of algorithm diskSpace(T, T.root()) (Code 
Fragment 7.13) on the tree T of Figure 7.9. 

R-7.19 

Let T be the binary tree of Figure 7.11. 

a. 

Give the output of toStringPostorder(T, T.root()) (Code Fragment 
7.9). 

b. 

Give the output of parentheticRepresentation(T, T.root()) 
(Code Fragment 7.10). 

R-7.20 

Let T be the binary tree of Figure 7.11. 

a. 

Give the output of toStringPostorder(T, T.root()) (Code Fragment 
7.12). 
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b. 

Give the output of printExpression(T, T.root()) (Code Fragment 
7.27). 

R-7.21 

Describe, in pseudo-code, an algorithm for computing the number of 
descendents of each node of a binary tree. The algorithm should be based on the 
Euler tour traversal. 

R-7.22 

Let T be a (possibly improper) binary tree with n nodes, and let D be the sum of 
the depths of all the external nodes of T. Show that if T has the minimum 
number of external nodes possible, then D is O(n) and if T has the maximum 
number of external nodes possible, then D is O(n log n). 

R-7.23 

Let T be a binary tree with n nodes, and let p be the level numbering of the 
nodes of T, as given in Section 7.3.5. 

a. 

Show that, for every node v of T, p(v) ≤ 2n − 1. 

b. 

Show an example of a binary tree with seven nodes that attains the above 
upper bound on p(v) for some node v. 

R-7.24 

Show how to use the Euler tour traversal to compute the level number, defined 
in Section 7.3.5, of each node in a binary tree T. 

R-7.25 

Draw the binary tree representation of the following arithmetic expression: "(((5 
+ 2) * (2 − 1))/((2 + 9) + ((7 − 2) − 1)) * 8)". 

R-7.26 

Let T be a binary tree with n nodes that is realized with an array list, S, and let p 
be the level numbering of the nodes in T, as given in Section 7.3.5. Give 
pseudo-code descriptions of each of the methods root, parent, left, 
right, hasLeft, hasRight, isInternal, isExternal, and isRoot. 
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Creativity 

C-7.1 

For each node v in a tree T, let pre(v) be the rank of v in a preorder traversal of 
T, let post(v) be the rank of v in a postorder traversal of T, let depth (v) be the 
depth of v, and let desc(v) be the number of descendents of v, not counting v 
itself. Derive a formula defining post(v) in terms of desc(v), depth(v), and 
pre(v), for each node v in T. 

C-7.2 

Let T be a tree whose nodes store strings. Give an efficient algorithm that 
computes and prints, for every node v of T, the string stored at v and the height 
of the subtree rooted at v. 

C-7.3 

Design algorithms for the following operations for a binary tree T: 

• 

preorderNext(v): return the node visited after node v in a preorder 
traversal of T 

• 

inorderNext(v): return the node visited after node v in an inorder 
traversal of T 

• 

postorderNext(v): return the node visited after node v in a postorder 
traversal of T. 

What are the worst-case running times of your algorithms? 

C-7.4 

Give an O(n)-time algorithm for computing the depth of all the nodes of a tree 
T, where n is the number of nodes of T. 

C-7.5 

The indented parenthetic representation of a tree T is a variation of the 
parenthetic representation of T (see Figure 7.7) that uses indentation and line 
breaks as illustrated in Figure 7.21. Give an algorithm that prints this 
representation of a tree. 
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Figure 7.21:  (a) Tree T; (b) indented parenthetic 
representation of T. 

 

C-7.6 

Let T be a (possibly improper) binary tree with n nodes, and let D be the sum of 
the depths of all the external nodes of T. Describe a configuration for T such 
that D is Ω(n2). Such a tree would be the worst case for the asymptotic running 
time of Algorithm height1 (Code Fragment 7.5). 

C-7.7 

For a tree T, let nI denote the number of its internal nodes, and let nE denote the 
number of its external nodes. Show that if every internal node in T has exactly 3 
children, then nE = 2nI + 1. 

C-7.8 

Describe how to clone a proper binary tree using the attach method instead of 
methods insertLeft and insertRight. 

C-7.9 

The balance factor of an internal node v of a proper binary tree is the difference 
between the heights of the right and left subtrees of v. Show how to specialize 
the Euler tour traversal of Section 7.3.7 to print the balance factors of all the 
internal nodes of a proper binary tree. 
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C-7.10 

Two ordered trees T ′ and T ″ are said to be isomorphic if one of the following 
holds:  

• Both T ′ and T ″ are empty 

• Both T ′ and T ″ consist of a single node 

• Both T ′ and T ″ have the same number k ≥ 1 of subtrees, and the ith 
subtree of T ′ is isomorphic to the ith subtree of T ″, for i = 1, …,k. 

Design an algorithm that tests whether two given ordered trees are isomorphic. 
What is the running time of your algorithm? 

C-7.11 

Extend the concept of an Euler tour to an ordered tree that is not necessarily a 
binary tree. 

C-7.12 

We can define a binary tree representation T ′ for an ordered general tree T as 
follows (see Figure 7.22):  

• For each node u of T, there is an internal node u ′ of T ′ associated with u. 

• If u is an external node of T and does not have a sibling immediately 
following it, then the children of u ′ in T ′ are external nodes. 

• If u is an internal node of T and v is the first child of u in T, then v is the 
left child of u ′ in T ′. 

• If node v has a sibling w immediately following it, then w ′ is the right 
child of v ′ in T ′. 

Given such a representation T ′ of a general ordered tree T, answer each of the 
following questions:  

a. Is a preorder traversal of T ′ equivalent to a preorder traversal of T? 

b. Is a postorder traversal of T ′ equivalent to a postorder traversal of T? 

c. Is an inorder traversal of T ′ equivalent to one of the standard traversals of 
T? If so, which one? 
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Figure 7.22:  Representation of a tree with a binary 
tree: (a) tree T; (b) binary tree T ′ for T. The dashed 
edges connect nodes of T ′ that are siblings in T. 

 

C-7.13 

As mentioned in Exercise C-5.8,postfix notation is an unambiguous way of 
writing an arithmetic expression without parentheses. It is defined so that if 
"(exp1)op(exp2)" is a normal (infix) fully parenthesized expression with 
operation op, then its postfix equivalent is "pexp1 pexp2 op", where pexp1 is the 
postfix version of exp1 and pexp2 is the postfix version of exp2. The postfix 
version of a single number of variables is just that number or variable. So, for 
example, the postfix version of the infix expression "((5 + 2) * (8 − 3))/4" is "5 
2 + 8 3 − * 4 /". Give an efficient algorithm for converting an infix arithmetic 
expression to its equivalent postfix notation. (Hint: First convert the infix 
expression into its equivalent binary tree representation, using the algorithm of 
Code Fragment 7.21.) 

C-7.14 

Given a proper binary tree T, define the reflection of T to be the binary tree T ′ 
such that each node v in T is also in T ′, but the left child of v in T is v's right 
child in T ′ and the right child of v in T is v's left child in T ′. Show that a 
preorder traversal of a proper binary tree T is the same as the postorder traversal 
of T ′s reflection, but in reverse order. 

C-7.15 

Algorithm preorderDraw draws a binary tree T by assigning x- and y-
coordinates to each node v such that x(v) is the number of nodes preceding v in 
the preorder traversal of T and y(v) is the depth of v in T. Algorithm 
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postorderDraw is similar to preorderDraw but assigns x-coordinates 
using a postorder traversal. 

a. Show that the drawing of T produced by preorderDraw has no pairs of 
crossing edges. 

b. Redraw the binary tree of Figure 7.19 using preorderDraw. 

c. Show that the drawing of T produced by postorderDraw has no pairs 
of crossing edges. 

d. Redraw the binary tree of Figure 7.19 using postorderDraw. 

C-7.16 

Design an algorithm for drawing general trees that generalizes the inorder 
traversal approach for drawing binary trees. 

C-7.17 

Let a visit action in the Euler tour traversal be denoted by a pair (v,a), where v is 
the visited node and a is one of left, below, or right. Design and analyze an 
algorithm for performing operation tourNext(v, a), which returns the visit 
action (w,b) following (v,a). 

C-7.18 

Consider a variation of the linked data structure for binary trees where each 
node object has references to the node objects of the children but not to the node 
object of the parent. Describe an implementation of the methods of a binary tree 
with this data structure and analyze the time complexity for these methods. 

C-7.19 

Design an alternative implementation of the linked data structure for proper 
binary trees using a class for nodes that specializes into subclasses for an 
internal node, an external node, and the root node. 

C-7.20 

Within the linked data structure for binary trees, explore an alternative design 
for implementing the iterators returned by the methods iterator(), 
positions().iterator(), and children(v).iterator() such that each 
of these methods takes O(1) time. Can you still achieve constant time 
implementations for the methods hasNext() and next() of the iterators 
returned? 

C-7.21 
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Let T be a tree with n nodes. Define the lowest common ancestor (LCA) 
between two nodes v and w as the lowest node in T that has both v and w as 
descendents (where we allow a node to be a descendent of itself). Given two 
nodes v and w, describe an efficient algorithm for finding the LCA of v and w. 
What is the running time of your algorithm? 

C-7.22 

Let T be a binary tree with n nodes, and, for any node v in T, let dv denote the 
depth of v in T. The distance between two nodes v and w in T is dv + dw − 2du, 
where u is the lowest common ancestor (LCA) u of v and w. The diameter of T 
is the maximum distance between two nodes in T. Describe an efficient 
algorithm for finding the diameter of T. What is the running time of your 
algorithm? 

C-7.23 

Suppose each node v of a binary tree T is labeled with its value p(v) in a level 
numbering of T. Design a fast method for determining p(u) for the lowest 
common ancestor (LCA), u, of two nodes v and w in T, given p(v) and p(w). 
You do not need to find node u, just compute its level-numbering label. 

C-7.24 

Justify the bounds in Table 7.3 by providing a detailed analysis of the running 
times of the methods of a binary tree T implemented with an array list, S, where 
S is realized by means of an array. 

C-7.25 

Justify Table 7.1, summarizing the running time of the methods of a tree 
represented with a linked structure, by providing, for each method, a description 
of its implementation, and an analysis of its running time. 

C-7.26 

Describe a nonrecursive method for evaluating a binary tree representing an 
arithmetic expression. 

C-7.27 

Let T be a binary tree with n nodes. Define a Roman node to be a node v in T, 
such that the number of descendents in v's left subtree differ from the number of 
descendents in v's right subtree by at most 5. Describe a linear-time method for 
finding each node v of T, such that v is not a Roman node, but all of v's 
descendents are Roman nodes. 

C-7.28 
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Describe a nonrecursive method for performing an Euler tour traversal of a 
binary tree that runs in linear time and does not use a stack. 

C-7.29 

Describe, in pseudo-code, a nonrecursive method for performing an in-order 
traversal of a binary tree in linear time. 

C-7.30 

Let T be a binary tree with n nodes (T may be realized with an array list or a 
linked structure). Give a linear-time algorithm that uses the methods of the 
Binary Tree interface to traverse the nodes of T by increasing values of the level 
numbering function p given in Section 7.3.5. This traversal is known as the level 
order traversal. 

C-7.31 

The path length of a tree T is the sum of the depths of all the nodes in T. 
Describe a linear-time method for computing the path length of a tree T (which 
is not necessarily binary). 

C-7.32 

Define the internal path length, I(T), of a tree T to be the sum of the depths of 
all the internal nodes in T. Likewise, define the external path length, E(T), of a 
tree T to be the sum of the depths of all the external nodes in T. Show that if T is 
a proper binary tree with n nodes, then E(T) = I(T) + n − 1. 

Projects 

P-7.1 

Implement the binary tree ADT using an array list. 

P-7.2 

Implement the tree ADT using a linked structure. 

P-7.3 

Write a program that draws a binary tree. 

P-7.4 

Write a program that draws a general tree. 

P-7.5 
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Write a program that can input and display a person's family tree. 

P-7.6 

Implement the tree ADT using the binary tree representation described in 
Exercise C-7.12. You may reuse the LinkedBinaryTree implementation of 
a binary tree. 

P-7.7 

A slicing floorplan divides a rectangle with horizontal and vertical sides using 
horizontal and vertical cuts. (See Figure 7.23a.) A slicing floorplan can be 
represented by a proper binary tree, called a slicing tree, whose internal nodes 
represent the cuts, and whose external nodes represent the basic rectangles into 
which the floorplan is decomposed by the cuts. (See Figure 7.23b.) The 
compaction problem for a slicing floorplan is defined as follows. Assume that 
each basic rectangle of a slicing floorplan is assigned a minimum width w and a 
minimum height h. The compaction problem is to find the smallest possible 
height and width for each rectangle of the slicing floorplan that is compatible 
with the minimum dimensions of the basic rectangles. Namely, this problem 
requires the assignment of values h(v) and w(v) to each node v of the slicing tree 
such that: 

 

 

Design a data structure for slicing floorplans that supports the operations:  

• Create a floorplan consisting of a single basic rectangle. 

• Decompose a basic rectangle by means of a horizontal cut. 

• Decompose a basic rectangle by means of a vertical cut. 

• Assign minimum height and width to a basic rectangle. 

• Draw the slicing tree associated with the floorplan. 

• Compact and draw the floorplan. 

Figure 7.23:  (a) Slicing floorplan; (b) slicing tree 
associated with the floorplan. 
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P-7.8 

Write a program that can play tic-tac-toe effectively. (See Section 3.1.5.) To do 
this, you will need to create a game tree T, which is a tree where each node 
corresponds to a game configuration, which, in this case, is a representation of 
the tic-tac-toe board. The root node corresponds to the initial configuration. For 
each internal node v in T, the children of v correspond to the game states we can 
reach from v's game state in a single legal move for the appropriate player, A 
(the first player) or B (the second player). Nodes at even depths correspond to 
moves for A and nodes at odd depths correspond to moves for B. External nodes 
are either final game states or are at a depth beyond which we don't want to 
explore. We score each external node with a value that indicates how good this 
state is for player A. In large games, like chess, we have to use a heuristic 
scoring function, but for small games, like tic-tac-toe, we can construct the 
entire game tree and score external nodes as + 1, 0, − 1, indicating whether 
player A has a win, draw, or lose in that configuration. A good algorithm for 
choosing moves is minimax. In this algorithm, we assign a score to each internal 
node v in T, such that if v represents A's turn, we compute v's score as the 
maximum of the scores of v's children (which corresponds to A's optimal play 
from v). If an internal node v represents B's turn, then we compute v's score as 
the minimum of the scores of v's children (which corresponds to B's optimal 
play from v). 

P-7.9 

Write a program that takes as input a fully parenthesized, arithmetic expression 
and converts it to a binary expression tree. Your program should display the tree 
in some way and also print the value associated with the root. For an additional 
challenge, allow for the leaves to store variables of the form x1, x2, x3, and so 
on, which are initially 0 and which can be updated interactively by your 
program, with the corresponding update in the printed value of the root of the 
expression tree. 
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P-7.10 

Write a program that visualizes an Euler tour traversal of a proper binary tree, 
including the movements from node to node and the actions associated with 
visits on the left, from below, and on the right. Illustrate your program by 
having it compute and display preorder labels, inorder labels, postorder labels, 
ancestor counts, and descendent counts for each node in the tree (not necessarily 
all at the same time). 

P-7.11 

The arithmetic expression code shown in Code Fragments 7.29–7.32 only work 
for Integer expressions with the addition operator. Write a Java program that 
can evaluation arbitrary expressions of any Number type of object. 

Chapter Notes 

Discussions of the classic preorder, inorder, and postorder tree traversal methods can 
be found in Knuth's Fundamental Algorithms book [62]. The Euler tour traversal 
technique comes from the parallel algorithms community, as it is introduced by 
Tarjan and Vishkin [89] and is discussed by J´aJ´a [53] and by Karp and 
Ramachandran [57]. The algorithm for drawing a tree is generally considered to be a 
part of the "folklore" of graph drawing algorithms. The reader interested in graph 
drawing is referred to works by Tamassia [88] and Di Battista et al. [30]. The puzzler 
in Exercise R-7.10 was communicated by Micha Sharir. 
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8.1  The Priority Queue Abstract Data Type 

A priority queue is an abstract data type for storing a collection of prioritized 
elements that supports arbitrary element insertion but supports removal of elements in 
order of priority, that is, the element with first priority can be removed at any time. 
This ADT is fundamentally different from the position-based data structures we 
discussed in previous chapters, such as stacks, queues, deques, lists, and even trees. 
These other data structures store elements at specific positions, which are often 
positions in a linear arrangement of the elements determined by the insertion and 
deletion operations performed. The priority queue ADT stores elements according to 
their priorities, and exposes no notion of "position" to the user. 

8.1.1  Keys, Priorities, and Total Order Relations 

Applications commonly require that we compare objects according to parameters or 
properties, called "keys," that are assigned for each object in a collection. Formally, 
we define a key to be an object that is assigned to an element as a specific attribute 
for that element, which can be used to identify or weigh that element. Note that the 
key is assigned to an element, typically by a user or application; hence, a key might 
represent a property that an element did not originally possess. 

The key an application assigns to an element is not necessarily unique, however, 
and an application may even change an element's key if it needs to. For example, 
we can compare companies by earnings or by number of employees; hence, either 
of these parameters can be used as a key for a company, depending on the 
information we wish to extract. Likewise, we can compare restaurants by a critic's 
food quality rating or by average entrée price. To achieve the most generality then, 
we allow a key to be of any type that is appropriate for a particular application. 
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As in the examples above from an airport, the key used for comparisons is often 
more than a single numerical value, such as price, length, weight, or speed. That is, 
a key can sometimes be a more complex property that cannot be quantified with a 
single number. For example, the priority of standby passengers is usually 
determined by taking into account a host of different factors, including frequent-
flyer status, the fare paid, and check-in time. In some applications, the key for an 
object is part of the object itself (for example, it might be an instance variable 
storing the list price of a book, or the weight of a car). In other applications, the key 
is not part of the object but the object gets assigned its key by the application (for 
example, the quality rating given to a stock by a financial analyst, or the priority 
assigned to a standby passenger by a gate agent). 

Comparing Keys with Total Orders 

A priority queue needs a comparison rule that will never contradict itself. In order 
for a comparison rule, which we denote by ≤, to be robust in this way, it must 
define a total order relation, which is to say that the comparison rule is defined 
for every pair of keys and it must satisfy the following properties:  

• Reflexive property: k ≤ k. 

• Antisymmetric property: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2. 

• Transitive property: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3. 

Any comparison rule, ≤, that satisfies these three properties will never lead to a 
comparison contradiction. In fact, such a rule defines a linear ordering 
relationship among a set of keys; hence, if a (finite) collection of elements has a 
total order defined for it, then the notion of a smallest key, kmin, is well defined, as 
a key in which kmin ≤ k, for any other key k in our collection. 

A priority queue is a collection of elements, called values, each having an 
associated key that is provided at the time the element is inserted. A key-value 
pair inserted into a priority queue is called an entry of the priority queue. The 
name "priority queue" comes from the fact that keys determine the "priority" used 
to pick entries to be removed. The two fundamental methods of a priority queue P 
are as follows:  

• insert(k,x): Insert a value x with key k into P. 

• removeMin(): Return and remove from P an entry with the smallest 
key, that is, an entry whose key is less than or equal to that of every other entry 
in P. 

By the way, some people refer to the removeMin method as the 
"extractMin" method, so as to stress that this method simultaneously removes 
and returns an entry P. There are many applications where the insert and 
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removeMin operations play an important role. We consider such an application 
in the example that follows. 

Example 8.1: Suppose a certain flight is fully booked an hour prior to 
departure. Because of the possibility of cancellations, the airline maintains a 
priority queue of standby passengers hoping to get a seat. The priority of each 
standby passenger is determined by the airline taking into account the fare paid, 
the frequent-flyer status, and the time that the passenger is inserted into the 
priority queue. A standby passenger reference is inserted into the priority queue 
with an insert operation as soon as he or she requests to fly standby. Shortly 
before the flight departure, if seats become available (for example, due to no-
shows or last-minute cancellations), the airline removes a standby passenger with 
first priority from the priority queue, using aremoveMin operation and lets this 
person board. This process is then repeated until all available seats have been 
filled or the priority queue becomes empty. 

8.1.2  Entries and Comparators 

There are still two important issues that we have left undetermined to this point:  

• How do we keep track of the associations between keys and values? 

• How do we compare keys so as to determine a smallest key? 

Answering these questions involves the use of two interesting design patterns. 

The definition of a priority queue implicitly makes use of two special kinds of 
objects that answer the above questions, the entry and comparator, which we 
discuss in this subsection. 

Entries 

An entry is an association between a key k and a value x, that is, an entry is 
simply a key-value pair. We use entries in a priority queue Q to keep track of the 
way Q is associating keys and their corresponding values. 

An entry is actually an example of a more general object-oriented design pattern, 
the composition pattern, which defines a single object that is composed of other 
objects. We use this pattern in a priority queue when we define the entries being 
stored in the priority queue to be pairs consisting of a key k and a value x. A pair 
is the simplest composition, for it combines two objects into a single pair object. 
To implement this concept, we define a class that stores two objects in its first and 
second instance variables, respectively, and provides methods to access and 
update these variables. In Code Fragment 8.1, we show an implementation of the 
composition pattern for entries storing key-value pairs in a priority queue. We 
realize this composition with an interface called Entry (the java.util 
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package includes a similar Entry interface, by the way). Other kinds of 
compositions include triples, which store three objects, quadruples, which store 
four objects, and so on. 

Code Fragment 8.1:  Java interface for an entry 
storing key-value pairs in a priority queue. 

 

Comparators 

Another important issue in the priority queue ADT that we need to define is how 
to specify the total order relation for comparing keys. We have a number of 
design choices concerning how to compare keys that we can make at this point. 

One possibility, and the one that is the most concrete, is to implement a different 
priority queue for each key type we want to use and each possible way of 
comparing keys of such types. The problem with this approach is that it is not 
very general and it requires that we create a lot of similar code. 

An alternative strategy is to require that keys be able to compare themselves to 
one another. This solution allows us to write a general priority queue class that 
can store instances of a key class that implements some kind of Comparable 
interface and encapsulates all the usual comparison methods. This solution is an 
improvement over the specialized approach, for it allows us to write a single 
priority queue class that can handle lots of different types of keys. But there are 
contexts in which this solution is asking too much of the keys, as keys often do 
not "know" how they ought to be compared. Two examples follow. 

Example 8.2: Given keys 4 and 11 we have that 4 ≤ 11 if the keys are integer 
objects (to be compared in the usual manner), but 11 ≤ 4 if the keys are string 
objects (to be compared lexicographically). 

Example 8.3: A geometric algorithm may compare points p and q in the 
plane, by their x-coordinate (that is, p ≤q ifx(p) ≤ x(q)), to sort them from left to 
right, while another algorithm may compare them by their y-coordinate (that is, p 
≤ q ify(p) ≤ y(q)), to sort them from bottom to top. In principle, there is nothing 
pertaining to the concept of a point that says whether points should be compared 
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by x- or y-coordinate. Also, many other ways of comparing points can be defined 
(for example, we can compare the distances of p and q from the origin). 

Thus, for the most general and reusable form of a priority queue, we should not 
rely on the keys to provide their comparison rules. Instead, we use special 
comparator objects that are external to the keys to supply the comparison rules. A 
comparator is an object that compares two keys. We assume that a priority queue 
P is given a comparator when P is constructed, and we might also imagine the 
ability of a priority queue to be given a new comparator if its old one ever 
becomes "out of date." When P needs to compare two keys, it uses the comparator 
it was given to perform the comparison. Thus, a programmer can write a general 
priority queue implementation that works correctly in a wide variety of contexts. 

The Comparator ADT 

Formally, the comparator ADT provides a streamlined comparison mechanism, 
based on a single method that takes two keys and compares them (or reports an 
error if the keys are incomparable): 

compare(a,b):Returns an integer i such that i < 0 if a < b, i = 0 if a 
= b, and i > 0 if a > b; an error occurs if a and b cannot be compared. 

The standard Java interface java.util.Comparator corresponds to the 
comparator ADT above, which offers a general, dynamic , reusable way to 
compare objects. It also includes an equals() method for comparing a 
comparator to other comparators. In Code Fragment 8.2, we provide an example 
of a comparator, for two-dimensional points (Code Fragment 8.3), which is also 
an example of the composition pattern. 

Code Fragment 8.2:  A comparator for two-
dimensional points based on the lexicographic order. 
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Code Fragment 8.3:  Class representing points in 
the plane with integer coordinates. 

 

8.1.3  The Priority Queue ADT 

Having described the composition and comparator patterns, let us now define the 
priority queue ADT, to support the following method for a priority queue P: 

size(): 

Return the number of entries in P. 

isEmpty(): 

Test whether P is empty. 

min(): 

Return (but do not remove) an entry of P with smallest key; an error 
condition occurs if P is empty. 

insert(k,x): 

Insert into P key k with value x and return the entry storing them; an error 
condition occurs if k is invalid (that is, k cannot be compared with other 
keys. 

removeMin(): 

Remove from P and return an entry with smallest key; an error condition 
occurs if P is empty. 
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As mentioned above, the primary methods of the priority queue ADT are the insert 
and removeMin operations. The other methods are query operation min and the 
generic collection operations size and isEmpty. Note that we allow a priority 
queue to have multiple entries with the same key. 

A Java Priority Queue Interface 

A Java interface, called PriorityQueue, for the priority queue ADT is shown 
in Code Fragment 8.4. 

Code Fragment 8.4:  Java interface for the priority 
queue ADT. 

 

It should now be obvious that the priority queue ADT is much simpler than the 
sequence ADT. This simplicity is due to the fact that elements in a priority queue 
are inserted and removed based entirely on their keys, whereas elements are 
inserted and removed in a sequence based on their positions and indices. 

Example 8.4: The following table shows a series of operations and their 
effects on an initially empty priority queue P. We denote with ei an entry object 
returned by method insert. The "Priority Queue" column is somewhat deceiving 
since it shows the entries sorted by key. This is more than is required of apriority 
queue. 

Operation 

Output 

Priority Queue 
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insert(5,A) 

e1[=(5,A)] 

{(5,A)} 

insert(9,C) 

e2[=(9,C)] 

{(5,A),(9,C)} 

insert(3,B) 

e3[=(3,B)] 

{(3,B),(5,A),(9,C)} 

insert(7,D) 

e4[=(7,D)] 

{(3,B),(5,A),(7,D),(9,C)} 

   min() 

e3 

{(3,B),(5,A),(7,D),(9,C)} 

removeMin() 

e3 

{(5,A),(7,D),(9,C)} 

   size() 

e3 

{(5,A),(7,D),(9,C)} 

removeMin() 

e1 

{(7,D),(9,C)} 

removeMin() 
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e4 

{(9,C)} 

removeMin() 

e2 

{} 

The java.util.PriorityQueue Class 

There is no priority queue interface built into Java, but Java does include a class, 
java.util.PriorityQueue, which implements the java.util.Queue 
interface. Instead of adding and removing elements according to the FIFO policy, 
however, which is the standard queue policy, the 
java.util.PriorityQueue class processes its entries according to a 
priority. This priority is defined by a given comparator object, which is passed to 
the queue in a constructor, or it is defined by the natural ordering of the elements 
being stored in the queue. Even though the java.util.PriorityQueue is 
based on the java.util.Queue interface, we can define a simple 
correspondence between the methods of this class and our priority queue ADT, as 
shown in Table 8.1, assuming we have a class, PQEntry, which implements the 
Entry interface. 

Table 8.1:  Methods of our priority queue ADT and 
corresponding methods of class 
java.util.PriorityQueue. We assume that the 
comparator for PQEntry objects is essentially the 
same as the comparator for the keys of the priority 
queue. Note that java.util.PriorityQueue has a 
pair of methods for its main operation. The two 
methods have similar functionality, with minor 
differences in the way they deal with boundary 
conditions (e.g., trying to remove from an empty 
priority queue). 

Priority Queue ADT 

Classjava.util.PriorityQueue 
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size() 

size() 

isEmpty() 

isEmpty() 

insert(k,v) 

offer(new PQEntry(k,v)) or add(new PQEntry(k,v)) 

min() 

peek(), or element() 

removeMin() 

poll(), or remove() 

8.1.4  Sorting with a Priority Queue 

Another important application of a priority queue is sorting, where we are given a 
collection S of n elements that can be compared according to a total order relation, 
and we want to rearrange them in increasing order (or at least in nondecreasing 
order if there are ties). The algorithm for sorting S with a priority queue Q, called 
PriorityQueueSort, is quite simple and consists of the following two phases:  

1. In the first phase, we put the elements of S into an initially empty priority 
queue P by means of a series of n insert operations, one for each element. 

2. In the second phase, we extract the elements from P in nondecreasing 
order by means of a series of nremoveMin operations, putting them back into S 
in order. 

We give pseudo-code for this algorithm in Code Fragment 8.5, assuming that S is a 
sequence (pseudo-code for a different type of collection, such as an array list or 
node list, would be similar). The algorithm works correctly for any priority queue 
P, no matter how P is implemented. However, the running time of the algorithm is 
determined by the running times of operations insert and removeMin, which do 
depend on how P is implemented. Indeed, PriorityQueueSort should be 
considered more a sorting "scheme" than a sorting "algorithm," because it does not 
specify how the priority queue P is implemented. The PriorityQueueSort 
scheme is the paradigm of several popular sorting algorithms, including selection-
sort, insertion-sort, and heap-sort, which we discuss in this chapter. 
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Code Fragment 8.5:  Algorithm 
PriorityQueueSort. Note that the elements of the 
input sequence S serve as keys of the priority queue P. 

 

8.2  Implementing a Priority Queue with a List 

In this section, we show how to implement a priority queue by storing its entries in a 
list S. (See Chapter 6.2.) We provide two realizations, depending on whether or not 
we keep the entries in S sorted by key. When analyzing the running time of the 
methods of a priority queue implemented with a list, we will assume that a 
comparison of two keys takes O(1) time. 

8.2.1  Implementation with an Unsorted List 

As our first implementation of a priority queue P, let us consider storing the entries 
of P in a list S, where S is implemented with a doubly linked list. Thus, the elements 
of S are entries (k,x), where k is the key and x is the value. 

Fast Insertions and Slow Removals 

A simple way of performing operation insert(k,x) on P is to create a new entry 
object e = (k,x) and add it at the end of list S, by executing method addLast(e) 
on S. This implementation of method insert takes O(1) time. 

The above insertion algorithm implies that S will be unsorted, for always inserting 
entries at the end of S does not take into account the ordering of the keys. As a 
consequence, to perform operation min or removeMin on P, we must inspect all 
the elements of list S to find an entry (k, x) of S with minimum k. Thus, methods 
min and removeMin take O(n) time each, where n is the number of entries in P 
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at the time the method is executed. Moreover, these methods run in time 
proportional to n even in the best case, since they each require searching the entire 
list to find a minimum-key entry. That is, using the notation of Section 4.2.3, we 
can say that these methods run in θ(n) time. Finally, we implement methods size 
and isEmpty by simply returning the output of the corresponding methods 
executed on list S. 

Thus, by using an unsorted list to implement a priority queue, we achieve 
constant-time insertion, but linear-time search and removal. 

8.2.2  Implementation with a Sorted List 

An alternative implementation of a priority queue P also uses a list S, except that 
this time let us store the entries sorted by key. Specifically, we represent the priority 
queue P by using a list S of entries sorted by nondecreasing keys, which means that 
the first element of S is an entry with the smallest key. 

Fast Removals and Slow Insertions 

We can implement method min in this case simply by accessing the first element 
of the list with the first method of S. Likewise, we can implement the 
removeMin method of P as S.remove(S.first()). Assuming that S is 
implemented with a doubly linked list, operations min and removeMin in P 
take O(1) time. Thus, using a sorted list allows for simple and fast 
implementations of priority queue access and removal methods. 

This benefit comes at a cost, however, for now method insert of P requires that 
we scan through the list S to find the appropriate position to insert the new entry. 
Thus, implementing the insert method of P now takes O(n) time, where n is the 
number of entries in P at the time the method is executed. In summary, when 
using a sorted list to implement a priority queue, insertion runs in linear time 
whereas finding and removing the minimum can be done in constant time. 

Comparing the Two List-Based Implementations 

Table 8.2 compares the running times of the methods of a priority queue realized 
by means of a sorted and unsorted list, respectively. We see an interesting trade-
off when we use a list to implement the priority queue ADT. An unsorted list 
allows for fast insertions but slow queries and deletions, while a sorted list allows 
for fast queries and deletions, but slow insertions. 

Table 8.2:  Worst-case running times of the 
methods of a priority queue of size n, realized by 
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means of an unsorted or sorted list, respectively. We 
assume that the list is implemented by a doubly linked 
list. The space requirement is O(n). 

Method 

Unsorted List 

Sorted List 

size, isEmpty 

O(1) 

O(1) 

insert 

O(1) 

O(n) 

min, removeMin 

O(n) 

O(1) 

Java Implementation 

In Code Fragments 8.6 and 8.8, we show a Java implementation of a priority 
queue based on a sorted node list. This implementation uses a nested class, called 
MyEntry, to implement the Entry interface (see Section 6.5.1). We do not 
show auxiliary method checkKey(k), which throws an 
InvalidKeyException if key k cannot be compared with the comparator of 
the priority queue. Class DefaultComparator, which realizes a comparator 
using the natural ordering, is shown in Code Fragment 8.7. 

Code Fragment 8.6:  Portions of the Java class 
SortedListPriorityQueue, which implements the 
PriorityQueue interface. The nested class MyEntry 
implements the Entry interface. (Continues in Code 
Fragment 8.8.) 
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Code Fragment 8.7:  Java class 
DefaultComparator that implements a comparator 
using the natural ordering and is the default 
comparator for class SortedListPriorityQueue. 
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Code Fragment 8.8:  Portions of the Java class 
SortedListPriorityQueue, which implements the 
PriorityQueue interface. (Continued from Code 
Fragment 8.6.) 
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8.2.3  Selection-Sort and Insertion-Sort 

Recall the PriorityQueueSort scheme introduced in Section 8.1.4. We are 
given an unsorted sequence S containing n elements, which we sort using a priority 
queue P in two phases. In Phase 1 we insert all the elements into P and in Phase 2 
we repeatedly remove the elements from P using the removeMin() method. 

Selection-Sort 

If we implement P with an unsorted list, then Phase 1 of PriorityQueueSort 
takes O(n) time, for we can insert each element in O(1) time. In Phase 2, the 
running time of each removeMin operation is proportional to the size of P. 
Thus, the bottleneck computation is the repeated "selection" of the minimum 
element in Phase 2. For this reason, this algorithm is better known as selection-
sort. (See Figure 8.1.) 

As noted above, the bottleneck is in Phase 2 where we repeatedly remove an entry 
with smallest key from the priority queue P. The size of P starts at n and 
incrementally decreases with each removeMin until it becomes 0. Thus, the first 
removeMin operation takes time O(n), the second one takes time O(n − 1), and 
so on, until the last (nth) operation takes time O(1). Therefore, the total time 
needed for the second phase is 

                    . 

By Proposition 4.3, we have . Thus, Phase 2 takes time 
O(n2), as does the entire selection-sort algorithm. 

Figure 8.1:  Execution of selection-sort on sequence 
S = (7,4,8,2,5,3,9). 
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Insertion-Sort 

If we implement the priority queue P using a sorted list, then we improve the 
running time of Phase 2 to O(n), for each operation removeMin on P now takes 
O(1) time. Unfortunately, Phase 1 now becomes the bottleneck for the running 
time, since, in the worst case, each insert operation takes time proportional to the 
size of P. This sorting algorithm is therefore better known as insertion-sort (see 
Figure 8.2), for the bottleneck in this sorting algorithm involves the repeated 
"insertion" of a new element at the appropriate position in a sorted list. 

Figure 8.2:  Execution of insertion-sort on sequence 
S = (7,4,8,2,5,3,9). In Phase 1, we repeatedly remove 
the first element of S and insert it into P, by scanning 
the list implementing P, until we find the correct place 
for this element. In Phase 2, we repeatedly perform 
removeMin operations on P, each of which returns 
the first element of the list implementing P, and we 
add the element at the end of S. Analyzing the running 
time of Phase 1 of insertion-sort, we note that it is 
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Analyzing the running time of Phase 1 of insertion-sort, we note that it is 

 

Again, by recalling Proposition 4.3, Phase 1 runs in O(n2) time, and hence, so 
does the entire insertion-sort algorithm. 

Alternatively, we could change our definition of insertion-sort so that we insert 
elements starting from the end of the priority-queue list in Phase 1, in which case 
performing insertion-sort on a sequence that is already sorted would run in O(n) 
time. Indeed, the running time of insertion-sort in this case is O(n + I), where I is 
the number of inversions in the sequence, that is, the number of pairs of elements 
that start out in the input sequence in the wrong relative order. 

8.3  Heaps 

The two implementations of the PriorityQueueSort scheme presented in the 
previous section suggest a possible way of improving the running time for priority-
queue sorting. For one algorithm (selection-sort) achieves a fast running time for 
Phase 1, but has a slow Phase 2, whereas the other algorithm (insertion-sort) has a 
slow Phase 1, but achieves a fast running time for Phase 2. If we can somehow 
balance the running times of the two phases, we might be able to significantly speed 
up the overall running time for sorting. This is, in fact, exactly what we can achieve 
using the priority-queue implementation discussed in this section. 
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An efficient realization of a priority queue uses a data structure called a heap. This 
data structure allows us to perform both insertions and removals in logarithmic time, 
which is a significant improvement over the list-based implementations discussed in 
Section 8.2. The fundamental way the heap achieves this improvement is to abandon 
the idea of storing entries in a list and take the approach of storing entries in a binary 
tree instead. 

8.3.1  The Heap Data Structure 

A heap (see Figure 8.3) is a binary tree T that stores a collection of entries at its 
nodes and that satisfies two additional properties: a relational property defined in 
terms of the way keys are stored in T and a structural property defined in terms of 
the nodes of T itself. We assume that a total order relation on the keys is given, for 
example, by a comparator. 

The relational property of T, defined in terms of the way keys are stored, is the 
following: 

Heap-Order Property: In a heap T, for every node v other than the root, the key 
stored at v is greater than or equal to the key stored at v's parent. 

As a consequence of the heap-order property, the keys encountered on a path from 
the root to an external node of T are in nondecreasing order. Also, a minimum key 
is always stored at the root of T. This is the most important key and is informally 
said to be "at the top of the heap"; hence, the name "heap" for the data structure. By 
the way, the heap data structure defined here has nothing to do with the memory 
heap (Section 14.1.2) used in the run-time environment supporting a programming 
language like Java. 

If we define our comparator to indicate the opposite of the standard total order 
relation between keys (so that, for example, compare(3,2) > 0), then the root of the 
heap stores the largest key. This versatility comes essentially "for free" from our 
use of the comparator pattern. By defining the minimum key in terms of the 
comparator, the "minimum" key with a "reverse" comparator is in fact the largest. 

Figure 8.3:  Example of a heap storing 13 entries 
with integer keys. The last node is the one storing entry 
(8, W). 
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Thus, without loss of generality, we assume that we are always interested in the 
minimum key, which will always be at the root of the heap. 

For the sake of efficiency, as will become clear later, we want the heap T to have as 
small a height as possible. We enforce this requirement by insisting that the heap T 
satisfy an additional structural property: it must be complete. Before we define this 
structural property, we need some definitions. We recall from Section 7.3.3 that 
level i of a binary tree T is the set of nodes of Tthat have depth i. Given nodes v and 
w on the same level of T, we say that v is to the left of w if v is encountered before 
w in an inorder traversal of T. That is, there is a node u of T such that v is in the left 
subtree of u and w is in the right subtree of u. For example, in the binary tree of 
Figure 8.3, the node storing entry (15,K) is to the left of the node storing entry (7, 
Q). In a standard drawing of a binary tree, the "to the left of" relation is visualized 
by the relative horizontal placement of the nodes. 

Complete Binary Tree Property: A heap T with height h is a complete binary tree if 
levels 0,1,2,… ,h − 1 of T have the maximum number of nodes possible (namely, 
level i has 2i nodes, for 0 ≤ i ≤ h − 1) and in level h − 1, all the internal nodes are to 
the left of the external nodes and there is at most one node with one child, which 
must be a left child. 

By insisting that a heap T be complete, we identify another important node in a 
heap T, other than the root, namely, the last node of T, which we define to be the 
right-most, deepest external node of T (see Figure 8.3). 

The Height of a Heap 

Let h denote the height of T. Another way of defining the last node of T is that it 
is the node on level h such that all the other nodes of level h are to the left of it. 
Insisting that T be complete also has an important consequence, as shown in 
Proposition 8.5. 
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Proposition 8.5: A heap T storing n entries has height 

h = �logn�. 

Justification: From the fact that T is complete, we know that the number 
of nodes of T is at least 

1 + 2 + 4 + … + 2h−1 + 1 = 2h − 1 + 1 

= 2h. 

This lower bound is achieved when there is only one node on level h. In addition, 
also following from T being complete, we have that the number of nodes of T is at 
most 

1 + 2 + 4 + … + 2h = 2h + 1 − 1. 

This upper bound is achieved when level h has 2h nodes. Since the number of 
nodes is equal to the number n of entries, we obtain 

2h ≤ n 

and 

n ≤ 2h+1 − 1. 

Thus, by taking logarithms of both sides of these two inequalities, we see that 

h ≤ log n 

and 

log(n + 1) − 1 ≤ h. 

Since h is an integer, the two inequalities above imply that 

h = �logn�. 

 

Proposition 8.5 has an important consequence, for it implies that if we can 
perform update operations on a heap in time proportional to its height, then those 
operations will run in logarithmic time. Let us therefore turn to the problem of 
how to efficiently perform various priority queue methods using a heap. 

8.3.2  Complete Binary Trees and Their Representation 

Let us discuss more about complete binary trees and how they are represented. 
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The Complete Binary Tree ADT 

As an abstract data type, a complete binary T supports all the methods of binary 
tree ADT (Section 7.3.1), plus the following two methods: 

               add(o): Add to T and return a new external node v storing element o 
such that the resulting tree is a complete binary tree with last node v. 

            remove(): Remove the last node of T and return its element. 

Using only these update operations guarantees that we will always have a 
complete binary tree. As shown in Figure 8.4, there are two cases for the effect of 
an add or remove. Specifically, for an add, we have the following (remove is 
similar). 

• If the bottom level of T is not full, then add inserts a new node on the 
bottom level of T, immediately after the right-most node of this level (that is, 
the last node); hence, T's height remains the same. 

• If the bottom level is full, then add inserts a new node as the left child of 
the left-most node of the bottom level of T; hence, T's height increases by one. 

Figure 8.4:  Examples of operations add and remove 
on a complete binary tree, where w denotes the node 
inserted by add or deleted by remove. The trees 
shown in (b) and (d) are the results of performing add 
operations on the trees in (a) and (c), respectively. 
Likewise, the trees shown in (a) and (c) are the results 
of performing remove operations on the trees in (b) 
and (d), respectively. 
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The Array List Representation of a Complete Binary Tree 

The array-list binary tree representation (Section 7.3.5) is especially suitable for a 
complete binary tree T. We recall that in this implementation, the nodes of T are 
stored in an array list A such that node v in T is the element of A with index equal 
to the level number p(v) of v, defined as follows:  

• If v is the root of T, then p(v) = 1. 

• If v is the left child of node u, then p(v) = 2p(u). 

• If v is the right child of node u, then p(v) = 2p(u) + 1. 

With this implementation, the nodes of T have contiguous indices in the range 
[1,n] and the last node of T is always at index n, where n is the number of nodes 
of T. Figure 8.5 shows two examples illustrating this property of the last node. 

Figure 8.5:  Two examples showing that the last 
node w of a heap with n nodes has level number n: (a) 
heap T1 with more than one node on the bottom level; 
(b) heap T2 with one node on the bottom level; (c) 
array-list representation of T1; (d) array-list 
representation of T2. 
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The simplifications that come from representing a complete binary tree T with an 
array list aid in the implementation of methods add and remove. Assuming that no 
array expansion is necessary, methods add and remove can be performed in O(1) 
time, for they simply involve adding or removing the last element of the array list. 
Moreover, the array list associated with T has n + 1 elements (the element at index 
0 is a place-holder). If we use an extendable array that grows and shrinks for the 
implementation of the array list (Section 6.1.4 and Exercise C-6.2), the space used 
by the array-list representation of a complete binary tree with n nodes is O(n) and 
operations add and remove take O(1) amortized time. 

Java Implementation of a Complete Binary Tree 

We represent the complete binary tree ADT in interface 
CompleteBinaryTree shown in Code Fragment 8.9. We provide a Java class 
ArrayListCompleteBinaryTree that implements the 
CompleteBinaryTree interface with an array list and supports methods add 
and remove in O(1) time in Code Fragments 8.10–8.12. 

Code Fragment 8.9:  Interface CompleteBinaryTree 
for a complete binary tree. 

 
Code Fragment 8.10:  Class 
ArrayListCompleteBinaryTree implementing 
interface CompleteBinaryTree using a 
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java.util.ArrayList. (Continues in Code 
Fragment 8.11.) 

 
Code Fragment 8.11:  Class 
ArrayListCompleteBinaryTree implementing 
the complete binary tree ADT. (Continues in Code 
Fragment 8.12.) 
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Code Fragment 8.12:  Class 
ArrayListCompleteBinaryTree implementing 
the complete binary tree ADT. Methods children and 
positions are omitted. (Continued from Code 
Fragment 8.11.) 
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8.3.3  Implementing a Priority Queue with a Heap 

We now discuss how to implement a priority queue using a heap. Our heap-based 
representation for a priority queue P consists of the following (see Figure 8.6):  

• heap, a complete binary tree T whose internal nodes store entries so that 
the heap-order property is satisfied. We assume T is implemented using an array 
list, as described in Section 8.3.2. For each internal node v of T, we denote the key 
of the entry stored at v as k(v). 

• comp, a comparator that defines the total order relation among the keys. 

With this data structure, methods size and isEmpty take O(1) time, as usual. In 
addition, method min can also be easily performed in O(1) time by accessing the 
entry stored at the root of the heap (which is at index 1 in the array list). 

Insertion 

Let us consider how to perform insert on a priority queue implemented with a 
heap T. To store a new entry (k,x) into T we add a new node z to T with operation 
add so that this new node becomes the last node of T and stores entry (k,x). 

After this action, the tree T is complete, but it may violate the heap-order 
property. Hence, unless node z is the root of T (that is, the priority queue was 
empty before the insertion), we compare key k(z) with the key k(u) stored at the 
parent u of z. If k(z) ≥ k(u), the heap-order property is satisfied and the algorithm 
terminates. If instead k(z) < k(u), then we need to restore the heap-order property, 
which can be locally achieved by swapping the entries stored at z and u. (See 
Figure 8.7c and d.) This swap causes the new entry (k,e) to move up one level. 
Again, the heap-order property may be violated, and we continue swapping, going 
up in T until no violation of the heap-order property occurs. (See Figure 8.7e and 
h.) 

Figure 8.6:  Illustration of the heap-based 
implementation of a priority queue. 
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Figure 8.7:  Insertion of a new entry with key 2 into 
the heap of Figure 8.6: (a) initial heap; (b) after 
performing operation add; (c and d) swap to locally 
restore the partial order property; (e and f) another 
swap; (g and h) final swap. 
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The upward movement of the newly inserted entry by means of swaps is 
conventionally called up-heap bubbling. A swap either resolves the violation of 
the heap-order property or propagates it one level up in the heap. In the worst 
case, up-heap bubbling causes the new entry to move all the way up to the root of 
heap T. (See Figure 8.7.) Thus, in the worst case, the number of swaps performed 
in the execution of method insert is equal to the height of T, that is, it is 
�logn� by Proposition 8.5. 

Removal 
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Let us now turn to method removeMin of the priority queue ADT. The 
algorithm for performing method removeMin using heap T is illustrated in 
Figure 8.8. 

We know that an entry with the smallest key is stored at the root r of T (even if 
there is more than one entry with smallest key). However, unless r is the only 
internal node of T, we cannot simply delete node r, because this action would 
disrupt the binary tree structure. Instead, we access the last node w of T, copy its 
entry to the root r, and then delete the last node by performing operation remove 
of the complete binary tree ADT. (See Figure 8.8a and b.) 

Down-Heap Bubbling after a Removal 

We are not necessarily done, however, for, even though T is now complete, T may 
now violate the heap-order property. If T has only one node (the root), then the 
heap-order property is trivially satisfied and the algorithm terminates. Otherwise, 
we distinguish two cases, where r denotes the root of T:  

• If r has no right child, let s be the left child of r. 

• Otherwise (r has both children), let s be a child of r with the smallest key. 

if k(r) ≤ k(s), the heap-order property is satisfied and the algorithm terminates. If 
instead k(r) > k(s), then we need to restore the heap-order property, which can be 
locally achieved by swapping the entries stored at r and s. (See Figure 8.8c and d.) 
(Note that we shouldn't swap r with s's sibling.) The swap we perform restores the 
heap-order property for node r and its children, but it may violate this property at 
s; hence, we may have to continue swapping down T until no violation of the 
heap-order property occurs. (See Figure 8.8e and h.) 

This downward swapping process is called down-heap bubbling. A swap either 
resolves the violation of the heap-order property or propagates it one level down 
in the heap. In the worst case, an entry moves all the way down to the bottom 
level. (See Figure 8.8.) Thus, the number of swaps performed in the execution of 
method removeMin is, in the worst case, equal to the height of heap T, that is, it 
is �logn� by Proposition 8.5. 

Figure 8.8:  Removal of the entry with the smallest 
key from a heap: (a and b) deletion of the last node, 
whose entry gets stored into the root; (c and d) swap 
to locally restore the heap-order property; (e and f) 
another swap; (g and h) final swap. 
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Analysis 

Table 8.3 shows the running time of the priority queue ADT methods for the heap 
implementation of a priority queue, assuming that two keys can be compared in 
O(1) time and that the heap T is implemented with either an array list or linked 
structure. 
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Table 8.3:  Performance of a priority queue realized 
by means of a heap, which is in turn implemented with 
an array list or linked structure. We denote with n the 
number of entries in the priority queue at the time a 
method is executed. The space requirement is O(n). 
The running time of operations insert and removeMin 
is worst case for the array-list implementation of the 
heap and amortized for the linked representation. 

Operation 

Time 

size, isEmpty 

O(1) 

min, 

O(1) 

insert 

O(logn) 

removeMin 

O(logn) 

In short, each of the priority queue ADT methods can be performed in O(1) or in 
O(logn) time, where n is the number of entries at the time the method is executed. 
The analysis of the running time of the methods is based on the following:  

• The heap T has n nodes, each storing a reference to an entry. 

• Operations add and remove on T take either O(1) amortized time (array-
list representation) or O(logn) worst-case time. 

• In the worst case, up-heap and down-heap bubbling perform a number of 
swaps equal to the height of T. 

• The height of heap T is O(logn), since T is complete (Proposition 8.5). 
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We conclude that the heap data structure is a very efficient realization of the 
priority queue ADT, independent of whether the heap is implemented with a 
linked structure or an array list. The heap-based implementation achieves fast 
running times for both insertion and removal, unlike the list-based priority queue 
implementations. Indeed, an important consequence of the efficiency of the heap-
based implementation is that it can speed up priority-queue sorting to be much 
faster than the list-based insertion-sort and selection-sort algorithms. 

8.3.4  A Java Heap Implementation 

A Java implementation of a heap-based priority queue is shown in Code Frag ments 
8.13-8.15. To aid in modularity, we delegate the maintenance of the structure of the 
heap itself to a complete binary tree. 

Code Fragment 8.13:  Class HeapPriorityQueue, 
which implements a priority queue with a heap. A 
nested class MyEntry is used for the entries of the 
priority queue, which form the elements in the heap 
tree. (Continues in Code Fragment 8.14.) 
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Code Fragment 8.14:  Methods min, insert and 
removeMin and some auxiliary methods of class 
HeapPriorityQueue. (Continues in Code Fragment 8.15.) 
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Code Fragment 8.15:  Remaining auxiliary methods 
of class HeapPriorityQueue. (Continued from Code 
Fragment 8.14.) 
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8.3.5  Heap-Sort 
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As we have previously observed, realizing a priority queue with a heap has the 
advantage that all the methods in the priority queue ADT run in logarithmic time or 
better. Hence, this realization is suitable for applications where fast running times 
are sought for all the priority queue methods. Therefore, let us again consider the 
PriorityQueueSort sorting scheme from Section 8.1.4, which uses a priority 
queue P to sort a sequence S with n elements. 

During Phase 1, the i-th insert operation (1 ≤ i ≤ n) takes O(1 +logi) time, since the 
heap has i entries after the operation is performed. Likewise, during Phase 2, the j-
th removeMin operation (1≤j≤ n) runs in time O(1 +log(n − j+1), since the heap has 
n − j + 1 entries at the time the operation is performed. Thus, each phase takes 
O(nlogn) time, so the entire priority-queue sorting algorithm runs in O(nlogn) time 
when we use a heap to implement the priority queue. This sorting algorithm is 
better known as heap-sort, and its performance is summarized in the following 
proposition. 

Proposition 8.6: The heap-sort algorithm sorts a sequence S of n elements 
in O(nlogn) time, assuming two elements ofS can be compared in O(1) time. 

Let us stress that the O(nlogn) running time of heap-sort is considerably better than 
the O(n2) running time of selection-sort and insertion-sort (Section 8.2.3). 

Implementing Heap-Sort In-Place 

If the sequence S to be sorted is implemented by means of an array, we can speed 
up heap-sort and reduce its space requirement by a constant factor using a portion 
of the sequence S itself to store the heap, thus avoiding the use of an external heap 
data structure. This is accomplished by modifying the algorithm as follows:  

1. We use a reverse comparator, which corresponds to a heap where an entry 
with the largest key is at the top. At any time during the execution of the 
algorithm, we use the left portion of S, up to a certain index i − 1, to store the 
entries of the heap, and the right portion of S, from index i to n − 1, to store the 
elements of the sequence. Thus, the first i elements of S (at indices 0,…,i− 1) 
provide the array-list representation of the heap (with modified level numbers 
starting at 0 instead of 1), that is, the element at index k is greater than or equal 
to its "children" at indices 2k + 1 and 2k + 2. 

2. In the first phase of the algorithm, we start with an empty heap and move 
the boundary between the heap and the sequence from left to right, one step at a 
time. In step i (i = 1,…, n), we expand the heap by adding the element at index i 
− 1. 

3. In the second phase of the algorithm, we start with an empty sequence and 
move the boundary between the heap and the sequence from right to left, one 
step at a time. At step i (i = 1,…, n), we remove a maximum element from the 
heap and store it at index n − i. 
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The variation of heap-sort above is said to be in-place because we use only a 
small amount of space in addition to the sequence itself. Instead of transferring 
elements out of the sequence and then back in, we simply rearrange them. We il 
lustrate in-place heap-sort in Figure 8.9. In general, we say that a sorting 
algorithm is in-place if it uses only a small amount of memory in addition to the 
sequence storing the objects to be sorted. 

Figure 8.9:  First three steps of Phase 1 of in-place 
heap-sort. The heap portion of the sequence is 
highlighted in blue. We draw next to the sequence a 
binary tree view of the heap, even though this tree is 
not actually constructed by the in-place algorithm. 
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8.3.6  Bottom-Up Heap Construction � 

The analysis of the heap-sort algorithm shows that we can construct a heap storing 
n entries in O(nlogn) time, by means of n successive insert operations, and then use 
that heap to extract the entries in order by nondecreasing key. However, if all the n 
key-value pairs to be stored in the heap are given in advance, there is an al ternative 
bottom-up construction method that runs in O(n) time. We describe this method in 
this section, observing that it could be included as one of the constructors of a class 
implementing a heap-based priority queue. For simplicity of exposition, we 
describe this bottom-up heap construction assuming the number n of keys is an 
integer of the type n = 2h + 1 − 1. That is, the heap is a complete binary tree with 
every level being full, so the heap has height h = log(n+ 1) − 1. Viewed nonre 
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cursively, bottom-up heap construction consists of the following h + 1 = log(n + 1) 
steps:  

1. In the first step (see Figure 8.10a), we construct (n + 1)/2 elementary 
heaps storing one entry each. 

2. In the second step (see Figure 8.10b -c), we form (n + 1)/4 heaps, each stor 
ing three entries, by joining pairs of elementary heaps and adding a new entry. 
The new entry is placed at the root and may have to be swapped with the entry 
stored at a child to preserve the heap-order property. 

3. In the third step (see Figure 8.10d -e), we form (n + 1)/8 heaps, each 
storing 7 entries, by joining pairs of 3-entry heaps (constructed in the previous 
step) and adding a new entry. The new entry is placed initially at the root, but may 
have to move down with a down-heap bubbling to preserve the heap-order 
property. 

          � 

i. In the generic ith step, 2 ≤ i ≤ h, we form (n + 1)/2i heaps, each storing 2i − 1 
entries, by joining pairs of heaps storing (2i−1 − 1) entries (constructed in the 
previous step) and adding a new entry. The new entry is placed initially at the root, 
but may have to move down with a down-heap bubbling to preserve the heap-order 
property. 

          � 

h + 1. In the last step (see Figure 8.10f -g), we form the final heap, storing all the n 
entries, by joining two heaps storing (n − 1)/2 entries (constructed in the previous 
step) and adding a new entry. The new entry is placed initially at the root, but may 
have to move down with a down-heap bubbling to preserve the heap-order property. 

We illustrate bottom-up heap construction in Figure 8.10 for h = 3. 

Figure 8.10:  Bottom-up construction of a heap with 
15 entries: (a) we begin by constructing 1-entry heaps 
on the bottom level; (b and c) we combine these heaps 
into 3-entry heaps and then (d and e) 7-entry heaps, 
until (f and g) we create the final heap. The paths of the 
down-heap bubblings are highlighted in blue. For 
simplicity, we only show the key within each node 
instead of the entire entry. 
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Recursive Bottom-Up Heap Construction 

We can also describe bottom-up heap construction as a recursive algorithm, as 
shown in Code Fragment 8.16, which we call by passing a list storing the key-
value pairs for which we wish to build a heap. 

Code Fragment 8.16:  Recursive bottom-up heap 
construction. 
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Bottom-up heap construction is asymptotically faster than incrementally insert ing 
n keys into an initially empty heap, as the following proposition shows. 

Proposition 8.7: Bottom-up construction of a heap with n entries takes 
O(n) time, assuming two keys can be compared in O(1) time. 

Justification: We analyze bottom-up heap construction using a "visual" ap 
proach, which is illustrated in Figure 8.11. 

Let T be the final heap, let v be a node of T, and let T(v) denote the subtree of T 
rooted at v. In the worst case, the time for forming T(v) from the two recursively 
formed subtrees rooted at v's children is proportional to the height of T(v). The 
worst case occurs when down-heap bubbling from v traverses a path from v all the 
way to a bottom-most node of T(v). 

Now consider the path p(v) of T from node v to its inorder successor external 
node, that is, the path that starts at v, goes to the right child of v, and then goes 
down leftward until it reaches an external node. We say that path p(v) is 
associated with node v. Note that p(v) is not necessarily the path followed by 
down-heap bubbling when forming T(v). Clearly, the size (number of nodes) of 
p(v) is equal to the height of T(v) plus one. Hence, forming T(v) takes time 
proportional to the size of ofp(v), in the worst case. Thus, the total running time of 
bottom-up heap construction is proportional to the sum of the sizes of the paths 
associated with the nodes of T. 

Observe that each node v of T distinct from the root belongs to exactly two such 
paths: the path p(v) associated with v itself and the path p(u) associated with the 
parent u of v. (See Figure 8.11.) Also, the root r of T belongs only to path p(r) 
associated with r itself. Therefore, the sum of the sizes of the paths associated 
with the internal nodes of T is 2n − 1. We conclude that the bottom-up 
construction of heap T takes O(n) time. 
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Figure 8.11:  Visual justification of the linear running 
time of bottom-up heap con struction, where the 
paths associated with the internal nodes have been 
highlighted with alternating colors. For example, the 
path associated with the root consists of the nodes 
storing keys 4, 6, 7, and 11. Also, the path associated 
with the right child of the root consists of the internal 
nodes storing keys 6, 20, and 23. 

 

To summarize, Proposition 8.7 states that the running time for the first phase of 
heap-sort can be reduced to be O(n). Unfortunately, the running time of the 
second phase of heap-sort cannot be made asymptotically better than O(nlogn) 
(that is, it will always be Ω(nlogn) in the worst case). We will not justify this 
lower bound until Chapter 11, however. Instead, we conclude this chapter by 
discussing a design pattern that allows us to extend the priority queue ADT to 
have additional functionality. 

8.4  Adaptable Priority Queues 

The methods of the priority queue ADT given in Section 8.1.3 are sufficient for most 
basic applications of priority queues, such as sorting. However, there are situations 
where additional methods would be useful, as shown in the scenarios below, which 
refer to the standby airline passenger application. 

• A standby passenger with a pessimistic attitude may become tired of waiting and 
decide to leave ahead of the boarding time, requesting to be removed from the 
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waiting list. Thus, we would like to remove from the priority queue the entry 
associated with this passenger. Operation removeMin is not suitable for this 
purpose since the passenger leaving is unlikely to have first priority. Instead, we 
would like to have a new operation remove (e) that removes an arbitrary entry e. 

• Another standby passenger finds her gold frequent-flyer card and shows it to the 
agent. Thus, her priority has to be modified accordingly. To achieve this change of 
priority, we would like to have a new operation replaceKey(e,k) that replaces 
with k the key of entry e in the priority queue. 

• Finally, a third standby passenger notices her name is misspelled on the ticket and 
asks it to be corrected. To perform the change, we need to up date the passenger's 
record. Hence, we would like to have a new operation replaceValue(e,x) that 
replaces with x the value of entry e in the priority queue. 

8.4.1  Methods of the Adaptable Priority Queue ADT 

The above scenarios motivate the definition of a new ADT that extends the prior ity 
queue ADT with methods remove, replaceKey, and replaceValue. 
Namely, an adaptable priority queue P supports the following methods in addition 
to those of the priority queue ADT: 

            remove(e): Remove from P and return entry e. 

    replaceKey(e,k): Replace with k and return the key of entry e of P; an 

                                               error condition occurs if k is invalid (that is, k cannot 
be 

                                               compared with other keys). 

  replaceValue(e,x): Replace with x and return the value of entry e of P. 

Example 8.8: The following table shows a series of operations and their effects 
on an initially empty adaptable priority queue P. 

Operation 

Output 

P 

insert(5,A) 

e1 

{(5,A)} 
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insert(3,B) 

e2 

{(3,B), (5,A)} 

insert(7,C) 

e3 

{(3,B),(5,A),(7,C)} 

min() 

e2 

(3,B),(5,A),(7,C)} 

getKey(e)2 

3 

{(3,B),(5,A),(7,C)} 

remove(e)1 

e1 

(3,B), (7,C)} 

replaceKey(e2,9) 

3 

{(7,C),(9,B)} 

replace Value(e3,D) 

C 

{(7,D),(9,B)} 

remove(e2) 

e2 

{(7,D)} 
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8.4.2  Location-Aware Entries 

In order to implement methods remove, replaceKey, and replaceValue of 
an adapt able priority queue P, we need a mechanism for finding the position of an 
entry of P. Namely, given the entry e of P passed as an argument to one of the above 
methods, we need to find the position storing e in the the data structure imple menting 
P (for example, a doubly linked list or a heap). This position is called the location of 
the entry. 

Instead of searching for the location of a given entry e, we augment the entry object 
with an instance variable of type Position storing the location. This im 
plementation of an entry that keeps track of its position is called a location-aware 
entry. A summary description of the the use of location-aware entries for the sorted 
list and heap implementations of an adaptable priority queue is provided below. We 
denote the number of entries in the priority queue at the time an operation is per 
formed, with n. 

• Sorted list implementation. In this implementation, after an entry is inserted, we 
set the location of the entry to refer to the position of the list containing the entry. 
Also, we update the location of the entry whenever it changes position in the list. 
Operations remove(e) and replaceValue(e,x) take O(1) time, since we can 
obtain the position p of entry e in O(1) time following the location reference stored 
with the entry. Instead, operation replaceKey(e, k) runs in O(n) time, because 
the modification of the key of entry e may require moving the entry to a different 
position in the list to preserve the ordering of the keys. The use of location-aware 
entries increases the running time of the standard priority queue operations by a 
constant factor. 

• Heap implementation. In this implementation, after an entry is inserted, we set 
the location of the entry to refer to the node of the heap containing the entry. Also, 
we update the location of the entry whenever it changes node in the heap (for 
example, because of the swaps in a down-heap or up-heap bubbling). Operation 
replaceValue(e,x) takes O(1) time since we can obtain the position p of entry e 
in O(1) time following the location reference stored with the entry. Operations 
remove(e) and replaceKey(e,k) run instead in O(logn) (details are explored in 
Exercise C-8.22). The use of location-aware entries increases the running time of 
operations insert and removeMin by a constant factor overhead. 

The use of location-aware entries for the unsorted list implementation is explored in 
Exercise C-8.21. 

Performance of Adaptable Priority Queue 
Implementations 
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The performance of an adaptable priority queue implemented by means of various 
data structures with location-aware entries is summarized in Table 8.4. 

Table 8.4:  Running times of the methods of an 
adaptable priority queue of size n, realized by means of 
an unsorted list, sorted list, and heap, respectively. The 
space requirement is O(n). 

Method 

Unsorted List 

Sorted List 

Heap 

size, isEmpty 

O(1) 

O(1) 

O(1) 

insert 

O(1) 

O(n) 

O(logn) 

min 

O(n) 

O(1) 

O(1) 

removeMin 

O(n) 

O(1) 

O(logn) 
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remove 

O(1) 

O(1) 

O(logn) 

replaceKey 

O(1) 

O(n) 

O(logn) 

replaceValue 

O(1) 

O(1) 

O(1) 

8.4.3  Implementing an Adaptable Priority Queue 

In Code Fragment 8.17 and 8.18, we show the Java implementation of an adaptable 
priority queue based on a sorted list. This implementation is obtained by extending 
class SortedListPriorityQueue shown in Code Fragment 8.6. In particular, 
Code Fragment 8.18 shows how to realize a location-aware entry in Java by 
extending a regular entry. 

Code Fragment 8.17:  Java implementation of an 
adaptable priority queue by means of a sorted list 
storing location-aware entries. Class 
SortedListAdaptablePriori tyQueue extends 
class SortedListPriorityQueue (Code Fragment 
8.6) and imple ments interface 
AdaptablePriorityQueue. (Continues in Code 
Fragment 8.18.) 
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Code Fragment 8.18:  An adaptable priority queue 
implemented with a sorted list storing location-aware 
entries. (Continued from Code Fragment 8.17.) The 
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nested class LocationAwareEntry realizes a location-
aware entry and extends nested class MyEntry of 
SortedListPriorityQueue shown in Code Fragment 
8.6. 
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8.5.  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-8.1 

Suppose you label each node v of a binary tree T with a key equal to the 
preorder rank of v. Under what circumstances is T a heap? 

R-8.2 

What is the output from the following sequence of priority queue ADT 
methods: insert(5,A), insert(4,B), insert(7,I), insert(1,D), 
removeMin(), insert(3,J), insert(6,L), removeMin(), removeMin(), 
insert(8,G), remove Min(), insert(2,H), removeMin(), 
removeMin() ? 

R-8.3 

An airport is developing a computer simulation of air-traffic control that handles 
events such as landings and takeoffs. Each event has a time-stamp that denotes 
the time when the event occurs. The simulation program needs to efficiently 
perform the following two fundamental operations:  

• Insert an event with a given time-stamp (that is, add a future event). 

• Extract the event with smallest time-stamp (that is, determine the next 
event to process). 

Which data structure should be used for the above operations? Why? 

R-8.4 

Although it is correct to use a "reverse" comparator with the priority queue 
ADT so that we retrieve and remove an entry with the maximum key each time, 
it is confusing to have an entry with maximum key returned by a method named 
"removeMin." Write a short adapter class that can take any priority queue P 
and an associated comparator C and implement a priority queue that 
concentrates on the element with maximum key, using methods with names like 
removeMax. 

R-8.5 
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Illustrate the execution of the selection-sort algorithm on the following input 
sequence: (22,15,36,44,10,3,9,13,29,25). 

R-8.6 

Illustrate the execution of the insertion-sort algorithm on the input se quence of 
the previous problem. 

R-8.7 

Give an example of a worst-case sequence with n elements for insertion sort, 
and show that insertion-sort runs in Ω(n2) time on such a sequence. 

R-8.8 

At which nodes of a heap can an entry with the largest key be stored? 

R-8.9 

In defining the relation "to the left of" for two nodes of a binary tree (Sec tion 
8.3.1), can we use a preorder traversal instead of an inorder traversal? How 
about a postorder traversal? 

R-8.10 

Illustrate the execution of the heap-sort algorithm on the following input 
sequence: (2,5,16,4,10,23,39,18,26,15). 

R-8.11 

Let T be a complete binary tree such that node v stores the entry (p(v), 0), where 
p(v) is the level number of v. Is tree T a heap? Why or why not? 

R-8.12 

Explain why the case where node r has a right child but not a left child was not 
considered in the description of down-heap bubbling. 

R-8.13 

Is there a heap T storing seven entries with distinct keys such that a pre order 
traversal of T yields the entries of T in increasing or decreasing order by key? 
How about an inorder traversal? How about a postorder traversal? If so, give an 
example; if not, say why. 

R-8.14 

Let H be a heap storing 15 entries using the array-list representation of a 
complete binary tree. What is the sequence of indices of the array list that are 
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visited in a preorder traversal of H? What about an inorder traversal of H? What 
about a postorder traversal of H? 

R-8.15 

Show that the sum 

 

which appears in the analysis of heap-sort, is Ω(nlogn). 

R-8.16 

Bill claims that a preorder traversal of a heap will list its keys in nonde creasing 
order. Draw an example of a heap that proves him wrong. 

R-8.17 

Hillary claims that a postorder traversal of a heap will list its keys in non 
increasing order. Draw an example of a heap that proves her wrong. 

R-8.18 

Show all the steps of the algorithm for removing key 16 from the heap of Figure 
8.3. 

R-8.19 

Show all the steps of the algorithm for replacing key 5 with 18 in the heap of 
Figure 8.3. 

R-8.20 

Draw an example of a heap whose keys are all the odd numbers from 1 to 59 
(with no repeats), such that the insertion of an entry with key 32 would cause 
up-heap bubbling to proceed all the way up to a child of the root (replacing that 
child's key with 32). 

R-8.21 

Complete Figure 8.9 by showing all the steps of the in-place heap-sort 
algorithm. Show both the array and the associated heap at the end of each step. 

R-8.22 

Give a pseudo-code description of a nonrecursive in-place heap-sort algorithm. 

R-8.23 
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A group of children want to play a game, called Unmonopoly, where in each 
turn the player with the most money must give half of his/her money to the 
player with the least amount of money. What data structure(s) should be used to 
play this game efficiently? Why? 

Creativity 

C-8.1 

An online computer system for trading stock needs to process orders of the form 
"buy 100 shares at $x each" or "sell 100 shares at $y each." A buy order for $x 
can only be processed if there is an existing sell order with price $y such that y 
≤ x. Likewise, a sell order for $y can only be processed if there is an existing 
buy order with price $x such that y ≤ x. If a buy or sell order is entered but 
cannot be processed, it must wait for a future order that allows it to be 
processed. Describe a scheme that allows for buy and sell orders to be entered in 
O(logn) time, independent of whether or not they can be immediately processed. 

C-8.2 

Extend a solution to the previous problem so that users are allowed to update 
the prices for their buy or sell orders that have yet to be processed. 

C-8.3 

Write a comparator for nonnegative integers that determines order based on the 
number of 1's in each integer's binary expansion, so that i < j if the number of 
1's in the binary representation of i is less than the number of 1 's in the binary 
representation of j. 

C-8.4 

Show how to implement the stack ADT using only a priority queue and one 
additional integer instance variable. 

C-8.5 

Show how to implement the (standard) queue ADT using only a priority queue 
and one additional integer instance variable. 

C-8.6 

Describe in detail an implementation of a priority queue based on a sorted array. 
Show that this implementation achieves O(1) time for operations min and 
removeMin and O(n) time for operation insert. 

C-8.7 
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Describe an in-place version of the selection-sort algorithm that uses only O(1) 
space for instance variables in addition to an input array itself. 

C-8.8 

Assuming the input to the sorting problem is given in an array A, describe how 
to implement the insertion-sort algorithm using only the array A and, at most, 
six additional (base-type) variables. 

C-8.9 

Describe how to implement the heap-sort algorithm using, at most, six integer 
variables in addition to an input array itself. 

C-8.10 

Describe a sequence of n insertions in a heap that requires Ω(nlogn) time to 
process. 

C-8.11 

An alternative method for finding the last node during an insertion in a heap T is 
to store, in the last node and each external node of T, a reference to the external 
node immediately to its right (wrapping to the first node in the next lower level 
for the right-most external node). Show how to maintain such references in O(1) 
time per operation of the priority queue ADT assuming T is implemented as a 
linked structure. 

C-8.12 

Describe an implementation of complete binary tree T by means of a linked 
structure and a reference to the last node. In particular, show how to update the 
reference to the last node after operations add and remove in O(logn) time, 
where n is the current number of nodes of T. Be sure and handle all possible 
cases, as illustrated in Figure 8.12. 

Figure 8.12:  Updating the last node in a complete 
binary tree after operation add or remove. Node w is 
the last node before operation add or after operation 
remove. Node z is the last node after operation add or 
before operation remove. 
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C-8.13 

We can represent a path from the root to a given node of a binary tree by means 
of a binary string, where 0 means "go to the left child" and 1 means "go to the 
right child." For example, the path from the root to the node storing (8,W) in the 
heap of Figure 8.12a is represented by "101." Design an O(logn)-time algorithm 
for finding the last node of a complete binary tree with n nodes, based on the 
above representation. Show how this algorithm can be used in the 
implementation of a complete binary tree by means of a linked structure that 
does not keep a reference to the last node. 

C-8.14 

Given a heap T and a key k, give an algorithm to compute all the entries in T 
with key less than or equal to k. For example, given the heap of Figure 8.12a 
and query k= 7, the algorithm should report the entries with keys 2, 4, 5, 6, and 
7 (but not necessarily in this order). Your algorithm should run in time 
proportional to the number of entries returned. 

C-8.15 

Provide a justification of the time bounds in Table 8.4. 

C-8.16 

Tamarindo Airlines wants to give a first-class upgrade coupon to their top log n 
frequent flyers, based on the number of miles accumulated, where n is the total 
number of the airlines' frequent flyers. The algorithm they currently use, which 
runs in O(nlogn) time, sorts the flyers by the number of miles flown and then 
scans the sorted list to pick the top logn flyers. Describe an algorithm that 
identifies the top logn flyers in O(n) time. 

C-8.17 

Develop an algorithm that computes the kth smallest element of a set of n 
distinct integers in O(n + klogn) time. 
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C-8.18 

Suppose two binary trees, T1 and T2, hold entries satisfying the heap-order 
property. Describe a method for combining T1 and T2 into a tree T whose 
internal nodes hold the union of the entries in T1 andT2 and also satisfy the 
heap-order property. Your algorithm should run in time O(h1 + h2) where h1 
and h2 are the respective heights of T1 and T2. 

C-8.19 

Give an alternative analysis of bottom-up heap construction by showing the 
following summation is O(1), for any positive integer h: 

 

C-8.20 

Give an alternate description of the in-place heap-sort algorithm that uses a 
standard comparator instead of a reverse one. 

C-8.21 

Describe efficient algorithms for performing operations remove(e) and 
replaceKey(e,k) on an adaptable priority queue realized by means of an 
unsorted list with location-aware entries. 

C-8.22 

Describe efficient algorithms for performing operations remove(e) and 
replaceKey(e,k) on an adaptable priority queue realized by means of a heap 
with location-aware entries. 

C-8.23 

Let S be a set of n points in the plane with distinct integer x- and y- coordinates. 
Let T be a complete binary tree storing the points from S at its external nodes, 
such that the points are ordered left-to-right by in creasing x-coordinates. For 
each node v in T, let S(v) denote the subset of S consisting of points stored in the 
subtree rooted at v. For the root r of T, define top(r) to be the point in S = S(r) 
with maximum y-coordinate. For every other node v, define top(r) to be the 
point in S with highest y-coordinate in S(v) that is not also the highest y-
coordinate in S(u), where u is the parent of v in T (if such a point exists). Such 
labeling turns T into a priority search tree. Describe a linear-time algorithm for 
turning T into a priority search tree. 

Projects 
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P-8.1 

Give a Java implementation of a priority queue based on an unsorted list. 

P-8.2 

Write an applet or stand-alone graphical program that animates both the 
insertion-sort and selection-sort algorithms. Your animation should visu alize 
the movement of elements to their correct locations. 

P-8.3 

Write an applet or stand-alone graphical program that animates a heap. Your 
program should support all the priority queue operations and should visualize 
the swaps in the up-heap and down-heap bubblings. (Extra: Vi sualize bottom-
up heap construction as well.) 

P-8.4 

Implement the heap-sort algorithm using bottom-up heap construction. 

P-8.5 

Implement the in-place heap-sort algorithm. Experimentally compare its 
running time with that of the standard heap-sort that is not in-place. 

P-8.6 

Implement a heap-based priority queue that supports the following addi tional 
operation in linear time: 

     replaceComparator(c): Replace the current comparator with c. 

(Hint: Utilize the bottom-up heap construction algorithm.) 

P-8.7 

Develop a Java implementation of an adaptable priority queue that is based on 
an unsorted list and supports location-aware entries. 

P-8.8 

Develop a Java implementation of an adaptable priority queue that is based on a 
heap and supports location-aware entries. 

P-8.9 

Write a program that can process a sequence of stock buy and sell orders as 
described in Exercise C-8.1. 
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P-8.10 

One of the main applications of priority queues is in operating systems for 
scheduling jobs on a CPU. In this project you are to build a program that 
schedules simulated CPU jobs. Your program should run in a loop, each 
iteration of which corresponds to a time slice for the CPU. Each job is assigned 
a priority, which is an integer between -20 (highest priority) and 19 (lowest 
priority), inclusive. From among all jobs waiting to be pro cessed in a time slice, 
the CPU must work on a job with highest priority. In this simulation, each job 
will also come with a length value, which is an integer between 1 and 100, 
inclusive, indicating the number of time slices that are needed to process this 
job. For simplicity, you may assume jobs cannot be interrupted—once it is 
scheduled on the CPU, a job runs for a number of time slices equal to its length. 
Your simulator must output the name of the job running on the CPU in each 
time slice and must process a sequence of commands, one per time slice, each 
of which is of the form "add job name with length n and priority p" or "no new 
job this slice". 

Chapter Notes 

Knuth's book on sorting and searching [63] describes the motivation and history for 
the selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is 
due to Williams [99], and the linear-time heap construction algorithm is due to Floyd 
[36]. Additional algorithms and analyses for heaps and heap-sort variations can be 
found in papers by Bentley [13], Carlsson [21], Gonnet and Munro [42], McDiarmid 
and Reed [71], and Schaffer and Sedgewick [85]. The design pattern of using 
location-aware entries (also described in [43]) appears to be new. 

 

 

 

 

 

 

 

 

 

 

 512



Chapter 9  Maps and Dictionaries 

 

Contents 
9.1 

 The Map Abstract Data Type....................... 

368 

9.1.1 

A Simple List-Based Map Implementation.......... 

371 

9.2 

 Hash Tables...................................... 

372 

9.2.1 

Bucket Arrays................................... 

372 

9.2.2 

Hash Functions.................................. 

373 

9.2.3 

Hash Codes...................................... 

 513



374 

9.2.4 

Compression Functions........................... 

377 

9.2.5 

Collision-Handling Schemes...................... 

379 

9.2.6 

A Java Hash Table Implementation................ 

383 

9.2.7 

Load Factors and Rehashing...................... 

387 

9.2.8 

Application: Counting Word Frequencies.......... 

388 

9.3 

 The Dictionary Abstract Data Type................ 

389 

9.3.1 

List-Based Dictionaries and Audit Trails........ 

390 

9.3.2 

Hash Table Dictionary Implementation............ 

393 

 514



9.3.3 

Ordered Search Tables and Binary Search......... 

394 

9.4 

Skip Lists....................................... 

398 

9.4.1 

Search and Update Operations in a Skip List..... 

400 

9.4.2 

A Probabilistic Analysis of Skip Lists ★...... 

404 

9.5 

 Extensions and Applications of Dictionaries...... 

407 

9.5.1 

Supporting Location-Aware Dictionary Entries.... 

407 

9.5.2 

The Ordered Dictionary ADT...................... 

408 

9.5.3 

Flight Databases and Maxima Sets................ 

410 

9.6 

 515



 Exercises........................................ 

413 

java.datastructures.net 

9.1  The Map Abstract Data Type 

A map allows us to store elements so they can be located quickly using keys. The 
motivation for such searches is that each element typically stores additional useful 
information besides its search key, but the only way to get at that information is to 
use the search key. Specifically, a map stores key-value pairs (k, v), which we call 
entries, where k is the key and v is its corresponding value. In addition, the map ADT 
requires that each key be unique, so the association of keys to values defines a 
mapping. In order to achieve the highest level of generality, we allow both the keys 
and the values stored in a map to be of any object type. (See Figure 9.1.) In a map 
storing student records (such as the student's name, address, and course grades), the 
key might be the student's ID number. In some applications, the key and the value 
may be the same. For example, if we had a map storing prime numbers, we could use 
each number itself as both a key and its value. 

Figure 9.1:  A conceptual illustration of the map 
ADT. Keys (labels) are assigned to values (diskettes) by a 
user. The resulting entries (labeled diskettes) are inserted 
into the map (file cabinet). The keys can be used later to 
retrieve or remove values. 
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In either case, we use a key as a unique identifier that is assigned by an appli cation or 
user to an associated value object. Thus, a map is most appropriate in situations where 
each key is to be viewed as a kind of unique index address for its value, that is, an 
object that serves as a kind of location for that value. For exam ple, if we wish to 
store student records, we would probably want to use student ID objects as keys (and 
disallow two students having the same student ID). In other words, the key associated 
with an object can be viewed as an "address" for that object. Indeed, maps are 
sometimes referred to as associative stores, because the key associated with an object 
determines its "location" in the data structure. 

The Map ADT 

Since a map stores a collection of objects, it should be viewed as a collection of 
key-value pairs. As an ADT, a map M supports the following methods: 

                    size(): Return the number of entries in M. 

               isEmpty(): Test whether M is empty. 

                   get(k): If Mcontains an entry e with key equal to k, then return the 
value of e, else return null. 

                 put(k, v): If M does not have an entry with key equal to k, then add 
entry (k, v) to M and return null; else, replace with v the existing value of the 
entry with key equal to k and return the old value. 
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              remove(k): Remove from M the entry with key equal to k, and return 
its value; if M has no such entry, then return null. 

                  keys(): Return an iterable collection containing all the keys stored in 
M (so keys().iterator() returns an iterator of keys). 

                values(): Return an iterable collection containing all the values as 
sociated with keys stored in M (so values().iterator() re turns an iterator 
of values). 

                entries(): Return an iterable collection containing all the key-value 
entries in M (so entries().iterator() returns an iterator of entries). 

When operations get(k), put(k,v) and remove(k) are performed on a map M that 
has no entry with key equal to k, we use the convention of returning null. A special 
value such as this is known as a sentinel. (See also Section 3.3.) The disadvantage 
with using null as such a sentinel is that this choice can create ambiguity should we 
every want to have an entry (k, null) with value null in the map. Another choice, of 
course, would be to throw an exception when someone requests a key that is not in 
our map. This would probably not be an appropriate use of an exception, however, 
since it is normal to ask for something that might not be in our map. Moreover, 
throwing and catching an exception is typically slower than a test against a sentinel; 
hence, using a sentinel is more efficient (and, in this case, conceptually more 
appropriate). So we use null as a sentinel for a value associated with a missing key. 

Example 9.1: In the following, we show the effect of a series of operations on 
an initially empty map storing entries with integer keys and single-character values. 

Operation 

Output 

Map 

isEmpty() 

true 

φ 

put(5,A) 

null 

{(5,A)} 

put(7,B) 
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null 

{(5,A), (7,B)} 

put(2,C) 

null 

{(5,A), (7,B), (2,C)} 

put(8,D) 

null 

{(5,A), (7,B), (2,C), (8,D)} 

put(2,E) 

C 

{(5,A), (7,B), (2,E), (8,D)} 

get(7) 

B 

{(5,A), (7,B), (2,E), (8,D)} 

get(4) 

null 

{(5,A), (7,B), (2,E), (8,D)} 

get(2) 

E 

{(5,A), (7,B), (2,E), (8,D)} 

size() 

4 

{(5,A), (7,B), (2,E), (8,D)} 

remove(5) 

A 
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{(7,B), (2,E), (8,D)} 

remove(2) 

E 

{(7,B), (8,D)} 

get(2) 

null 

{(7,B), (8,D)} 

isEmpty() 

false 

{(7,B), (8,D)} 

Maps in the java.util Package 

The Java package java.util includes an interface for the map ADT, which is 
called java.util.Map. This interface is defined so that an implementing class 
enforces unique keys, and it includes all of the methods of the map ADT given 
above, except that it uses different method names in a couple of cases. The 
correspondences between the map ADT and the java.util. Map interface are 
shown in Table 9.1. 

Table 9.1:  Correspondences between methods of 
the map ADT and the methods of the java.util.Map 
interface, which supports other methods as well. 

Map ADT Methods 

java.util.Map Methods 

size() 

size() 

isEmpty() 

isEmpty() 

get(k) 
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get(k) 

put(k,v) 

put(k,v) 

remove(k) 

remove(k) 

keys() 

keySet() 

values() 

values() 

entries() 

entrySet() 

9.1.1  A Simple List-Based Map Implementation 

A simple way of implementing a map is to store its n entries in a list S, 
implemented as a doubly linked list. Performing the fundamental methods, get(k), 
put(k, v), and remove(k), involves simple scans down S looking for an entry with 
key k. We give pseudo-code for performing these methods on a map M in Code 
Fragment 9.1. 

This list-based map implementation is simple, but it is only efficient for very small 
maps. Every one of the fundamental methods takes O(n) time on a map with n 
entries, because each method involves searching through the entire list in the worst 
case. Thus, we would like something faster. 

Code Fragment 9.1:  Algorithms for the 
fundamental map methods with a list S. 
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9.2  Hash Tables 

The keys associated with values in a map are typically thought of as "addresses" for 
those values. Examples of such applications include a compiler's symbol table and a 
registry of environment variables. Both of these structures consist of a collection of 
symbolic names where each name serves as the "address" for properties about a 
variable's type and value. One of the most efficient ways to implement a map in such 
circumstances is to use a hash table. Although, as we will see, the worst-case running 
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time of map operations in an n-entry hash table is O(n), a hash table can usually 
perform these operations in O(1) expected time. In general, a hash table consists of 
two major components, a bucket array and a hash function. 

9.2.1  Bucket Arrays 

A bucket array for a hash table is an array A of size N, where each cell of A is 
thought of as a "bucket" (that is, a collection of key-value pairs) and the integer N 
defines the capacity of the array. If the keys are integers well distributed in the 
range [0,N − 1], this bucket array is all that is needed. An entry e with key k is 
simply inserted into the bucket A[k]. (See Figure 9.2.) To save space, an empty 
bucket may be replaced by a null object. 

Figure 9.2:  A bucket array of size 11 for the entries 
(1,D), (3,C), (3,F), (3,Z), (6,A), (6,C) and (7Q), 

 

if our keys are unique integers in the range [0,N − 1], then each bucket holds at 
most one entry. Thus, searches, insertions, and removals in the bucket array take 
O(1) time. This sounds like a great achievement, but it has two drawbacks. First, the 
space used is proportional to N. Thus, if N is much larger than the number of entries 
n actually present in the map, we have a waste of space. The second draw back is 
that keys are required to be integers in the range [0, N − 1], which is often not the 
case. Because of these two drawbacks, we use the bucket array in conjunction with 
a "good" mapping from the keys to the integers in the range [0,N − 1]. 

9.2.2  Hash Functions 

The second part of a hash table structure is a function, h, called a hash function, 
that maps each key k in our map to an integer in the range [0,N − 1], where N is the 
capacity of the bucket array for this table. Equipped with such a hash function, h, 
we can apply the bucket array method to arbitrary keys. The main idea of this 
approach is to use the hash function value, h(k), as an index into our bucket array, 
A, instead of the key k (which is most likely inappropriate for use as a bucket array 
index). That is, we store the entry (k, v) in the bucket A[h(k)]. 
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Of course, if there are two or more keys with the same hash value, then two 
different entries will be mapped to the same bucket in A. In this case, we say that a 
collision has occurred. Clearly, if each bucket of A can store only a single entry, 
then we cannot associate more than one entry with a single bucket, which is a 
problem in the case of collisions. To be sure, there are ways of dealing with 
collisions, which we will discuss later, but the best strategy is to try to avoid them 
in the first place. We say that a hash function is "good" if it maps the keys in our 
map so as to minimize collisions as much as possible. For practical reasons, we also 
would like a hash function to be fast and easy to compute. 

Following the convention in Java, we view the evaluation of a hash function, h(k), 
as consisting of two actions—mapping the key k to an integer, called the hash code, 
and mapping the hash code to an integer within the range of indices ([0,N − 1]) of a 
bucket array, called the compression function. (See Figure 9.3.) 

Figure 9.3:  The two parts of a hash function: a hash 
code and a compression func tion. 

 

9.2.3  Hash Codes 

The first action that a hash function performs is to take an arbitrary key k in our 
map and assign it an integer value. The integer assigned to a key k is called the 
hash code for k. This integer value need not be in the range [0,N − 1], and may even 
be negative, but we desire that the set of hash codes assigned to our keys should 
avoid collisions as much as possible. For if the hash codes of our keys cause 
collisions, then there is no hope for our compression function to avoid them. In 
addition, to be consistent with all of our keys, the hash code we use for a key k 
should be the same as the hash code for any key that is equal to k. 
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Hash Codes in Java 

The generic Object class defined in a Java comes with a default hashCode() 
method for mapping each object instance to an integer that is a "representation" of 
that ob ject. Specifically, the hashCode() method returns a 32-bit integer of 
type int. Un less specifically overridden, this method is inherited by every 
object used in a Java program. We should be careful in using the default Object 
version of hashCode(), however, as this could just be an integer interpretation 
of the object's location in memory (as is the case in many Java implementations). 
This type of hash code works poorly with character strings, for example, because 
two different string ob jects in memory might actually be equal, in which case we 
would like them to have the same hash code. Indeed, the Java String class 
overrides the hashCode method of the Object class to be something more 
appropriate for character strings. Like wise, if we intend to use certain objects as 
keys in a map, then we should override the built-in hashCode() method for 
these objects, replacing it with a mapping that assigns well-spread, consistent 
integers to these types of objects. 

Let us consider, then, several common data types and some example methods for 
assigning hash codes to objects of these types. 

Casting to an Integer 

To begin, we note that, for any data type X that is represented using at most as 
many bits as our integer hash codes, we can simply take as a hash code for X an 
integer interpretation of its bits. Thus, for Java base types byte, short, int, and 
char, we can achieve a good hash code simply by casting this type to int. 
Likewise, for a variable x of base type float, we can convert x to an integer using 
a call to Float.floatToIntBits(x), and then use this integer as x's hash 
code. 

Summing Components 

For base types, such as long and double, whose bit representation is double that 
of a hash code, the above scheme is not immediately applicable. Still, one 
possible hash code, and indeed one that is used by many Java implementations, is 
to simply cast a (long) integer representation of the type down to an integer the 
size of a hash code. This hash code, of course, ignores half of the information 
present in the original value, and if many of the keys in our map only differ in 
these bits, then they will collide using this simple hash code. An alternative hash 
code, then, which takes all the original bits into consideration, is to sum an integer 
representation of the high-order bits with an integer representation of the low-
order bits. Such a hash code can be written in Java as follows: 
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   static inthashCode(longi) {return (int)((i >> 32) + (int) i);} 

Indeed, the approach of summing components can be extended to any object x 
whose binary representation can be viewed as a k-tuple (x0,x1,… ,xk−1) of 

integers, for we can then form a hash code for x as . For example, given 
any floating point number, we can sum its mantissa and exponent as long integers, 
and then apply a hash code for long integers to the result. 

Polynomial Hash Codes 

The summation hash code, described above, is not a good choice for character 
strings or other variable-length objects that can be viewed as tuples of the form 
(x0,x1,…,xk−1), where the order of the xi's is significant. For example, consider a
hash code for a character string s that sums the ASCII (or Unicode) values of the 
characters in s. This hash code unfortunately produces lots of unwanted collisions 
for common groups of strings. In particular, "temp01" and "temp10" collide using 
this function, as do "stop", "tops", "pots", and "spot". A better hash code 
should somehow take into consideration the positions of the x

 

i's. An alternative 
hash code, which does exactly this, is to choose a nonzero constant, a≠1, and use 
as a hash code the value 

x0ak−1+ x1ak−2 + …+ xk−2a + xk−1. 

Mathematically speaking, this is simply a polynomial in a that takes the compo 
nents (x0,x1,… ,xk−1) of an object x as its coefficients. This hash code is therefore 
called a polynomial hash code. By Horner's rule (see Exercise C-4.11), this poly 
nomial can be written as 

xk−1 + a(xk−2 + a(xk−3 + … + a(x2 + a(x1 + ax0))…)). 

Intuitively, a polynomial hash code uses multiplication by the constant a as a way 
of "making room" for each component in a tuple of values while also preserv ing 
a characterization of the previous components. 

Of course, on a typical computer, evaluating a polynomial will be done using the 
finite bit representation for a hash code; hence, the value will periodically over 
flow the bits used for an integer. Since we are more interested in a good spread of 
the object x with respect to other keys, we simply ignore such overflows. Still, we 
should be mindful that such overflows are occurring and choose the constant a so 
that it has some nonzero, low-order bits, which will serve to preserve some of the 
information content even as we are in an overflow situation. 

We have done some experimental studies that suggest that 33, 37, 39, and 41 are 
particularly good choices for a when working with character strings that are 
English words. In fact, in a list of over 50,000 English words formed as the union 
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of the word lists provided in two variants of Unix, we found that taking a to be 
33, 37, 39, or 41 produced less than 7 collisions in each case! It should come as 
no surprise, then, to learn that many Java implementations choose the polynomial 
hash function, using one of these constants for a, as a default hash code for 
strings. For the sake of speed, however, some Java implementations only apply 
the polynomial hash function to a fraction of the characters in long strings. 

Cyclic Shift Hash Codes 

A variant of the polynomial hash code replaces multiplication by a with a cyclic 
shift of a partial sum by a certain number of bits. Such a function, applied to 
character strings in Java could, for example, look like the following: 

 static int hashCode(String s) { 

  int h=0; 

  for (int i=0; i<s.length(); i++ ) { 

     h = (h << 5) | (h >>> 27); // 5-bit cyclic shift of 
the running sum 

     h + = (int) s.charAt(i); // add in next character 

  } 

  return h; 

 } 

As with the traditional polynomial hash code, using the cyclic-shift hash code re 
quires some fine-tuning. In this case, we must wisely choose the amount to shift 
by for each new character. We show in Table 9.2 the results of some experiments 
run on a list of just over 25,000 English words, which compare the number of col 
lisions for various shift amounts. These and our previous experiments show that if 
we choose our constant a or our shift value wisely, then either the polynomial 
hash code or its cyclic-shift variant are suitable for any object that can be written 
as a tuple (x0,x1 ,… ,xk 1), where the order in tuples matters. 

Table 9.2:  Comparison of collision behavior for the 
cyclic shift variant of the poly nomial hash code as 
applied to a list of just over 25,000 English words. The 
"Total" column records the total number of collisions 
and the "Max" column records the maximum number 
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of collisions for any one hash code. Note that with a 
cyclic shift of 0, this hash code reverts to the one that 
simply sums all the characters. 

Collisions 

Shift 

Total 

Max 

0 

23739 

86 

1 

10517 

21 

2 

2254 

6 

3 

448 

3 

4 

89 

2 

5 

4 

2 
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6 

6 

2 

7 

14 

2 

8 

105 

2 

9 

18 

2 

10 

277 

3 

11 

453 

4 

12 

43 

2 

13 

13 

2 

14 
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135 

3 

15 

1082 

6 

16 

8760 

9 

9.2.4  Compression Functions 

The hash code for a key k will typically not be suitable for immediate use with a 
bucket array, because the range of possible hash codes for our keys will typically 
exceed the range of legal indices of our bucket array A. That is, incorrectly using a 
hash code as an index into our bucket array may result in an array out-of-bounds 
exception being thrown, either because the index is negative or it exceeds the ca 
pacity of A. Thus, once we have determined an integer hash code for a key object k, 
there is still the issue of mapping that integer into the range [0,N − 1]. This map 
ping is the second action that a hash function performs, and a good compression 
function is one that minimizes the possible number of collisions in a given set of 
hash codes. 

The Division Method 

One simple compression function is the division method, which maps an integer 
i to 

|i| mod N, 

where N, the size of the bucket array, is a fixed positive integer. Additionally, if 
we take N to be a prime number, then this compression function helps "spread 
out" the distribution of hashed values. Indeed, if N is not prime, then there is a 
higher likelihood that patterns in the distribution of hash codes will be repeated in 
the distribution of hash values, thereby causing collisions. For example, if we 
insert keys with hash codes {200,205,210,215,220,... ,600} into a bucket array of 
size 100, then each hash code will collide with three others. But if we use a bucket 
array of size 101, then there will be no collisions. If a hash function is chosen 
well, it should ensure that the probability of two different keys getting hashed to 
the same bucket is 1/N. Choosing N to be a prime number is not always enough, 
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however, for if there is a repeated pattern of hash codes of the form pN + q for 
several different p's, then there will still be collisions. 

The MAD Method 

A more sophisticated compression function, which helps eliminate repeated pat 
terns in a set of integer keys is the multiply add and divide (or "MAD") method. 
This method maps an integer i to 

|ai + b| mod N, 

where N is a prime number, and a > 0 (called scaling factor) and b ≥ 0 (called 
shift) are integer constants randomly chosen at the time the compression function 
is determined so that a mod N≠ 0. This compression function is chosen in order to 
eliminate repeated patterns in the set of hash codes and get us closer to having a 
"good" hash function, that is, one such that the probability any two different keys 
collide is 1/N. This good behavior would be the same as we would have if these 
keys were "thrown" into A uniformly at random. 

With a compression function such as this, which spreads integers fairly evenly in 
the range [0,N − 1], and a hash code that transforms the keys in our map into 
integers, we have an effective hash function. Together, such a hash function and a 
bucket array define the main ingredients of the hash table implementation of the 
map ADT. 

But before we can give the details of how to perform such operations as put, get, 
and remove, we must first resolve the issue of how we will be handling collisions. 

9.2.5  Collision-Handling Schemes 

The main idea of a hash table is to take a bucket array, A, and a hash function, h, 
and use them to implement a map by storing each entry (k,v) in the "bucket" A 
[h(k)]. This simple idea is challenged, however, when we have two distinct keys, k1 
and k2, such that h(k1) = h(k2). The existence of such collisions prevents us from 
simply inserting anew entry (k,v) directly in the bucket A [h(k)]. They also 
complicate our procedure for performing the get(k), put(k, v), and remove(k) 
operations. 

Separate Chaining 

A simple and efficient way for dealing with collisions is to have each bucket A[i] 
store a small map, Mi, implemented using a list, as described in Section 9.1.1, 
holding entries (k, v) such that h(k) = i. That is, each separate Mi chains together 
the entries that hash to index i in a linked list. This collision resolution rule is 
known as separate chaining. Assuming that we initialize each bucket A [i] to be 
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an empty list-based map, we can easily use the separate chaining rule to perform 
the fundamental map operations, as shown in Code Fragment 9.2. 

Code Fragment 9.2:  The fundamental methods of 
the map ADT, implemented with a hash table that uses 
separate chaining to resolve collisions among its n 
entries. 

 

For each fundamental map operation, involving a key k, the separate-chaining 
approach delegates the handling of this operation to the miniature list-based map 
stored at A [h(k)]. So, put(k, v) will scan this list looking for an entry with key 
equal to k; if it finds one, it replaces its value with v, otherwise, it puts (k, v) at 
the end of this list. Likewise, get(k) will search through this list until it reaches 
the end or finds an entry with key equal to k. And remove(k) will perform a 
similar search but additionally remove an entry after it is found. We can "get 
away" with this simple list-based approach, because the spreading properties of 
the hash function help keep each bucket's list small. Indeed, a good hash function 
will try to minimize collisions as much as possible, which will imply that most of 
our buckets are either empty or store just a single entry. This observation allows 
us to make a slight change to our implementation so that, if a bucket A[i] is 
empty, it stores null, and if A[i] stores just a single entry (k,v), we can simply 
have A[i] point directly to the entry (k, v) rather than to a list-based map holding 
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only the one entry. We leave the details of this final space optimization to an 
exercise (C-9.5). In Figure 9.4, we give an illustration of a hash table with 
separate chaining. 

Assuming we use a good hash function to index the n entries of our map in a 
bucket array of capacity N, we expect each bucket to be of size n/N. This value, 
called the load factor of the hash table (and denoted with δ), should be bounded 
by a small constant, preferably below 1. For, given a good hash function, the 
expected running time of operations get, put, and remove in a map implemented 
with a hash table that uses this function is O( �n/N�). Thus, we can implement 
these operations to run in O(1) expected time, provided n is O(N). 

Figure 9.4:  A hash table of size 13, storing 10 
entries with integer keys, with colli sions resolved by 
separate chaining. The compression function is h(k) = 
k mod 13. For simplicity, we do not show the values 
associated with the keys. 

 

Open Addressing 

The separate chaining rule has many nice properties, such as allowing for simple 
implementations of map operations, but it nevertheless has one slight disadvan 
tage: it requires the use of an auxiliary data structure—a list—to hold entries with 
colliding keys. We can handle collisions in other ways besides using the separate 
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chaining rule, however. In particular, if space is at a premium (for example, if we 
are writing a program for a small handheld device), then we can use the 
alternative approach of always storing each entry directly in a bucket, at most one 
entry per bucket. This approach saves space because no auxiliary structures are 
employed, but it requires a bit more complexity to deal with collisions. There are 
several vari ants of this approach, collectively referred to as open addressing 
schemes, which we discuss next. Open addressing requires that the load factor is 
always at most 1 and that entries are stored directly in the cells of the bucket array 
itself. 

Linear Probing 

A simple open addressing method for collision handling is linear probing. In this 
method, if we try to insert an entry (k, v) into a bucket A[i] that is already 
occupied, where i = h(k), then we try next at A[(i + 1) modN]. If A[(i + 1) mod N] 
is also occupied, then we try A[(i + 2) mod N], and so on, until we find an empty 
bucket that can accept the new entry. Once this bucket is located, we simply insert 
the entry there. Of course, this collision resolution strategy requires that we 
change the implementation of the get(k, v) operation. In particular, to perform 
such a search, followed by either a replacement or insertion, we must examine 
consecutive buck ets, starting from A [h(k)], until we either find an entry with key 
equal to k or we find an empty bucket. (See Figure 9.5.) The name "linear 
probing" comes from the fact that accessing a cell of the bucket array can be 
viewed as a "probe". 

Figure 9.5:  Insertion into a hash table with integer 
keys using linear probing. The hash function is h(k) = k 
mod 11. Values associated with keys are not shown. 

 

To implement remove(k), we might, at first, think we need to do a consider able 
amount of shifting of entries to make it look as though the entry with key k was 
never inserted, which would be very complicated. A typical way to get around 
this difficulty is to replace a deleted entry with a special "available" marker 
object. With this special marker possibly occupying buckets in our hash table, we 
modify our search algorithm for remove(k) or get(k) so that the search for a 
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key k will skip over cells containing the available marker and continue probing 
until reach ing the desired entry or an empty bucket (or returning back to where 
we started from). Additionally, our algorithm for put(k,v) should remember an 
available cell encountered during the search for k, since this is a valid place to put 
a new entry (k,v). Thus, linear probing saves space, but it complicates removals. 

Even with the use of the available marker object, linear probing suffers from an 
additional disadvantage. It tends to cluster the entries of the map into contiguous 
runs, which may even overlap (particularly if more than half of the cells in the 
hash table are occupied). Such contiguous runs of occupied hash cells causes 
searches to slow down considerably. 

Quadratic Probing 

Another open addressing strategy, known as quadratic probing, involves 
iteratively trying the buckets A[(i + f (j)) mod N], for j = 0,1,2,…, where f (j) =j2, 
until finding an empty bucket. As with linear probing, the quadratic probing 
strategy complicates the removal operation, but it does avoid the kinds of 
clustering patterns that occur with linear probing. Nevertheless, it creates its own 
kind of clustering, called secondary clustering, where the set of filled array cells 
"bounces" around the array in a fixed pattern. If N is not chosen as a prime, then 
the quadratic probing strategy may not find an empty bucket in A even if one 
exists. In fact, even if N is prime, this strategy may not find an empty slot, if the 
bucket array is at least half full; we explore the cause of this type of clustering in 
an exercise (C-9.9). 

Double Hashing 

Another open addressing strategy that does not cause clustering of the kind pro 
duced by linear probing or the kind produced by quadratic probing is the double 
hashing strategy. In this approach, we choose a secondary hash function, h ′, and 
if h maps some key k to a bucket A[i], with i = h(k), that is already occupied, then 
we iteratively try the buckets A[(i + f (j)) mod N] next, for j = 1,2,3,…, where f (j) 
= j. h ′(k). In this scheme, the secondary hash function is not allowed to eval uate 
to zero; a common choice is h ′(k) = q - (k mod q), for some prime number q < N. 
Also, N should be a prime. Moreover, we should choose a secondary hash 
function that will attempt to minimize clustering as much as possible. 

These open addressing schemes save some space over the separate chaining 
method, but they are not necessarily faster. In experimental and theoretical anal 
yses, the chaining method is either competitive or faster than the other methods, 
depending on the load factor of the bucket array. So, if memory space is not a 
major issue, the collision-handling method of choice seems to be separate chain 
ing. Still, if memory space is in short supply, then one of these open addressing 
methods might be worth implementing, provided our probing strategy minimizes 
the clustering that can occur from open addressing. 

 535



9.2.6  A Java Hash Table Implementation 

In Code Fragments 9.3–9.5, we show class, HashTableMap, which implements 
the map ADT using a hash table with linear probing to resolve collisions. These 
code fragments include the entire implementation of the map ADT, except for the 
methods values() and entries(), which we leave as an Exercise (R-9.10). 

The main design elements of the Java class HashTableMap are as follows:  

• We maintain, in instance variables, the size, n, of the map, the bucket 
array, A, and the capacity, N, of A. 

• We use method hash Value to compute the hash function of a key by 
means of the built-in hashCode method and the multiply-add-and-divide (MAD) 
compression function. 

• We define a sentinel, AVAILABLE, as a marker for deactivated entries. 

• We provide an optional constructor that allows us to specify the initial 
capac ity of the bucket array. 

• If the current bucket array is full and one tries to insert a new entry, we 
rehash the entire contents into a new array that is twice the size as the old version. 

• The following (protected) auxiliary methods are used: 

� checkKey(k), which checks if the key k is valid. This method currently 
just checks that k is not null, but a class that extends HashTableMap can 
override this method with a more elaborate test. 

� rehash(), which computes a new MAD hash function with random pa 
rameters and rehashes the entries into a new array with double capacity. 

� findEntry(k), which looks for an entry with key equal to k, starting at 
the index A[h(k)] and going through the array in a circular fashion. If the method 
finds a cell with such an entry, then it returns the index i of this cell. Otherwise, it 
returns -i-1, where i is the index of the last empty or available cell encountered. 

Code Fragment 9.3:  Class HashTableMap 
implementing the map ADT using a hash table with 
linear probing. (Continues in Code Fragment 9.4.) 
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Code Fragment 9.4:  Class HashTableMap 
implementing the map ADT using a hash table with 
linear probing. (Continues in Code Fragment 9.5.) 
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Code Fragment 9.5:  Class HashTableMap 
implementing the map ADT using a hash table with 
linear probing. (Continued from Code Fragment 9.4.) 
We have omitted the values() and entries() 
methods in the listing above, as they are similar to 
keys(). 
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9.2.7  Load Factors and Rehashing 

In the hash table schemes described above, we should desire that the load factor, X 
= n/N, be kept below 1. Experiments and average-case analyses suggest that we 
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should maintain λ<' 0.5 for the open addressing schemes and we should maintain X 
< 0.9 for separate chaining. The built-in class java.util.HashMap, which 
imple ments the map ADT, uses the threshold 0.75 as a default maximum load 
factor and rehashes any time the load factor exceeds this (or an optional user-set 
load factor). The choice of 0.75 is fine for separate chaining (which is the likely 
implementation in java.util.HashMap), but, as we explore in Exercise C-9.9, 
some open addressing schemes can start to fail when λ ≥ 0.5. Although the details 
of the average-case analysis of hashing are beyond the scope of this book, its 
probabilistic basis is quite intuitive. If our hash function is good, then we expect the 
entries to be uniformly distributed in the N cells of the bucket array. Thus, to store n 
entries, the expected number of keys in a bucket would be �n/N�, which is O(1) if 
n is O(N). 

With separate chaining, as λ gets very close to 1, the probability of a collision also 
approaches 1, which adds overhead to our operations, since we must revert to 
linear-time list-based methods in buckets that have collisions. Of course, in the 
worst case, a poor hash function could map every entry to the same bucket, which 
would result in linear-time performance for all map operations, but this is unlikely. 

With open addressing, on the other hand, as the load factor λ grows beyond 0.5 and 
starts approaching 1, clusters of entries in the bucket array start to grow as well. 
These clusters cause the probing strategies to "bounce around" the bucket array for 
a considerable amount of time before they can finish. 

Thus, keeping the load factor below a certain threshold is vital for open ad dressing 
schemes and is also of concern with the separate chaining method. If the load factor 
of a hash table goes significantly above the specified threshold, then it is common 
to require that the table be resized (to regain the specified load factor) and all the 
objects inserted into this new table. When rehashing to a new table, it is a good 
requirement for the new array's size to be at least double the previous size. Once we 
have allocated this new bucket array, we must define a new hash function to go 
with it, possibly computing new parameters. We then reinsert every entry from the 
old array into the new array using this new hash function. In our im plementation of 
a hash table with linear probing given in Code Fragments 9.3–9.5, rehashing is used 
to keep the load factor less than or equal to 0.5. 

Even with periodic rehashing, a hash table is an efficient means of implementing a 
map. Indeed, if we always double the size of the table with each rehashing 
operation, then we can amortize the cost of rehashing all the entries in the table 
against the time used to insert them in the first place. (See Section 6.1.4.) Each 
rehashing will generally scatter the entries throughout the new bucket array. 

9.2.8  Application: Counting Word Frequencies 

As a miniature case study of using a hash table, consider the problem of counting 
the number of occurrences of different words in a document, which arises, for 
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example, when pundits study political speeches looking for themes. A hash table is 
an ideal data structure to use here, for we can use words as keys and word counts as 
values. We show such an application in Code Fragment 9.6. 

Code Fragment 9.6:  A program for counting word 
frequencies in a document, print ing the most frequent 
word. The document is parsed using the Scanner class, 
for which we change the delimiter for separating tokens 
from whitespace to any non letter. We also convert 
words to lowercase. 

 543



 

9.3  The Dictionary Abstract Data Type 

Like a map, a dictionary stores key-value pairs (k, v), which we call entries, where k 
is the key and v is the value. Similarly, a dictionary allows for keys and values to be 
of any object type. But, whereas a map insists that entries have unique keys, a 
dictionary allows for multiple entries to have the same key, much like an English 
dictionary, which allows for multiple definitions for the same word. 

We distinguish two types of dictionaries, unordered dictionaries and ordered 
dictionaries. In an ordered dictionary, we assume that a total order relation is de fined 
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for the keys, and we provide additional methods that refer to this ordering (see 
Section 9.5.2). In an unordered dictionary, however, no order relation is assumed on 
the keys; hence, only equality testing between keys is used. 

As an ADT, an (unordered) dictionary D supports the following methods: 

                size(): Return the number of entries in D. 

             isEmpty(): Test whether D is empty. 

               find(k): If D contains an entry with key equal to k, then return such an 
entry, else return null. 

            findAll(k): Return an iterable collection containing all entries with key 
equal to k. 

             insert(k,v): Insert an entry with key k and value v into D, returning the 
entry created. 

             remove(e): Remove from D an entry e, returning the removed entry or 
null if e was not in D. 

             entries(): Return an iterable collection of the key-value entries in D. 

Notice that our dictionary operations use entries, which are the key-value pairs stored 
in the dictionary. We assume each entry comes equipped with getKey() and 
getValue() methods to access its key and value components respectively. 

When the method find(k) is unsuccessful (that is, there is no entry with key equal to 
k), we use the convention of returning a sentinel null. Another choice, of course, 
would be to throw an exception for an unsuccessful find(k), but that would probably 
not be an appropriate use of an exception, since it is normal to ask for a key that 
might not be in our dictionary. Moreover, throwing and catching an exception is 
typically slower than a test against a sentinel; hence, using a sentinel is more efficient. 

Note that, as we have defined it, a dictionary D can contain different entries with 
equal keys. In this case, operation find(k) returns an arbitrary entry (k,v), whose 
key is equal to k. We mention, in passing, that our dictionary ADT should not be 
confused with the abstract class java.util. Dictionary, which actually 
corresponds to the map ADT given above and is now considered obsolete. 

Example 9.2: In the following, we show a series of operations on an initially 
empty dictionary storing entries with integer keys and character values. 

Operation 

Output 
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Dictionary 

insert(5,A) 

(5,A) 

{(5A)} 

insert(7,B) 

(7,B) 

{(5,A), (7,B)} 

insert(2,C) 

(2,C) 

{(5,A), (7,B), (2,C)} 

insert(8,D) 

(8,D) 

{(5,A), (7,B), (2,C),(8,D)} 

insert(2,E) 

(2,E) 

{(5,A), (7,B), (2,C), (8,D), (2,E)} 

find(7) 

(7,B) 

{(5,A), (7,B), (2,C), (8,D), (2,E)} 

find(4) 

null 

{(5,A), (7,B), (2,C), (8,D), (2,E)} 

find(2) 

(2,C) 

{(5,A), (7,B), (2,C), (8,D), (2,E)} 
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findAll(2) 

{(2,C), (2,E)} 

{(5,A), (7,B), (2,C), (8,D), (2,E)} 

size() 

5 

{(5,A), (7,B), (2,C), (8,D), (2,E)} 

remove(find(5)) 

(5,A) 

{(7,B), (2,C), (8,D), (2,E)} 

find(5) 

null 

{(7,B), (2,C), (8,D), (2,E) 

9.3.1  List-Based Dictionaries and Audit Trails 

A simple way of realizing a dictionary uses an unordered list to store the key-value 
entries. Such an implementation is often called a log file or audit trail. The primary 
applications of audit trails are situations where we wish to archive structured data. 
For example, many operating systems store log files of login requests they process. 
The typical scenario is that there are many insertions into the dictionary but few 
searches. For example, searching such an operating system log file typically occurs 
only after something goes wrong. Thus, a list-based dictionary supports simple and 
fast insertions, possibly at the expense of search time, by storing entries of a 
dictionary in arbitrary order. (See Figure 9.6.) 

Figure 9.6:  Realization of a dictionary D by means 
of a log file. We show only the keys in this dictionary, so 
as to highlight its unordered list implementation. 
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Implementing a Dictionary with an Unordered List 

We assume that the list S used for a list-based dictionary is implemented with a 
doubly linked list. We give descriptions of the main dictionary methods for a list-
based implementation in Code Fragment 9.7. In this simple implementation, we 
don't assume that an entry stores a reference to its location in S. 

Code Fragment 9.7:  Some of the main methods 
for a dictionary D, implemented with an unordered list 
SH. 
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Analysis of a List-Based Dictionary 
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Let us briefly analyze the performance of a dictionary implemented with an un 
ordered list. Beginning with the memory usage, we note that the space required 
for a list-based dictionary with n entries is O(n), since the linked list data structure 
has memory usage proportional to its size. In addition, with this implementation 
of the dictionary ADT, we can realize operation insert(k, v) easily and efficiently, 
just by a single call to the add Last method on S, which simply adds the new 
entry to the end of the list. Thus, we achieve O(1) time for the insert(k, v) 
operation on the dictionary D. 

Unfortunately, this implementation does not allow for an efficient execution of 
the find method. A find(k) operation requires, in the worst case, scanning 
through the entire list S, examining each of its n entries. For example, we could 
use an iterator on the positions in S, stopping as soon as we encounter an entry 
with key equal to k (or reach the end of the list). The worst case for the running 
time of this method clearly occurs when the search is unsuccessful, and we reach 
the end of the list having examined all of its n entries. Thus, the find method runs 
in O(n) time. 

Similarly, time proportional to n is needed in the worst case to perform a 
remove(e) operation on D, if we assume that entries do not keep track of their 
positions in S. Thus the running time for performing operation remove(e) is 
O(n). Alternatively, if we use location-aware entries that store their position in S, 
then we can perform operation remove(e) in O(1) time. (See Section 9.5.1.) 

The operation find All always requires scanning through the entire list S, and 
therefore its running time is O(n). More precisely, using the big-Theta notation 
(Section 4.2.3), we say that operation find All runs in Θ(n) time since it takes 
time proportional to n in both the best and worst case. 

In conclusion, implementing a dictionary with an unordered list provides for fast 
insertions, but at the expense of slow searches and removals. Thus, we should 
only use this implementation where we either expect the dictionary to always be 
small or we expect the number of insertions to be large relative to the number of 
searches and removals. Of course, archiving database and operating system 
transactions are precisely situations such as this. 

Nevertheless, there are many other scenarios where the number of insertions in a 
dictionary will be roughly proportional to the number of searches and removals, 
and in these cases the list implementation is clearly inappropriate. The unordered 
dictionary implementation we discuss next can often be used, however, to achieve 
fast insertions, removals, and searches in many such cases. 

9.3.2  Hash Table Dictionary Implementation 

We can use a hash table to implement the dictionary ADT, much in the same way as 
we did for the map ADT. The main difference, of course, is that a dictionary allows 
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for entries with duplicate keys. Assuming that the load factor of our hash table is 
kept below 1, our hash function spreads entries fairly uniformly, and we use 
separate chaining to resolve collisions, then we can achieve O(1)-time performance 
for the find, remove, and insert methods and O(1 + m)-time performance 
for the findAll method, where m is the number of entries returned. 

In addition, we can simplify the algorithms for implementing this dictionary, if we 
assume we have a list-based dictionary storing the entries at each cell in the bucket 
array A. Such an assumption would be in keeping with our use of separate chaining, 
since each cell would be a list. This approach allows us to implement the main 
dictionary methods as shown in Code Fragment 9.8. 

Code Fragment 9.8:  Some of the main methods 
for a dictionary D, implemented with a hash table that 
uses a bucket array, A, and an unordered list for each 
cell in A. We use n to denote the number of entries in 
D, N to denote the capacity of A, and λ to denote the 
maximum load factor for the hash table. 
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9.3.3  Ordered Search Tables and Binary Search 

If the keys in a dictionary D come from a total order, we can store D's entries in an 
array list S by nondecreasing order of the keys. (See Figure 9.7.) We specify that S 
is an array list, rather than a node list, for the ordering of the keys in the array list S 
allows for faster searching than would be possible had S been, say, implemented 
with a linked list. Admittedly, a hash table has good expected running time for 
searching. But its worst-case time for searching is no better than a linked list, and in 
some applications, such as in real-time processing, we need to guarantee a worst-
case searching bound. The fast algorithm for searching in an ordered array list, 
which we discuss in this subsection, has a good worst-case guarantee on its running 
time. So it might be preferred over a hash table in certain applications. We refer to 
this ordered array list implementation of a dictionary D as an ordered search table. 
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Figure 9.7:  Realization of a dictionary D by means 
of an ordered search table. We show only the keys for 
this dictionary, so as to highlight their ordering. 

 

The space requirement of an ordered search table is O(n), which is similar to the 
list-based dictionary implementation (Section 9.3.1), assuming we grow and shrink 
the array supporting the array list S to keep the size of this array proportional to the 
number of entries in S. Unlike an unordered list, however, performing updates in a 
search table takes a considerable amount of time. In particular, performing the 
insert(k,v) operation in a search table requires O(n) time, since we need to shift 
up all the entries in the array list with key greater than k to make room for the new 
entry (k, v). A similar observation applies to the operation remove (k), since it 
takes O(n) time to shift all the entries in the array list with key greater than k to 
close the "hole" left by the removed entry (or entries). The search table 
implementation is therefore inferior to the log file in terms of the worst-case 
running times of the dictionary update operations. Nevertheless, we can perform the 
find method much faster in a search table. 

Binary Search 

A significant advantage of using an ordered array list S to implement a dictionary 
D with n entries is that accessing an element of S by its index takes O(1) time. We 
recall, from Section 6.1, that the index of an element in an array list is the number 
of elements preceding it. Thus, the first element in S has index 0, and the last 
element has index n − 1. 

The elements stored in S are the entries of dictionary D, and since S is ordered, the 
entry at index i has a key no smaller than the keys of the entries at indices 0,…, i 
− 1, and no larger than the keys of the entries at indices i + 1,…, n − 1. This 
observation allows us to quickly "home in" on a search key k using a variant of 
the children's game "high-low." We call an entry of D a candidate if, at the 
current stage of the search, we cannot rule out that this entry has key equal to k. 
The algorithm maintains two parameters, low and high, such that all the 
candidate entries have index at least low and at most high in S. Initially, low = 
0 and high = n − 1. We then compare k to the key of the median candidate e, that 
is, the entry e with index 

mid = �(low + high)/2�. 

We consider three cases:  
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• If k = e.getKey(), then we have found the entry we were looking for, 
and the search terminates successfully returning e. 

• If k < e.getKey(), then we recur on the first half of the array list, that is, 
on the range of indices from low to mid − 1. 

• If k > e.getKey(), we recur on the range of indices from mid + 1 to 
high. 

This search method is called binary search, and is given in pseudo-code in Code 
Fragment 9.9. Operation find(k) on an n-entry dictionary implemented with an 
ordered array list S consists of calling BinarySearch(S,k,0,n − 1). 

Code Fragment 9.9:  Binary search in an ordered 
array list. 

 

We illustrate the binary search algorithm in Figure 9.8. 

Figure 9.8:  Example of a binary search to perform 
operation find(22), in a dictio nary with integer 
keys, implemented with an ordered array list. For 
simplicity, we show the keys stored in the dictionary 
but not the whole entries. 
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Considering the running time of binary search, we observe that a constant num 
ber of primitive operations are executed at each recursive call of method Binary 
Search. Hence, the running time is proportional to the number of recursive calls 
performed. A crucial fact is that with each recursive call the number of candidate 
entries still to be searched in the array list S is given by the value 

high − low + 1. 

Moreover, the number of remaining candidates is reduced by at least one half with 
each recursive call. Specifically, from the definition of mid, the number of remain 
ing candidates is either 

 

or 

 

Initially, the number of candidate entries is n; after the first call to 
BinarySearch, it is at most n/2; after the second call, it is at most n/4; and so 
on. In general, after the ith call to BinarySearch, the number of candidate 
entries remaining is at most n/2i. In the worst case (unsuccessful search), the 
recursive calls stop when there are no more candidate entries. Hence, the 
maximum number of recursive calls performed, is the smallest integer m such that 

n/2m < 1. 
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In other words (recalling that we omit a logarithm's base when it is 2), m > logn. 
Thus, we have 

m = �logn� + 1, 

which implies that binary search runs in O(logn) time. 

There is a simple variation of binary search that performs findAll(k) in time 
O(logn + s), where s is the number of entries in the iterator returned. The details 
are left as an exercise (C-9.4). 

Thus, we can use an ordered search table to perform fast dictionary searches, but 
using such a table for lots of dictionary updates would take a considerable amount 
of time. For this reason, the primary applications for search tables are in situations 
where we expect few updates to the dictionary but many searches. Such a 
situation could arise, for example, in an ordered list of English words we use to 
order entries in an encyclopedia or help file. 

Comparing Dictionary Implementations 

Table 9.3 compares the running times of the methods of a dictionary realized by 
either an unordered list, a hash table, or an ordered search table. Note that an 
unordered list allows for fast insertions but slow searches and removals, whereas 
a search table allows for fast searches but slow insertions and removals. 
Incidentally, although we don't explicitly discuss it, we note that a sorted list 
implemented with a doubly linked list would be slow in performing almost all the 
dictionary operations. (See Exercise R-9.3.) 

Table 9.3:  Comparison of the running times of the 
methods of a dictionary realized by means of an 
unordered list, a hash table, or an ordered search 
table. We let n denote the number of entries in the 
dictionary, N denote the capacity of the bucket array 
in the hash table implementations, and s denote the 
size of collection returned by operation findAll. The 
space requirement of all the implementations is O(n), 
assuming that the arrays supporting the hash table 
and search table implementations are maintained such 
that their capacity is proportional to the number of 
entries in the dictionary. 
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Method 

List 

Hash Table 

Search Table 

size, isEmpty 

O(1) 

O(1) 

O(1) 

entries 

O(n) 

O(n) 

O(n) 

find 

O(n) 

O(1) exp., O(n) worst-case 

O(logn) 

findAll 

O(n) 

O(1 + s) exp., O(n) worst-case 

O(logn + s) 

insert 

O(1) 

O(1) 

O(n) 

remove 
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O(n) 

O(1) exp., O(n) worst-case 

O(n) 

9.4  Skip Lists 

An interesting data structure for efficiently realizing the dictionary ADT is the skip 
list. This data structure makes random choices in arranging the entries in such a way 
that search and update times are O(logn) on average, where n is the number of entries 
in the dictionary. Interestingly, the notion of average time complexity used here does 
not depend on the probability distribution of the keys in the input. Instead, it depends 
on the use of a random-number generator in the implementation of the insertions to 
help decide where to place the new entry. The running time is averaged over all 
possible outcomes of the random numbers used when inserting entries. 

Because they are used extensively in computer games, cryptography, and computer 
simulations, methods that generate numbers that can be viewed as random numbers 
are built into most modern computers. Some methods, called pseudorandom number 
generators, generate random-like numbers deterministically, starting with an initial 
number called a seed. Other methods use hardware devices to extract "true" random 
numbers from nature. In any case, we will assume that our computer has access to 
numbers that are sufficiently random for our analysis. 

The main advantage of using randomization in data structure and algorithm design is 
that the structures and methods that result are usually simple and efficient. We can 
devise a simple randomized data structure, called the skip list, which has the same 
logarithmic time bounds for searching as is achieved by the binary searching 
algorithm. Nevertheless, the bounds are expected for the skip list, while they are 
worst-case bounds for binary searching in a look-up table. On the other hand, skip 
lists are much faster than look-up tables for dictionary updates. 

A skip list S for dictionary D consists of a series of lists {S0, S1, ..., Sh}. Each list Si 
stores a subset of the entries of D sorted by a nondecreasing key plus entries with two 
special keys, denoted −∞ and +∞, where −∞ is smaller than every possible key that 
can be inserted in D and +∞ is larger than every possible key that can be inserted in 
D. In addition, the lists in S satisfy the following:  

• List S0 contains every entry of dictionary D (plus the special entries with keys −∞ 
and +∞). 

• For i = 1, ..., h − 1, list Si contains (in addition to −∞ and +∞) a randomly 
generated subset of the entries in list Si−1. 

• List Sh contains only −∞ and +∞. 
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An example of a skip list is shown in Figure 9.9. It is customary to visualize a skip 
list S with list S0 at the bottom and lists S1,…,Sh above it. Also, we refer to h as the 
height of skip list S. 

Figure 9.9:  Example of a skip list storing 10 entries. 
For simplicity, we show only the keys of the entries. 

 

Intuitively, the lists are set up so that Si+1 contains more or less every other entry in 
Si. As we shall see in the details of the insertion method, the entries in Si+1 are chosen
at random from the entries in S

 
th i by picking each entry from Si to also be in Si+1 wi

probability 1/2. That is, in essence, we "flip a coin" for each entry in Si and place that 
entry in Si+1 if the coin comes up "heads." Thus, we expect S1 to have about n/2 
entries, S2 to have about n/4 entries, and, in general, Si to have about n/2i entries. In 
other words, we expect the height h of S to be about logn. The halving of the number 
of entries from one list to the next is not enforced as an explicit property of skip lists, 
however. Instead, randomization is used. 

Using the position abstraction used for lists and trees, we view a skip list as a two-
dimensional collection of positions arranged horizontally into levels and vertically 
into towers. Each level is a list Si and each tower contains positions storing the same 
entry across consecutive lists. The positions in a skip list can be traversed using the 
following operations: 

            next(p): Return the position following p on the same level. 

            prev(p): Return the position preceding p on the same level. 

          below(p): Return the position below p in the same tower. 

          above(p): Return the position above p in the same tower. 

We conventionally assume that the above operations return a null position if the 
position requested does not exist. Without going into the details, we note that we can 
easily implement a skip list by means of a linked structure such that the above 
traversal methods each take O(1) time, given a skip-list position p. Such a linked 
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structure is essentially a collection of h doubly linked lists aligned at towers, which 
are also doubly linked lists. 

9.4.1  Search and Update Operations in a Skip List 

The skip list structure allows for simple dictionary search and update algorithms. In 
fact, all of the skip list search and update algorithms are based on an elegant 
SkipSearch method that takes a key k and finds the position p of the entry e in 
list S0 such that e has the largest key (which is possibly −∞) less than or equal to k. 

Searching in a Skip List 

Suppose we are given a search key k. We begin the SkipSearch method by 
setting a position variable p to the top-most, left position in the skip list S, called 
the start position of S. That is, the start position is the position of Sh storing the 
special entry with key −∞. We then perform the following steps (see Figure 9.10), 
where key(p) denotes the key of the entry at position p:  

1. If S.below(p) is null, then the search terminates—we are at the bottom 
and have located the largest entry in S with key less than or equal to the search 
key k. Otherwise, we drop down to the next lower level in the present tower by 
setting p ← S.below(p). 

2. Starting at position p, we move p forward until it is at the right-most 
position on the present level such that key(p) ≤ k. We call this the scan forward 
step. Note that such a position always exists, since each level contains the keys 
+∞ and −∞. In fact, after we perform the scan forward for this level, p may 
remain where it started. In any case, we then repeat the previous step. 

Figure 9.10:  Example of a search in a skip list. The 
positions visited when searching for key 50 are 
highlighted in blue. 
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We give a pseudo-code description of the skip-list search algorithm, 
SkipSearch, in Code Fragment 9.10. Given this method, it is now easy to 
implement the operation find(k)�we simply perform p ← SkipSearch(k) and 
test whether or not key(p) = k. If these two keys are equal, we return p; 
otherwise, we return null. 

Code Fragment 9.10:  Search in a skip list S. Variable 
s holds the start position of S. 

 

As it turns out, the expected running time of algorithm SkipSearch on a skip 
list with n entries is O(logn). We postpone the justification of this fact, however, 
until after we discuss the implementation of the update methods for skip lists. 

Insertion in a Skip List 

The insertion algorithm for skip lists uses randomization to decide the height of 
the tower for the new entry. We begin the insertion of a new entry (k,v) by 
performing a SkipSearch(k) operation. This gives us the position p of the 
bottom-level entry with the largest key less than or equal to k (note that p may 
hold the special entry with key −∞). We then insert (k, v) immediately after 
position p. After inserting the new entry at the bottom level, we "flip" a coin. If 
the flip comes up tails, then we stop here. Else (the flip comes up heads), we 
backtrack to the previous (next higher) level and insert (k,v) in this level at the 
appropriate position. We again flip a coin; if it comes up heads, we go to the next 
higher level and repeat. Thus, we continue to insert the new entry (k,v) in lists 
until we finally get a flip that comes up tails. We link together all the references to 
the new entry (k, v) created in this process to create the tower for the new entry. A 
coin flip can be simulated with Java's built-in pseudo-random number generator 
java.util.Random by calling nextInt(2), which returns 0 of 1, each with 
probability 1/2. 

We give the insertion algorithm for a skip list S in Code Fragment 9.11 and we 
illustrate it in Figure 9.11. The algorithm uses method insertAfterAbove(p, 
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q, (k, v)) that inserts a position storing the entry (k, v) after position p (on the same 
level as p) and above position q, returning the position r of the new entry (and 
setting internal references so that next, prev, above, and below methods will 
work correctly for p, q, and r). The expected running time of the insertion 
algorithm on a skip list with n entries is O(logn), which we show in Section 9.4.2. 

Code Fragment 9.11:  Insertion in a skip list. Method 
coinFlip() returns "heads" or "tails", each with 
probability 1/2. Variables n, h, and s hold the number 
of entries, the height, and the start node of the skip 
list. 

 
Figure 9.11:  Insertion of an entry with key 42 into the 
skip list of Figure 9.9. We assume that the random 
"coin flips" for the new entry came up heads three 
times in a row, followed by tails. The positions visited 
are highlighted in blue. The positions inserted to hold 

 562



the new entry are drawn with thick lines, and the 
positions preceding them are flagged. 

 

Removal in a Skip List 

Like the search and insertion algorithms, the removal algorithm for a skip list is 
quite simple. In fact, it is even easier than the insertion algorithm. That is, to 
perform a remove(k) operation, we begin by executing method 
SkipSearch(k). If the position p stores an entry with key different from k, we 
return null. Otherwise, we remove p and all the positions above p, which are 
easily accessed by using above operations to climb up the tower of this entry in 
S starting at position p. The removal algorithm is illustrated in Figure 9.12 and a 
detailed description of it is left as an exercise (R-9.16). As we show in the next 
subsection, operation remove in a skip list with n entries has O(logn) expected 
running time. 

Before we give this analysis, however, there are some minor improvements to the 
skip list data structure we would like to discuss. First, we don't actually need to 
store references to entries at the levels of the skip list above the bottom level, 
because all that is needed at these levels are references to keys. Second, we don't 
actually need the above method. In fact, we don't need the prev method either. 
We can perform entry insertion and removal in strictly a top-down, scan-forward 
fashion, thus saving space for "up" and "prev" references. We explore the details 
of this optimization in Exercise C-9.10. Neither of these optimizations improve 
the asymptotic performance of skip lists by more than a constant factor, but these 
improvements can, nevertheless, be meaningful in practice. In fact, experimental 
evidence suggests that optimized skip lists are faster in practice than AVL trees 
and other balanced search trees, which are discussed in Chapter 10. 

The expected running time of the removal algorithm is O(logn), which we show 
in Section 9.4.2. 

Figure 9.12:  Removal of the entry with key 25 from 
the skip list of Figure 9.11. The positions visited after 
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the search for the position of S0 holding the entry are 
highlighted in blue. The positions removed are drawn 
with dashed lines. 

 

Maintaining the Top-most Level 

A skip-list S must maintain a reference to the start position (the top-most, left 
position in S) as an instance variable, and must have a policy for any insertion that 
wishes to continue inserting a new entry past the top level of S. There are two 
possible courses of action we can take, both of which have their merits. 

One possibility is to restrict the top level, h, to be kept at some fixed value that is 
a function of n, the number of entries currently in the dictionary (from the 
analysis we will see that h = max{ 10,2 �log n�} is a reasonable choice, and 
picking h = 3 �logn� is even safer). Implementing this choice means that we 
must modify the insertion algorithm to stop inserting a new position once we 
reach the top-most level (unless �logn� < �log(n + 1)�, in which case we can 
now go at least one more level, since the bound on the height is increasing). 

The other possibility is to let an insertion continue inserting a new position as 
long as heads keeps getting returned from the random number generator. This is 
the approach taken in Algorithm SkipInsert of Code Fragment 9.11. As we 
show in the analysis of skip lists, the probability that an insertion will go to a level 
that is more than O(logn) is very low, so this design choice should also work. 

Either choice will still result in the expected O(logn) time to perform search, 
insertion, and removal, however, which we show in the next section. 

9.4.2  A Probabilistic Analysis of Skip Lists � 

As we have shown above, skip lists provide a simple implementation of an ordered 
dictionary. In terms of worst-case performance, however, skip lists are not a 
superior data structure. In fact, if we don't officially prevent an insertion from 
continuing significantly past the current highest level, then the insertion algorithm 
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can go into what is almost an infinite loop (it is not actually an infinite loop, 
however, since the probability of having a fair coin repeatedly come up heads 
forever is 0). Moreover, we cannot infinitely add positions to a list without 
eventually running out of memory. In any case, if we terminate position insertion at 
the highest level h, then the worst-case running time for performing the find, 
insert, and remove operations in a skip list S with n entries and height h is O(n 
+ h). This worst-case performance occurs when the tower of every entry reaches 
level h−1, where h is the height of S. However, this event has very low probability. 
Judging from this worst case, we might conclude that the skip list structure is 
strictly inferior to the other dictionary implementations discussed earlier in this 
chapter. But this would not be a fair analysis, for this worst-case behavior is a gross 
overestimate. 

Bounding the Height of a Skip List 

Because the insertion step involves randomization, a more accurate analysis of 
skip lists involves a bit of probability. At first, this might seem like a major 
undertaking, for a complete and thorough probabilistic analysis could require 
deep mathematics (and, indeed, there are several such deep analyses that have 
appeared in data structures research literature). Fortunately, such an analysis is 
not necessary to understand the expected asymptotic behavior of skip lists. The 
informal and intuitive probabilistic analysis we give below uses only basic 
concepts of probability theory. 

Let us begin by determining the expected value of the height h of a skip list S with 
n entries (assuming that we do not terminate insertions early). The probability that 
a given entry has a tower of height i ≥ 1 is equal to the probability of getting i 
consecutive heads when flipping a coin, that is, this probability is 1/2i. Hence, the 
probability PP

i that level i has at least one position is at most 

Pi ≤ n/2i, 

for the probability that any one of n different events occurs is at most the sum of 
the probabilities that each occurs. 

The probability that the height h of S is larger than i is equal to the probability that 
level i has at least one position, that is, it is no more than Pi This means that h is 
larger than, say, 3 log n with probability at most 

P3 log n  ≤   n/23 log n 

     = n/n3 = 1/n2. 

For example, if n = 1000, this probability is a one-in-a-million long shot. More 
generally, given a constant c > 1, h is larger than c log n with probability at most 
1/nc−1. That is, the probability that h is smaller than c log n is at least 1 − 1/nc−1. 
Thus, with high probability, the height h of S is O(logn). 
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Analyzing Search Time in a Skip List 

Next, consider the running time of a search in skip list S, and recall that such a 
search involves two nested while loops. The inner loop performs a scan forward 
on a level of S as long as the next key is no greater than the search key k, and the 
outer loop drops down to the next level and repeats the scan forward iteration. 
Since the height h of S is O(logn) with high probability, the number of drop-down 
steps is O(logn) with high probability. 

So we have yet to bound the number of scan-forward steps we make. Let ni be the 
number of keys examined while scanning forward at level i. Observe that, after 
the key at the starting position, each additional key examined in a scan-forward at 
level i cannot also belong to level i+1. If any of these keys were on the previous 
level, we would have encountered them in the previous scan-forward step. Thus, 
the probability that any key is counted in ni is 1/2. Therefore, the expected value 
of ni is exactly equal to the expected number of times we must flip a fair coin 
before it comes up heads. This expected value is 2. Hence, the expected amount 
of time spent scanning forward at any level i is O(1). Since S has O(logn) levels 
with high probability, a search in S takes expected time O(logn). By a similar 
analysis, we can show that the expected running time of an insertion or a removal 
is O(logn). 

Space Usage in a Skip List 

Finally, let us turn to the space requirement of a skip list S with n entries. As we 
observed above, the expected number of positions at level i is n/2i, which means 
that the expected total number of positions in S is 

. 

Using Proposition 4.5 on geometric summations, we have 

 for all h ≥ 0. 

Hence, the expected space requirement of S is O(n). 

Table 9.4 summarizes the performance of a dictionary realized by a skip list. 

Table 9.4:  Performance of a dictionary 
implemented with a skip list. We denote the number 
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of entries in the dictionary at the time the operation is 
performed with n, and the size of the collection 
returned by operation findAll with s. The expected 
space requirement is O(n). 

Operation 

Time 

size, isEmpty 

O(1) 

entries 

O(n) 

find, insert, remove 

O(logn) (expected) 

findAll 

O(logn + s) (expected) 

9.5  Extensions and Applications of Dictionaries 

In this section, we explore several extensions and applications of dictionaries. 

9.5.1  Supporting Location-Aware Dictionary Entries 

As we did for priority queues (Section 8.4.2), we can also use location-aware 
entries to speed up the running time for some operations in a dictionary. In 
particular, a location-aware entry can greatly speed up entry removal in a 
dictionary. For in removing a location-aware entry e, we can simply go directly to 
the place in our data structure where we are storing e and remove it. We could 
implement a location-aware entry, for example, by augmenting our entry class with 
a private location variable and protected methods, location() and 
setLocation(p), which return and set this variable respectively. We then require 
that the location variable for an entry e, always refer to e's position or index in 
the data structure implementing our dictionary. We would, of course, have to update 
this variable any time we moved an entry, so it would probably make the most 
sense for this entry class to be closely related to the class implementing the 
dictionary (the location-aware entry class could even be nested inside the dictionary 
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class). Below, we show how to set up location-aware entries for several data 
structures presented in this chapter. 

• Unordered list : In an unordered list, L, implementing a dictionary, we can 
maintain the location variable of each entry e to point to e's position in the 
underlying linked list for L. This choice allows us to perform remove(e) as 
L.remove(e.location()), which would run in O(1) time. 

• Hash table with separate chaining : Consider a hash table, 
with bucket array A and hash function h, that uses separate chaining for handling 
collisions. We use the location variable of each entry e to point to e's position 
in the list L implementing the mini-map A[h(k)]. This choice allows us to perform 
the main work of a remove(e) as L.remove(e.location()), which would 
run in constant expected time. 

• Ordered search table : In an ordered table, T, implementing a dictionary, 
we should maintain the location variable of each entry e to be e's index in T. 
This choice would allow us to perform remove(e) as 
T.remove(e.location()). (Recall that location() now returns an 
integer.) This approach would run fast if entry e was stored near the end of T. 

• Skip list : In a skip list, S, implementing a dictionary, we should maintain 
the location variable of each entry e to point to e's position in the bottom level 
of S. This choice would allow us to skip the search step in our algorithm for 
performing remove(e) in a skip list. 

We summarize the performance of entry removal in a dictionary with location-
aware entries in Table 9.5. 

Table 9.5:  Performance of the remove method in 
dictionaries implemented with location-aware entries. 
We use n to denote the number of entries in the 
dictionary. 

List 

Hash Table 

Search Table 

Skip List 

O(1) 

O(1) (expected) 
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O(n) 

O(logn) (expected) 

9.5.2  The Ordered Dictionary ADT 

In an ordered dictionary, we want to perform the usual dictionary operations, but 
also maintain an order relation for the keys in our dictionary. We can use a 
comparator to provide the order relation among keys, as we did for the ordered 
search table and skip list dictionary implementations described above. Indeed, all of 
the dictionary implementations discussed in Chapter 10 use a comparator to store 
the dictionary in nondecreasing key order. 

When the entries of a dictionary are stored in order, we can provide efficient 
implementations for additional methods in the dictionary ADT. For example, we 
could consider adding the following methods to the dictionary ADT so as to define 
the ordered dictionary ADT. 

              first(): Return an entry with smallest key. 

               last(): Return an entry with largest key. 

     successors(k): Return an iterator of the entries with keys greater than or 
equal to k, in nondecreasing order. 

predecessors(k): Return an iterator of the entries with keys less than or equal to 
k, in nonincreasing order. 

Implementing an Ordered Dictionary 

The ordered nature of the operations above makes the use of an unordered list or a 
hash table inappropriate for implementing the dictionary, because neither of these 
data structures maintains any ordering information for the keys in the dictionary. 
Indeed, hash tables achieve their best search speeds when their keys are 
distributed almost at random. Thus, we should consider an ordered search table or 
skip list (or a data structure from Chapter 10) when dealing with ordered 
dictionaries. 

for example, using a skip list to implement an ordered dictionary, we can 
implement methods first() and last() in O(1) time by accessing the second 
and second to last positions of the bottom list. Also methods successors(k) 
and predecessors(k) can be implemented to run in O(logn) expected time. 
Moreover, the iterators returned by the successors(k) and 
predecessors(k) methods could be implemented using a reference to a current 
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position in the bottom level of the skip list. Thus, the hasNext and next 
methods of these iterators would each run in constant time using this approach. 

The java.util.Sorted Map Interface 

Java provides an ordered version of the java.util.Map interface in its 
interface called java.util.SortedMap. This interface extends the 
java.util.Map interface with methods that take order into account. Like the 
parent interface, a SortedMap does not allow for duplicate keys. 

Ignoring the fact that dictionaries allow for multiple entries with the same key, 
possible correspondences between methods of our ordered dictionary ADT and 
methods of interface java.util.SortedMap are shown in Table 9.6. 

Table 9.6:  Loose correspondences between 
methods of the ordered dictionary ADT and methods 
of the java.util.SortedMap interface, which 
supports other methods as well. The 
java.util.SortedMap expression for 
predecessors(k) is not an exact correspondence, 
however, as the iterator returned would be by 
increasing keys and would not include the entry with 
key equal to k. There appears to be no efficient way of 
getting a true correspondence to predecessors(k) 
using java.util.SortedMap methods. 

Ordered Dictionary Methods 

java.util.SortedMap Methods 

first().getKey() 

firstKey() 

first().getValue() 

get(firstKey()) 

last().getKey() 
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lastKey() 

last().getValue() 

get(lastKey()) 

successors(k) 

tailMap(k).entrySet().iterator() 

predecessors(k) 

headMap(k).entrySet().iterator() 

9.5.3  Flight Databases and Maxima Sets 

As we have mentioned in the preceding sections, unordered and ordered 
dictionaries have many applications. 

In this section, we explore some specific applications of ordered dictionaries. 

Flight Databases 

There are several web sites on the Internet that allow users to perform queries on 
flight databases to find flights between various cities, typically with the intent to 
buy a ticket. To make a query, a user specifies origin and destination cities, a 
departure date, and a departure time. To support such queries, we can model the 
flight database as a dictionary, where keys are Flight objects that contain fields 
corresponding to these four parameters. That is, a key is a tuple 

k = (origin, destination, date, time). 

Additional information about a flight, such as the flight number, the number of 
seats still available in first (F) and coach (Y) class, the flight duration, and the 
fare, can be stored in the value object. 

Finding a requested flight is not simply a matter of finding a key in the dictionary 
matching the requested query, however. The main difficulty is that, although a 
user typically wants to exactly match the origin and destination cities, as well as 
the departure date, he or she will probably be content with any departure time that 
is close to his or her requested departure time. We can handle such a query, of 
course, by ordering our keys lexicographically. Thus, given a user query key k, 
we can call successors(k) to return an iteration of all the flights between the 
desired cities on the desired date, with departure times in strictly increasing order 
from the requested departure time. A similar use of predecessors(k) would 
give us flights with times before the requested time. Therefore, an efficient 
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implementation for an ordered dictionary, say, one that uses a skip list, would be a 
good way to satisfy such queries. For example, calling successors(k) on a 
query key k = (ORD, PVD, 05May, 09:30), could result in an iterator with the 
following entries: 

((ORD, PVD, 05May, 09:53), (AA 1840, F5, Y15, 02:05, 
$251)) 

((ORD, PVD, 05May, 13:29), (AA 600, F2, Y0, 02:16, 
$713)) 

((ORD, PVD, 05May, 17:39), (AA 416, F3, Y9, 02:09, 
$365)) 

((ORD, PVD, 05May, 19:50), (AA 1828, F9, Y25, 02:13, 
$186)) 

Maxima Sets 

Life is full of trade-offs. We often have to trade off a desired performance 
measure against a corresponding cost. Suppose, for the sake of an example, we 
are interested in maintaining a database rating automobiles by their maximum 
speeds and their cost. We would like to allow someone with a certain amount to 
spend to query our database to find the fastest car they can possibly afford. 

We can model such a trade-off problem as this by using a key-value pair to model 
the two parameters that we are trading off, which in this case would be the pair 
(cost, speed) for each car. Notice that some cars are strictly better than other 
cars using this measure. For example, a car with cost-speed pair (20,000,100) is 
strictly better than a car with cost-speed pair (30,000,90). At the same time, there 
are some cars that are not strictly dominated by another car. For example, a car 
with cost-speed pair (20000,100) may be better or worse than a car with cost-
speed pair (30000,120), depending on how much money we have to spend. (See 
Figure 9.13.) 

Figure 9.13:  Illustrating the cost-performance trade-
off with key-value pairs represented by points in the 
plane. Notice that point p is strictly better than points 
c, d, and e, but may be better or worse than points a, 
b, f, g, and h, depending on the price we are willing to 
pay. Thus, if we were to add p to our set, we could 
remove the points c, d, and e, but not the others. 
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Formally, we say a price-performance pair (a, b) dominates a pair (c, d) if a < c 
and b > d. A pair (a, b) is called a maximum pair if it is not dominated by any 
other pairs. We are interested in maintaining the set of maxima of a collection C 
of price-performance pairs. That is, we would like to add new pairs to this 
collection (for example, when a new car is introduced), and we would like to 
query this collection for a given dollar amount d to find the fastest car that costs 
no more than d dollars. 

We can store the set of maxima pairs in an ordered dictionary, D, ordered by cost, 
so that the cost is the key field and performance (speed) is the value field. We can 
then implement operations add(c,p), which adds a new cost-performance pair 
(c,p), and best(c), which returns the best pair with cost at most c, as shown in 
Code Fragment 9.12. 

Code Fragment 9.12:  The methods for maintaining 
a set of maxima, as implemented with an ordered 
dictionary D. 
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if we implement D using a skip list, then we can perform best(c) queries in 
O(logn) expected time and add(c,p) updates in O((1 + r)log n) expected time, 
where r is the number of points removed. Thus, we are able to achieve good 
running times for the methods that maintain our set of maxima. 

9.6  Exercises 

for source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-9.1 
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What is the worst-case running time for inserting n key-value entries into an 
initially empty map M that is implemented with a list? 

R-9.2 

Describe how to use a map to implement the dictionary ADT, assuming that the 
user does not attempt to insert entries with the same key. 

R-9.3 

Describe how an ordered list implemented as a doubly linked list could be used 
to implement the map ADT. 

R-9.4 

What would be a good hash code for a vehicle identification number, that is a 
string of numbers and letters of the form "9X9XX99X9XX999999," where a 
"9" represents a digit and an "X" represents a letter? 

R-9.5 

Draw the 11-entry hash table that results from using the hash function, h(i) + (2i 
+ 5) mod 11, to hash the keys 12,44, 13, 88, 23, 94, 11, 39, 20, 16, and 5, 
assuming collisions are handled by chaining. 

R-9.6 

What is the result of the previous exercise, assuming collisions are handled by 
linear probing? 

R-9.7 

Show the result of Exercise R-9.5, assuming collisions are handled by quadratic 
probing, up to the point where the method fails. 

R-9.8 

What is the result of Exercise R-9.5 when collisions are handled by double 
hashing using the secondary hash function h ′(k) = 7 − (k mod 7)? 

R-9.9 

Give a pseudo-code description of an insertion into a hash table that uses 
quadratic probing to resolve collisions, assuming we also use the trick of 
replacing deleted entries with a special "deactivated entry" object. 

R-9.10 
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Give a Java description of the values() and entries() methods that could 
be included in the hash table implementation of Code Fragments 9.3–9.5. 

R-9.11 

Explain how to modify class HashTableMap given in Code Fragments 9.3–
9.5, so that it implements the dictionary ADT instead of the map ADT. 

R-9.12 

Show the result of rehashing the hash table shown in Figure 9.4 into a table of 
size 19 using the new hash function h(k) = 2k mod 19. 

R-9.13 

Argue why a hash table is not suited to implement an ordered dictionary. 

R-9.14 

What is the worst-case time for putting n entries in an initially empty hash table, 
with collisions resolved by chaining? What is the best case? 

R-9.15 

Draw an example skip list that results from performing the following series of 
operations on the skip list shown in Figure 9.12: remove(38), insert(48,x), 
insert(24,y), remove(55). Record your coin flips, as well. 

R-9.16 

Give a pseudo-code description of the remove operation in a skip list. 

R-9.17 

What is the expected running time of the methods for maintaining a maxima set 
if we insert n pairs such that each pair has lower cost and performance than one 
before it? What is contained in the ordered dictionary at the end of this series of 
operations? What if each pair had a lower cost and higher performance than the 
one before it? 

R-9.18 

Argue why location-aware entries are not really needed for a dictionary 
implemented with a good hash table. 

Creativity 

C-9.1 
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Describe how to use a map to implement the dictionary ADT, assuming that the 
user may attempt to insert entries with the same key. 

C-9.2 

Suppose we are given two ordered search tables S and T, each with n entries 
(with S and T being implemented with arrays). Describe an O(log2 n)-time 
algorithm for finding the kth smallest key in the union of the keys from S and T 
(assuming no duplicates). 

C-9.3 

Give an O(logn)-time solution for the previous problem. 

C-9.4 

Design a variation of binary search for performing operation findAll(k) in a 
dictionary implemented with an ordered search table, and show that it runs in 
time O(logn + s), where n is the number of elements in the dictionary and s is 
the size of the iterator returned. 

C-9.5 

Describe the changes that must be made in the pseudo-code descriptions of the 
fundamental dictionary methods when we implement a dictionary with a hash 
table such that collisions are handled via separate chaining, but we add the 
space optimization that if a bucket stores just a single entry, then we simply 
have the bucket reference that entry directly. 

C-9.6 

The hash table dictionary implementation requires that we find a prime number 
between a number M and a number 2M. Implement a method for finding such a 
prime by using the sieve algorithm. In this algorithm, we allocate a 2M cell 
Boolean array A, such that cell i is associated with the integer i. We then 
initialize the array cells to all be "true" and we "mark off all the cells that are 
multiples of 2, 3, 5, 7, and so on. This process can stop after it reaches a number 

larger than . (Hint: Consider a bootstrapping method for finding the 

primes up to .) 

C-9.7 

Describe how to perform a removal from a hash table that uses linear probing to 
resolve collisions where we do not use a special marker to represent deleted 
elements. That is, we must rearrange the contents so that it appears that the 
removed entry was never inserted in the first place. 
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C-9.8 

Given a collection C of n cost-performance pairs (c,p), describe an algorithm for 
finding the maxima pairs of C in O(n logn) time. 

C-9.9 

The quadratic probing strategy has a clustering problem related to the way it 
looks for open slots. Namely, when a collision occurs at bucket h(k), it checks 
buckets A[(h(k) + j2) mod N], for j = 1,2,…, N − 1. 

a. 

Show that j2 mod N will assume at most (N + 1)/2 distinct values, for N 
prime, as j ranges from 1 to N − 1. As a part of this justification, note that j2 
mod N = (N − j)2 mod N for all j. 

b. 

A better strategy is to choose a prime N such that N mod 4 = 3 and then to 
check the bucketsA[(h(k) ± j2) mod N] as j ranges from 1 to (N − 1)/2, 
alternating between plus and minus. Show that this alternate version is 
guaranteed to check every bucket in A. 

C-9.10 

Show that the methods above(p) and prev(p) are not actually needed to 
efficiently implement a dictionary using a skip list. That is, we can implement 
entry insertion and removal in a skip list using a strictly top-down, scan-forward 
approach, without ever using the above or prev methods. (Hint: In the 
insertion algorithm, first repeatedly flip the coin to determine the level where 
you should start inserting the new entry.) 

C-9.11 

Describe how to implement successors(k) in an ordered dictionary realized 
using an ordered search table. What is its running time? 

C-9.12 

Repeat the previous exercise using a skip list. What is the expected running time 
in this case? 

C-9.13 

Suppose that each row of an n × n array A consists of 1's and 0's such that, in 
any row of A, all the 1's come before any 0's in that row. Assuming A is already 
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in memory, describe a method running in O(n logn) time (not O(n2) time!) for 
counting the number of 1's in A. 

C-9.14 

Describe an efficient dictionary structure for storing n entries that have an 
associated set of r < n keys that comes from a total order. That is, the set of keys 
is smaller than the number of entries. Your structure should perform operation 
find All in O(logr + s) expected time, where s is the number of entries 
returned, operation entries() in O(n) time, and the remaining operations of 
the dictionary ADT in O(logr) expected time. 

C-9.15 

Describe an efficient dictionary structure for storing n entries whose r < n keys 
have distinct hash codes. Your structure should perform operation findAll in 
O(1 + s) expected time, where s is the number of entries returned, operation 
entries() in O(n) time, and the remaining operations of the dictionary ADT 
in O(1) expected time. 

C-9.16 

Describe an efficient data structure for implementing the bag ADT, which 
supports a method add(e), for adding an element e to the bag, and a method 
remove(), which removes an arbitrary element in the bag. Show that both of 
these methods can be done in O(1) time. 

C-9.17 

Describe how to modify the skip list data structure to support the method 
atIndex(i), which returns the position of the element in the "bottom" list S0 at 
index i, for i � [0, n − 1]. Show that your implementation of this method runs in 
O(logn) expected time. 

Projects 

P-9.1 

Implement a class that implements the dictionary ADT by adapting the 
java.util.HashMap class. 

P-9.2 

Implement the map ADT with a hash table with separate chaining collision 
handling (do not adapt any java.util classes). 

P-9.3 
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Implement the ordered dictionary ADT using an ordered list. 

P-9.4 

Implement the methods of the ordered dictionary ADT using a skip list. 

P-9.5 

Extend the previous project by providing a graphical animation of the skip list 
operations. Visualize how entries move up the skip list during insertions and are 
linked out of the skip list during removals. Also, in a search operation, visualize 
the scan-forward and drop-down actions. 

P-9.6 

Implement a dictionary that supports location-aware entries by means of an 
ordered list. 

P-9.7 

Perform a comparative analysis that studies the collision rates for various hash 
codes for character strings, such as various polynomial hash codes for different 
values of the parameter a. Use a hash table to determine collisions, but only 
count collisions where different strings map to the same hash code (not if they 
map to the same location in this hash table). Test these hash codes on text files 
found on the Internet. 

P-9.8 

Perform a comparative analysis as in the previous exercise but for 10-digit 
telephone numbers instead of character strings. 

P-9.9 

Design a Java class that implements the skip list data structure. Use this class to 
create implementations of both the map and dictionary ADTs, including 
location-aware methods for the dictionary. 

Chapter Notes 

Hashing is a well-studied technique. The reader interested in further study is 
encouraged to explore the book by Knuth [63], as well as the book by Vitter and 
Chen [96]. Interestingly, binary search was first published in 1946, but was not 
published in a fully correct form until 1962. For further discussions on lessons 
learned, please see papers by Bentley [12] and Levisse [67]. Skip lists were 
introduced by Pugh [83]. Our analysis of skip lists is a simplification of a presentation 
given by Motwani and Raghavan [79]. For a more in-depth analysis of skip lists, 
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please see the various research papers on skip lists that have appeared in the data 
structures literature [58, 80, 81]. Exercise C-9.9 was contributed by James Lee. 
� We use a star (�) to indicate sections containing material more advanced than the 
material in the rest of the chapter; this material can be considered optional in a first 
reading. 
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10.1  Binary Search Trees 

All of the structures we discuss in this chapter are search trees, that is, tree data 
structures that can be used to implement a dictionary. Let us, therefore, begin by 
briefly reviewing the fundamental methods of the dictionary ADT:  

• find(k): Return an entry with key k, if it exists. 

• findAll(k): Return an iterable collection of all entries with keys equal to k. 

• insert(k,x): Insert an entry with key k and value x. 

• remove(e): Remove an entry e, and return it. 

• removeAll(k): Remove all entries with key k, returning an iterator of their 
values. 

Method find returns null if k is not found. The ordered dictionary ADT includes 
some additional methods for searching through predecessors and successors of a key 
or entry, but their performance is similar to that of find. So we will be focusing on 
find as the primary search operation in this chapter. 

Binary trees are an excellent data structure for storing the entries of a dictionary, 
assuming we have an order relation defined on the keys. As mentioned previously 
(Section 7.3.6), a binary search tree is a binary tree T such that each internal node v 
of T stores an entry (k,x) such that:  

• Keys stored at nodes in the left subtree of v are less than or equal to k. 

• Keys stored at nodes in the right subtree of v are greater than or equal to k. 

As we show below, the keys stored at the nodes of T provide a way of performing a 
search by making a comparison at each internal node v, which can stop at v or 
continue at v's left or right child. Thus, we take the view here that binary search trees 
are nonempty proper binary trees. That is, we store entries only at the internal nodes 
of a binary search tree, and the external nodes serve only as "placeholders." This 
approach simplifies several of our search and update algorithms. Incidentally, we 
could have allowed for improper binary search trees, which have better space usage, 
but at the expense of more complicated search and update methods. 

Independent of whether we view binary search trees as proper or not, the important 
property of a binary search tree is the realization of an ordered dictionary (or map). 
That is, a binary search tree should hierarchically represent an ordering of its keys, 
using relationships between parent and children. Specifically, an inorder traversal 
(Section 7.3.6) of the nodes of a binary search tree T should visit the keys in 
nondecreasing order. 
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10.1.1  Searching 

To perform operation find(k) in a dictionary D that is represented with a binary 
search tree T, we view the tree T as a decision tree (recall Figure 7.10). In this case, 
the question asked at each internal node v of T is whether the search key k is less 
than, equal to, or greater than the key stored at node v, denoted with key(v). If the 
answer is "smaller," then the search continues in the left subtree. If the answer is 
"equal," then the search terminates successfully. If the answer is "greater," then the 
search continues in the right subtree. Finally, if we reach an external node, then the 
search terminates unsuccessfully. (See Figure 10.1.) 

Figure 10.1:  (a) A binary search tree T representing a 
dictionary D with integer keys; (b) nodes of T visited 
when executing operations find(76) (successful) and 
find(25) (unsuccessful) on D. For simplicity, we show 
keys but entry values. 

 

We describe this approach in detail in Code Fragment 10.1. Given a search key k 
and a node v of T, this method, TreeSearch, returns a node (position) w of the 
subtree T(v) of T rooted at v, such that one of the following occurs:  

• w is an internal node and w's entry has key equal to k. 

• w is an external node representing k's proper place in an inorder traversal 
of T(v), but k is not a key contained in T(v). 

Thus, method find(k) can be performed by calling TreeSearch(k, T.root()). 
Let w be the node of T returned by this call. If w is an internal node, then we return 
w's entry; otherwise, we return null. 

Code Fragment 10.1:  Recursive search in a binary 
search tree. 
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Analysis of Binary Tree Searching 

The analysis of the worst-case running time of searching in a binary search tree T 
is simple. Algorithm TreeSearch is recursive and executes a constant number 
of primitive operations for each recursive call. Each recursive call of 
TreeSearch is made on a child of the previous node. That is, TreeSearch is 
called on the nodes of a path of T that starts at the root and goes down one level at 
a time. Thus, the number of such nodes is bounded by h + 1, where h is the height 
of T. In other words, since we spend O(1) time per node encountered in the 
search, method find on dictionary D runs in O(h) time, where h is the height of 
the binary search tree T used to implement D. (See Figure 10.2.) 

Figure 10.2:  Illustrating the running time of 
searching in a binary search tree. The figure uses 
standard visualization shortcuts of viewing a binary 
search tree as a big triangle and a path from the root 
as a zig-zag line. 
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We can also show that a variation of the above algorithm performs operation 
findAll(k) in time O(h + s), where s is the number of entries returned. 
However, this method is slightly more complicated, and the details are left as an 
exercise (C-10.1). 

Admittedly, the height h of T can be as large as n, but we expect that it is usually 
much smaller. Indeed, we will show how to maintain an upper bound of O(logn) 
on the height of a search tree T in Section 10.2. Before we describe such a 
scheme, however, let us describe implementations for dictionary update methods. 

10.1.2  Update Operations 

Binary search trees allow implementations of the insert and remove operations 
using algorithms that are fairly straightforward, but not trivial. 

Insertion 

Let us assume a proper binary tree T supports the following update operation: 

insertAtExternal(v,e): Insert the element e at the external node v, and 
expand 

                v to be internal, having new (empty) external node children; 
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                an error occurs if v is an internal node. 

Given this method, we perform insert(k,x) for a dictionary implemented with a 
binary search tree T by calling TreeInsert(k,x,T.root()), which is given in 
Code Fragment 10.2. 

Code Fragment 10.2:  Recursive algorithm for 
insertion in a binary search tree. 

 

This algorithm traces a path from T's root to an external node, which is expanded 
into a new internal node accommodating the new entry. An example of insertion 
into a binary search tree is shown in Figure 10.3. 

Figure 10.3:  Insertion of an entry with key 78 into the 
search tree of Figure 10.1. Finding the position to 
insert is shown in (a), and the resulting tree is shown in 
(b). 

 

Removal 
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The implementation of the remove(k) operation on a dictionary D implemented 
with a binary search tree T is a bit more complex, since we do not wish to create 
any "holes" in the tree T. We assume, in this case, that a proper binary tree 
supports the following additional update operation: 

      removeExternal(v): Remove an external node v and its parent, replacing 
v's 

            parent with v's sibling; an error occurs if v is not external. 

Given this operation, we begin our implementation of operation remove(k) of 
the dictionary ADT by calling TreeSearch(k, T.root()) on T to find a node 
of T storing an entry with key equal to k. If TreeSearch returns an external 
node, then there is no entry with key k in dictionary D, and we return null (and 
we are done). If TreeSearch returns an internal node w instead, then w stores 
an entry we wish to remove, and we distinguish two cases (of increasing 
difficulty):  

• If one of the children of node w is an external node, say node z, we simply 
remove w and z from T by means of operation removeExternal(z) on T. 
This operation restructures T by replacing w with the sibling of z, removing both 
w and z from T. (See Figure 10.4.) 

• If both children of node w are internal nodes, we cannot simply remove 
the node w from T, since this would create a "hole" in T. Instead, we proceed as 
follows (see Figure 10.5):  

○ We find the first internal node y that follows w in an inorder traversal of T. 
Node y is the left-most internal node in the right subtree of w, and is found by 
going first to the right child of w and then down T from there, following left 
children. Also, the left child x of y is the external node that immediately 
follows node w in the inorder traversal of T. 

○ We save the entry stored at w in a temporary variable t, and move the 
entry of y into w. This action has the effect of removing the former entry 
stored at w. 

○ We remove nodes x and y from T by calling removeExternal(x) on T. 
This action replaces y with x's sibling, and removes both x and y from T. 

○ We return the entry previously stored at w, which we had saved in the 
temporary variable t. 

As with searching and insertion, this removal algorithm traverses a path from the 
root to an external node, possibly moving an entry between two nodes of this 
path, and then performs a removeExternal operation at that external node. 
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Figure 10.4:  Removal from the binary search tree of 
Figure 10.3b, where the entry to remove (with key 32) 
is stored at a node (w) with an external child: (a) 
before the removal; (b) after the removal. 

 
Figure 10.5:  Removal from the binary search tree of 
Figure 10.3b, where the entry to remove (with key 65) 
is stored at a node (w) whose children are both 
internal: (a) before the removal; (b) after the removal. 

 

Performance of a Binary Search Tree 

The analysis of the search, insertion, and removal algorithms are similar. We 
spend O(1) time at each node visited, and, in the worst case, the number of nodes 
visited is proportional to the height h of T. Thus, in a dictionary D implemented 
with a binary search tree T, the find, insert, and remove methods run in 
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O(h) time, where h is the height of T. Thus, a binary search tree T is an efficient 
implementation of a dictionary with n entries only if the height of T is small. In 
the best case, T has height h = �log(n + 1)�, which yields logarithmic-time 
performance for all the dictionary operations. In the worst case, however, T has 
height n, in which case it would look and feel like an ordered list implementation 
of a dictionary. Such a worst-case configuration arises, for example, if we insert a 
series of entries with keys in increasing or decreasing order. (See Figure 10.6.) 

Figure 10.6:  Example of a binary search tree with 
linear height, obtained by inserting entries with keys in 
increasing order. 

 

The performance of a dictionary implemented with a binary search tree is 
summarized in the following proposition and in Table 10.1. 

Proposition 10.1: A binary search tree T with height h for n key-value 
entries uses O(n) space and executes the dictionary ADT operations with the 
following running times. Operationssize andisEmpty each take O(1) time. 
Operationsfind, insert, andremove each take O(h) time. The 
operationfindAll takes O(h + s) time, where s is the size of the collection 
returned. 

Table 10.1:  Running times of the main methods of a 
dictionary realized by a binary search tree. We denote 
the current height of the tree with h and the size of 
the collection returned by findAll with s. The space 
usage is O(n), where n is the number of entries stored 
in the dictionary. 
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Method 

Time 

size,isEmpty 

O(1) 

find, insert, remove 

O(h) 

       findAll 

O(h + s) 

Note that the running time of search and update operations in a binary search tree 
varies dramatically depending on the tree's height. We can nevertheless take 
comfort that, on average, a binary search tree with n keys generated from a 
random series of insertions and removals of keys has expected height O(logn). 
Such a statement requires careful mathematical language to precisely define what 
we mean by a random series of insertions and removals, and sophisticated 
probability theory to prove; hence, its justification is beyond the scope of this 
book. Nevertheless, keep in mind the poor worst-case performance and take care 
in using standard binary search trees in applications where updates are not 
random. There are, after all, applications where it is essential to have a dictionary 
with fast worst-case search and update times. The data structures presented in the 
next sections address this need. 

10.1.3  Java Implementation 

In Code Fragments 10.3 through 10.5, we describe a binary search tree class, 
BinarySearchTree, which stores objects of class BSTEntry (implementing 
the Entry interface) at its nodes. Class BinarySearchTree extends class 
Linked BinaryTree from Code Fragments 7.16 through 7.18, thus taking 
advantage of code reuse. 

This class makes use of several auxiliary methods to do much of the heavy lifting. 
The auxiliary method treeSearch, based on the TreeSearch algorithm (Code 
Fragment 10.1), is invoked by the find, findAll, and insert methods. We 
use a recursive addAll method as the main engine for the findAll(k) method, in 
that it performs an inorder traversal of all the entries with keys equal to k (although 
not using the fast algorithm, since it performs a failed search for every entry it 
finds). We use two additional update methods, insertAtExternal, which 
inserts a new entry at an external node, and removeExternal, which removes an 
external node and its parent. 
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Class BinarySearchTree uses location-aware entries (see Section 8.4.2). Thus, 
its update methods inform any moved BSTEntry objects of their new positions. 
We also use several simple auxiliary methods for accessing and testing data, such as 
checkKey, which checks if a key is valid (albeit using a fairly simple rule in this 
case). We also use an instance variable, actionPos, which stores the position 
where the most recent search, insertion, or removal ended. This instance variable is 
not necessary to the implementation of a binary search tree, but is useful to classes 
that will extend BinarySearchTree (see Code Fragments 10.7, 10.8, 10.10, and 
10.11) to identify the position where the previous search, insertion, or removal has 
taken place. Position action Pos has the intended meaning provided it is used 
right after executing the method find, insert, or remove. 

Code Fragment 10.3:  Class BinarySearchTree. 
(Continues in Code Fragment 10.4.) 
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Code Fragment 10.4: Class BinarySearchTree. 
(Continues in Code Fragment 10.5.) 
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Code Fragment 10.5:  Class BinarySearchTree. 
(Continued from Code Fragment 10.4.) 
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10.2  AVL Trees 

In the previous section, we discussed what should be an efficient dictionary data 
structure, but the worst-case performance it achieves for the various operations is 
linear time, which is no better than the performance of list- and array-based dictionary 
implementations (such as unordered lists and search tables discussed in Chapter 9). In 
this section, we describe a simple way of correcting this problem so as to achieve 
logarithmic time for all the fundamental dictionary operations. 

Definition of an AVL Tree 

The simple correction is to add a rule to the binary search tree definition that will 
maintain a logarithmic height for the tree. The rule we consider in this section is the 
following height-balance property, which characterizes the structure of a binary 
search tree T in terms of the heights of its internal nodes (recall from Section 7.2.1 
that the height of a node v in a tree is the length of a longest path from v to an 
external node): 

Height-Balance Property: For every internal node v of T, the heights of the 
children 

      of v differ by at most 1. 

Any binary search tree T that satisfies the height-balance property is said to be an 
AVL tree, named after the initials of its inventors: Adel'son-Vel'skii and Landis. An 
example of an AVL tree is shown in Figure 10.7. 

Figure 10.7:  An example of an AVL tree. The keys of 
the entries are shown inside the nodes, and the heights 
of the nodes are shown next to the nodes. 
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An immediate consequence of the height-balance property is that a subtree of an 
AVL tree is itself an AVL tree. The height-balance property has also the important 
consequence of keeping the height small, as shown in the following proposition. 

Proposition 10.2: The height of an AVL tree storing n entries is O(logn). 

Justification: Instead of trying to find an upper bound on the height of an 
AVL tree directly, it turns out to be easier to work on the "inverse problem" of 
finding a lower bound on the minimum number of internal nodes n(h) of an AVL 
tree with height h. We will show that n(h) grows at least exponentially. From this, it 
will be an easy step to derive that the height of an AVL tree storing n entries is 
O(logn). 

To start with, notice that n(1) = 1 and n(2) = 2, because an AVL tree of height 1 
must have at least one internal node and an AVL tree of height 2 must have at least 
two internal nodes. Now, for h ≥ 3, an AVL tree with height h and the minimum 
number of nodes is such that both its subtrees are AVL trees with the minimum 
number of nodes: one with height h − 1 and the other with height h − 2. Taking the 
root into account, we obtain the following formula that relates n(h) to n(h − 1) and 
n(h − 2), for h ≥ 3: 

n(h) = 1 + n(h−1) + n(h−2). 

(10.1) 

At this point, the reader familiar with the properties of Fibonacci progressions 
(Section 2.2.3 and Exercise C-4.12) will already see that n(h) is a function 
exponential in h. For the rest of the readers, we will proceed with our reasoning. 

Formula 10.1 implies that n(h) is a strictly increasing function of h. Thus, we know 
that n(h − 1) > n(h − 2). Replacing n(h − 1) with n(h − 2) in Formula 10.1 and 
dropping the 1, we get, for h ≥ 3, 

n(h) > 2·n(h − 2). 

(10.2) 

Formula 10.2 indicates that n(h) at least doubles each time h increases by 2, which 
intuitively means that n(h) grows exponentially. To show this fact in a formal way, 
we apply Formula 10.2 repeatedly, yielding the following series of inequalities: 

n(h) > 2·n(h − 2) 

    > 4·n(h − 4) 

    > 8·n(h − 6) 

  � 
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      > 2i · n(h − 2i). 

(10.3) 

That is, n(h) > 2i · n(h − 2i), for any integer i, such that h − 2i ≥ 1. Since we already 
know the values of n(1) and n(2), we pick i so that h − 2i is equal to either 1 or 2. 
That is, we pick 

. 

By substituting the above value of i in formula 10.3, we obtain, for h ≥ 3, 

 

            

.                   

(10.4) 

By taking logarithms of both sides of formula 10.4, we obtain 

log n(h) > h/2 − 1, 

from which we get 

h < 2logn(h) + 2, 

(10.5) 

which implies that an AVL tree storing n entries has height at most 2logn + 2. 

 

By Proposition 10.2 and the analysis of binary search trees given in Section 10.1, 
the operations find and findAll, in a dictionary implemented with an AVL tree, 
run in time O(logn) and O(logn + s), respectively, where n is the number of entries 
in the dictionary and s is the size of the collection returned. Of course, we still have 
to show how to maintain the height-balance property after an insertion or removal. 

10.2.1  Update Operations 
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The insertion and removal operations for AVL trees are similar to those for binary 
search trees, but with AVL trees we must perform additional computations. 

Insertion 

An insertion in an AVL tree T begins as in an insert operation described in 
Section 10.1.2 for a (simple) binary search tree. Recall that this operation always 
inserts the new entry at a node w in T that was previously an external node, and it 
makes w become an internal node with operation insertAtExternal. That is, 
it adds two external node children to w. This action may violate the height-
balance property, however, for some nodes increase their heights by one. In 
particular, node w, and possibly some of its ancestors, increase their heights by 
one. Therefore, let us describe how to restructure T to restore its height balance. 

Given a binary search tree T, we say that an internal node v of T is balanced if the 
absolute value of the difference between the heights of the children of v is at most 
1, and we say that it is unbalanced otherwise. Thus, the height-balance property 
characterizing AVL trees is equivalent to saying that every internal node is 
balanced. 

Suppose that T satisfies the height-balance property, and hence is an AVL tree, 
prior to our inserting the new entry. As we have mentioned, after performing the 
operation insertAtExternal on T, the heights of some nodes of T, including 
w, increase. All such nodes are on the path of T from w to the root of T, and these 
are the only nodes of T that may have just become unbalanced. (See Figure 
10.8a.) Of course, if this happens, then T is no longer an AVL tree; hence, we 
need a mechanism to fix the "unbalance" that we have just caused. 

Figure 10.8:  An example insertion of an entry with 
key 54 in the AVL tree of Figure 10.7: (a) after adding a 
new node for key 54, the nodes storing keys 78 and 44 
become unbalanced; (b) a trinode restructuring 
restores the height-balance property. We show the 
heights of nodes next to them, and we identify the 
nodes x, y, and z participating in the trinode 
restructuring. 
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We restore the balance of the nodes in the binary search tree T by a simple 
"search-and-repair" strategy. In particular, let z be the first node we encounter in 
going up from w toward the root of T such that z is unbalanced. (See Figure 
10.8a.) Also, let y denote the child of z with higher height (and note that node y 
must be an ancestor of w). Finally, let x be the child of y with higher height (there 
cannot be a tie and node x must be an ancestor of w). Also, node x is a grandchild 
of z and could be equal to w. Since z became unbalanced because of an insertion 
in the subtree rooted at its child y, the height of y is 2 greater than its sibling. 

We now rebalance the subtree rooted at z by calling the trinode restructuring 
method, restructure(x), given in Code Fragment 10.6 and illustrated in Figures 
10.8 and 10.9. A trinode restructuring temporarily renames the nodes x, y, and z 
as a, b, and c, so that a precedes b and b precedes c in an inorder traversal of T. 
There are four possible ways of mapping x, y, and z to a, b, and c, as shown in 
Figure 10.9, which are unified into one case by our relabeling. The trinode 
restructuring then replaces z with the node called b, makes the children of this 
node be a and c, and makes the children of a and c be the four previous children 
of x, y, and z (other than x andy) while maintaining the inorder relationships of all 
the nodes in T. 

Code Fragment 10.6:  The trinode restructuring 
operation in a binary search tree. 
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The modification of a tree T caused by a trinode restructuring operation is often 
called a rotation, because of the geometric way we can visualize the way it 
changes T. If b = y, the trinode restructuring method is called a single rotation, 
for it can be visualized as "rotating" y over z. (See Figure 10.9a and b.) Otherwise, 
if b = x, the trinode restructuring operation is called a double rotation, for it can 
be visualized as first "rotating" x over y and then over z. (See Figure 10.9c and d, 
and Figure 10.8.) Some computer researchers treat these two kinds of rotations as 
separate methods, each with two symmetric types. We have chosen, however, to 
unify these four types of rotations into a single trinode restructuring operation. No 
matter how we view it, though, the trinode restructuring method modifies parent-
child relationships of O(1) nodes in T, while preserving the inorder traversal 
ordering of all the nodes in T. 

In addition to its order-preserving property, a trinode restructuring changes the 
heights of several nodes in T, so as to restore balance. Recall that we execute the 
method restructure(x) because z, the grandparent of x, is unbalanced. 
Moreover, this unbalance is due to one of the children of x now having too large a 
height relative to the height of z's other child. As a result of a rotation, we move 
up the "tall" child of x while pushing down the "short" child of z. Thus, after 
performing restructure(x), all the nodes in the subtree now rooted at the 
node we called b are balanced. (See Figure 10.9.) Thus, we restore the height-
balance property locally at the nodes x, y, and z. In addition, since after 
performing the new entry insertion the subtree rooted at b replaces the one 
formerly rooted at z, which was taller by one unit, all the ancestors of z that were 
formerly unbalanced become balanced. (See Figure 10.8.) (The justification of 
this fact is left as Exercise C-10.11.) Therefore, this one restructuring also restores 
the height-balance property globally. 
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Figure 10.9:  Schematic illustration of a trinode 
restructuring operation (Code Fragment 10.6): (a) and 
(b) a single rotation; (c) and (d) a double rotation. 

 

 605



Removal 

As was the case for the insert dictionary operation, we begin the 
implementation of the remove dictionary operation on an AVL tree T by using 
the algorithm for performing this operation on a regular binary search tree. The 
added difficulty in using this approach with an AVL tree is that it may violate the 
height-balance property. In particular, after removing an internal node with 
operation remove External and elevating one of its children into its place, 
there may be an unbalanced node in T on the path from the parent w of the 
previously removed node to the root of T. (See Figure 10.10a.) In fact, there can 
be one such unbalanced node at most. (The justification of this fact is left as 
Exercise C-10.10.) 

Figure 10.10:  Removal of the entry with key 32 
from the AVL tree of Figure 10.7: (a) after removing 
the node storing key 32, the root becomes 
unbalanced; (b) a (single) rotation restores the height-
balance property. 

 

As with insertion, we use trinode restructuring to restore balance in the tree T. In 
particular, let z be the first unbalanced node encountered going up from w toward 
the root of T. Also, let y be the child of z with larger height (note that node y is the 
child of z that is not an ancestor of w), and let x be the child of y defined as 
follows: if one of the children of y is taller than the other, let x be the taller child 
of y; else (both children of y have the same height), let x be the child of y on the 
same side as y (that is, if y is a left child, let x be the left child of y, else let x be 
the right child of y). In any case, we then perform a restructure(x) operation, 
which restores the height-balance property locally, at the subtree that was 
formerly rooted at z and is now rooted at the node we temporarily called b. (See 
Figure 10.10b.) 

Unfortunately, this trinode restructuring may reduce the height of the subtree 
rooted at b by 1, which may cause an ancestor of b to become unbalanced. So, 
after rebalancing z, we continue walking up T looking for unbalanced nodes. If we 
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find another, we perform a restructure operation to restore its balance, and 
continue marching up T looking for more, all the way to the root. Still, since the 
height of T is O(logn), where n is the number of entries, by Proposition 10.2, 
O(logn) trinode restructurings are sufficient to restore the height-balance property. 

Performance of AVL Trees 

We summarize the analysis of the performance of an AVL tree T as follows. 
Operations find, insert, and remove visit the nodes along a root-to-leaf path 
of T, plus, possibly, their siblings, and spend O(1) time per node. Thus, since the 
height of T is O(logn) by Proposition 10.2, each of the above operations takes 
O(logn) time. We leave the implementation and analysis of an efficient version of 
the operation findAll as an interesting exercise. In Table 10.2, we summarize 
the performance of a dictionary implemented with an AVL tree. We illustrate this 
performance in Figure 10.11. 

Table 10.2:  Performance of an n-entry dictionary 
realized by an AVL tree, where s denotes the size of 
the collection returned by findAll. The space usage 
is O(n). 

Operation 

Time 

     size, isEmpty 

O(1) 

find, insert, remove 

O(logn) 

       findAll 

O(logn + s) 

Figure 10.11: Illustrating the running time of searches 
and updates in an AVL tree. The time performance is 
O(1) per level, broken into a down phase, which 
typically involves searching, and an up phase, which 
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typically involves updating height values and 
performing local trinode restructurings (rotations). 

 

10.2.2  Java Implementation 

Let us now turn to the implementation details and analysis of using an AVL tree T 
with n internal nodes to implement an ordered dictionary of n entries. The insertion 
and removal algorithms for T require that we are able to perform trinode 
restructurings and determine the difference between the heights of two sibling 
nodes. Regarding restructurings, we now need to make sure our underlying 
implementation of a binary search tree includes the method restructure(x), 
which performs a tri-node restructuring operation (Code Fragment 10.6). It is easy 
to see that a restructure operation can be performed in O(1) time if T is 
implemented with a linked structure (Section 7.3.4). In our case, we assume that the 
BinarySearchTree class includes this method. 

Regarding height information, we can explicitly store the height of each internal 
node, v, in the node itself. Alternatively, we can store the balance factor of v at v, 
which is defined as the height of the left child of v minus the height of the right 
child of v. Thus, the balance factor of v is always equal to −1, 0, or 1, except during 
an insertion or removal, when it may become temporarily equal to −2 or +2. During 
the execution of an insertion or removal, the heights and balance factors of O(logn) 
nodes are affected and can be maintained in O(logn) time. 
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In Code Fragments 10.7 and 10.8, we show a complete Java class, AVLTree, 
implementing a dictionary using an AVL tree (assuming the parent class includes 
an implementation of the restructure method). This class extends 
BinarySearchTree (Code Fragments 10.3–10.5) and includes a nested class, 
AVLNode, which extends the BTNode class used to represent the nodes of a binary 
tree. The AVLNode class defines an additional instance variable height, 
representing the height of the node. We get our binary tree to use this node class 
instead of the BTNode class simply by overriding the createNode method, 
which is used exclusively to create new binary tree nodes. Class AVLTree inherits 
methods size, isEmpty, find, and findAll from its superclass, 
BinarySearchTree, but overrides methods insert and remove to keep the 
search tree balanced. 

Method insert (Code Fragment 10.8) begins by calling the superclass's insert 
method, which inserts the new entry and assigns the insertion position (for example, 
the node storing key 54 in Figure 10.8) to the instance variable actionPos. The 
auxiliary method rebalance is then used to traverse the path from the insertion 
position to the root. This traversal updates the heights of all the nodes visited, and 
performs a trinode restructuring if necessary. Similarly, method remove (Code 
Fragment 10.8) begins by calling the superclass's remove method, which performs 
the removal of the entry and assigns the position replacing the deleted one to 
instance variable actionPos. The auxiliary method rebalance is then used to 
traverse the path from the removed position to the root, performing any needed 
restructurings. 

Code Fragment 10.7: Constructor and auxiliary 
methods of class AVLTree. 
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Code Fragment 10.8: Auxiliary methods 
tallerChild and rebalance and dictionary 
methods insert and remove of class AVLTree. 
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10.3  Splay Trees 

Another way we can implement the fundamental dictionary operations is to use a 
balanced search tree data structure known as a splay tree. This structure is 
conceptually quite different from the other balanced search trees we discuss in this 
chapter, for a splay tree does not use any explicit rules to enforce its balance. Instead, 
it applies a certain move-to-root operation, called splaying, after every access, in 
order to keep the search tree balanced in an amortized sense. The splaying operation 
is performed at the bottom-most node x reached during an insertion, deletion, or even 
a search. The surprising thing about splaying is that it allows us to guarantee an 
amortized running time, for insertions, deletions, and searches, that is logarithmic. 
The structure of a splay tree is simply a binary search tree T. In fact, there are no 
additional height, balance, or color labels that we associate with the nodes of this tree. 

10.3.1  Splaying 

Given an internal node x of a binary search tree T, we splay x by moving x to the 
root of T through a sequence of restructurings. The particular restructurings we 
perform are important, for it is not sufficient to move x to the root of T by just any 
sequence of restructurings. The specific operation we perform to move x up 
depends upon the relative positions of x, its parent y, and (if it exists) x's 
grandparent z. There are three cases that we consider. 

zig-zig: The node x and its parent y are both left children or both right children. (See 
Figure 10.12.) We replace z by x, making y a child of x and z a child of y, while 
maintaining the inorder relationships of the nodes in T. 

Figure 10.12: Zig-zig: (a) before; (b) after. There is 
another symmetric configuration where x and y are left 
children. 
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zig-zag: One of x and y is a left child and the other is a right child. (See Figure 
10.13.) In this case, we replace z by x and make x have y and z as its children, while 
maintaining the inorder relationships of the nodes in T. 

Figure 10.13: Zig-zag: (a) before; (b) after. There is 
another symmetric configuration where x is a right child 
and y is a left child. 

 

zig: x does not have a grandparent (or we are not considering x's grandparent for 
some reason). (See Figure 10.14.) In this case, we rotate x over y, making x's 
children be the node y and one of x's former children w, so as to maintain the 
relative inorder relationships of the nodes in T. 

Figure 10.14: Zig: (a) before; (b) after. There is another 
symmetric configuration where x and w are left children. 
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We perform a zig-zig or a zig-zag when x has a grandparent, and we perform a zig 
when x has a parent but not a grandparent. A splaying step consists of repeating 
these restructurings at x until x becomes the root of T. Note that this is not the same 
as a sequence of simple rotations that brings x to the root. An example of the 
splaying of a node is shown in Figures 10.15 and 10.16. 

Figure 10.15: Example of splaying a node: (a) splaying 
the node storing 14 starts with a zig-zag; (b) after the 
zig-zag; (c) the next step is a zig-zig. (Continues in 
Figure 10.16.) 
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Figure 10.16: Example of splaying a node:(d) after the 
zig-zig; (e) the next step is again a zig-zig; (f) after the 
zig-zig (Continued from Figure 10.16.) 
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10.3.2  When to Splay 

The rules that dictate when splaying is performed are as follows:  

• When searching for key k, if k is found at a node x, we splay x, else we 
splay the parent of the external node at which the search terminates 
unsuccessfully. For example, the splaying in Figures 10.15 and 10.16 would be 
performed after searching successfully for key 14 or unsuccessfully for key 14.5. 

• When inserting key k, we splay the newly created internal node where k 
gets inserted. For example, the splaying in Figures 10.15 and 10.16 would be 
performed if 14 were the newly inserted key. We show a sequence of insertions in 
a splay tree in Figure 10.17. 

Figure 10.17: A sequence of insertions in a splay tree: 
(a) initial tree; (b) after inserting 2; (c) after splaying; (d) 
after inserting 3; (e) after splaying; (f) after inserting 4; 
(g) after splaying. 
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• When deleting a key k, we splay the parent of the node w that gets 
removed, that is, w is either the node storing k or one of its descendents. (Recall 
the removal algorithm for binary search trees.) An example of splaying following 
a deletion is shown in Figure 10.18. 

Figure 10.18: Deletion from a splay tree: (a) the 
deletion of 8 from node r is performed by moving to r 
the key of the right-most internal node v, in the left 
subtree of r, deleting v, and splaying the parent u of v; 
(b) splaying u starts with a zig-zig; (c) after the zig-zig; 
(d) the next step is a zig; (e) after the zig. 
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10.3.3  Amortized Analysis of Splaying � 
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After a zig-zig or zig-zag, the depth of x decreases by two, and after a zig the depth 
of x decreases by one. Thus, if x has depth d, splaying x consists of a sequence of 
�d/2� zig-zigs and/or zig-zags, plus one final zig if d is odd. Since a single zig-zig, 
zig-zag, or zig affects a constant number of nodes, it can be done in O(1) time. 
Thus, splaying a node x in a binary search tree T takes time O(d), where d is the 
depth of x in T. In other words, the time for performing a splaying step for a node x 
is asymptotically the same as the time needed just to reach that node in a top-down 
search from the root of T. 

Worst Case Time 

In the worst case, the overall running time of a search, insertion, or deletion in a 
splay tree of height h is O(h), since the node we splay might be the deepest node 
in the tree. Moreover, it is possible for h to be as large as n, as shown in Figure 
10.17. Thus, from a worst-case point of view, a splay tree is not an attractive data 
structure. 

In spite of its poor worst-case performance, a splay tree performs well in an 
amortized sense. That is, in a sequence of intermixed searches, insertions, and 
deletions, each operation takes on average logarithmic time. We perform the 
amortized analysis of splay trees using the accounting method. 

Amortized Performance of Splay Trees 

For our analysis, we note that the time for performing a search, insertion, or 
deletion is proportional to the time for the associated splaying. So let us consider 
only splaying time. 

Let T be a splay tree with n keys, and let v be a node of T. We define the size n(v) 
of v as the number of nodes in the subtree rooted at v. Note that this definition 
implies that the size of an internal node is one more than the sum of the sizes of 
its two children. We define the rank r(v) of a node v as the logarithm in base 2 of 
the size of v, that is, r(v) = log(n(v)). Clearly, the root of T has the maximum size 
(2n + 1) and the maximum rank, log(2n +1), while each external node has size 1 
and rank 0. 

We use cyber-dollars to pay for the work we perform in splaying a node x in T, 
and we assume that one cyber-dollar pays for a zig, while two cyber-dollars pay 
for a zig-zig or a zig-zag. Hence, the cost of splaying a node at depth d is d cyber-
dollars. We keep a virtual account storing cyber-dollars at each internal node of T. 
Note that this account exists only for the purpose of our amortized analysis, and 
does not need to be included in a data structure implementing the splay tree T. 

An Accounting Analysis of Splaying 
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When we perform a splaying, we pay a certain number of cyber-dollars (the exact 
value of the payment will be determined at the end of our analysis). We 
distinguish three cases:  

• If the payment is equal to the splaying work, then we use it all to pay for 
the splaying. 

• If the payment is greater than the splaying work, we deposit the excess in 
the accounts of several nodes. 

• If the payment is less than the splaying work, we make withdrawals from 
the accounts of several nodes to cover the deficiency. 

We will show, in the rest of this section, that a payment of O(logn) cyber-dollars 
per operation is sufficient to keep the system working, that is, to ensure that each 
node keeps a nonnegative account balance. 

A Cyber-dollar Invariant for Splaying 

We use a scheme in which transfers are made between the accounts of the nodes 
to ensure that there will always be enough cyber-dollars to withdraw for paying 
for splaying work when needed. 

In order to use the accounting method to perform our analysis of splaying, we 
maintain the following invariant: 

Before and after a splaying, each node v of T has r(v) cyber-dollars in its 
account. 

Note that the invariant is "financially sound," since it does not require us to make 
a preliminary deposit to endow a tree with zero keys. 

Let r(T) be the sum of the ranks of all the nodes of T. To preserve the invariant 
after a splaying, we must make a payment equal to the splaying work plus the 
total change in r(T). We refer to a single zig, zig-zig, or zig-zag operation in a 
splaying as a splaying substep. Also, we denote the rank of a node v of T before 
and after a splaying substep with r ′(v) and r(v), respectively. The following 
proposition gives an upper bound on the change of r(T) caused by a single 
splaying substep. We will repeatedly use this lemma in our analysis of a full 
splaying of a node to the root. 

Proposition 10.3: Let δ be the variation ofr(T) caused by a single splaying 
substep (a zig, zig-zig, or zig-zag) for a node x in T. We have the following: 

• δ ≤ 3(r ′(x)−r(x))−2 if the substep is a zig-zig or zig-zag. 

• δ ≤ 3(r ′(x) − r(x)) if the substep is a zig. 
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Justification: We use the fact (see Proposition A.1, Appendix A) that, if a 
> 0, b > 0, and c > a + b, 

loga+logb ≤ 2logc−2.               (10.6) 

Let us consider the change in r(T) caused by each type of splaying substep. 

zig-zig: (Recall Figure 10.12.) Since the size of each node is one more than the 
size of its two children, note that only the ranks of x, y, and z change in a zig-zig 
operation, where y is the parent of x and z is the parent of y. Also, 

 

Note that n(x)+n ′(z) ≤ n ′(x). Thus, by 10.6, r(x)+r ′(z) ≤ 2r ′(x)−2, that is, 

r ′(z) ≤ 2r ′(x)−r(x)−2. 

This inequality and 10.7 imply 

δ ≤ r ′(x)+(2r ′(x)−r(x)−2)−2r(x) 

≤ 3(r ′(x)−r(x))−2.                 

zig-zag: (Recall Figure 10.13.) Again, by the definition of size and rank, only the 
ranks of x, y, and z change, where y denotes the parent of x and z denotes the 
parent of y. Also, r ′(x) = r(z) and r(x) ≤ r(y). Thus 

δ = r ′{x) + r ′{y) + r ′{z)−r{x)−r{y)−r{z) 

≤ r ′(y) + r ′(z)−r(x)−r(y)                        

  ≤ r ′(y) + r ′(z)−2r(x).                    (10.8) 

Note that n ′(y) + n ′(z) ≤ n ′(x); hence, by 10.6, r ′(y)+r ′(z) ≤ 2r ′(x) −2. Thus, 

δ ≤ 2r ′(x)−2−2r(x)   

  ≤ 3(r ′(x)−r(x))−2. 

zig: (Recall Figure 10.14.) In this case, only the ranks of x and y change, where y 
denotes the parent of x. Also, r ′(y) ≤ r(y) and r ′(x) ≥ r(x). Thus 

δ = r ′(y)+r ′(x)−r(y)−r(x) 

 624



  ≤ r ′(x)−r(x)                 

≤ 3(r ′(x)−r(x)).       

 

Proposition 10.4: Let T be a splay tree with root t, and let Δ be the total 
variation of r(T) caused by splaying a node x at depth d. We have 

Δ ≤ 3(r(t) − r(x)) − d+2. 

Justification: Splaying node x consists of p = �d/2� splaying substeps, 
each of which is a zig-zig or a zig-zag, except possibly the last one, which is a zig 
if d is odd. Let r0(x) = r(x) be the initial rank of x, and for i = 1, …, p, let ri(x) be 
the rank of x after the ith substep and δi be the variation of r(T) caused by the ith 
substep. By Lemma 10.3, the total variation Δ of r(T) caused by splaying x is 

                                                    

 

 = 3(rp(x) − r0(x)) − 2p + 2           

 ≤  3(r(t) − r(x)) − d + 2               . 

 

By Proposition 10.4, if we make a payment of 3(r(t) − r(x)) + 2 cyber-dollars 
towards the splaying of node x, we have enough cyber-dollars to maintain the 
invariant, keeping r(v) cyber-dollars at each node v in T, and pay for the entire 
splaying work, which costs d dollars. Since the size of the root t is 2n + 1, its rank 
r(t) = log(2n+ 1). In addition, we have r(x) < r(t). Thus, the payment to be made 
for splaying is O(logn) cyber-dollars. To complete our analysis, we have to 
compute the cost for maintaining the invariant when a node is inserted or deleted. 

When inserting a new node v into a splay tree with n keys, the ranks of all the 
ancestors of v are increased. Namely, let v0, vi, …, vd be the ancestors of v, where 
v0 = v, vi is the parent of vi−1, and vd is the root. For i = 1,…,d, let n ′(vi) and n(vi) 
be the size of vi before and after the insertion, respectively, and let r ′(vi) and r(vi) 
be the rank of vi before and after the insertion, respectively. We have 

n ′{vi) = n{vi) + 1. 
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Also, since n(vi)+1 ≤ n(vi+1), for i = 0,1,…, d − 1, we have the following for each 
i in this range: 

r ′(vi) = log(n ′(vi)) = log(n(vi) + 1) ≤ log(n(vi+1)) = r(vi+1). 

Thus, the total variation of r(T) caused by the insertion is 

 

                  = r ′(vd)−r(v0) 

                  ≤ log(2n+1). 

Therefore, a payment of O(logn) cyber-dollars is sufficient to maintain the 
invariant when a new node is inserted. 

When deleting a node v from a splay tree with n keys, the ranks of all the 
ancestors of v are decreased. Thus, the total variation of r(T) caused by the 
deletion is negative, and we do not need to make any payment to maintain the 
invariant when a node is deleted. Therefore, we may summarize our amortized 
analysis in the following proposition (which is sometimes called the "balance 
proposition" for splay trees): 

Proposition 10.5: Consider a sequence ofm operations on a splay tree, 
each one a search, insertion, or deletion, starting from a splay tree with zero keys. 
Also, let ni be the number of keys in the tree after operation i, and n be the total 
number of insertions. The total running time for performing the sequence of 
operations is 

 

which is O(m log n). 

In other words, the amortized running time of performing a search, insertion, or 
deletion in a splay tree is O(logn), where n is the size of the splay tree at the time. 
Thus, a splay tree can achieve logarithmic-time, amortized performance for 
implementing an ordered dictionary ADT. This amortized performance matches 
the worst-case performance of AVL trees, (2,4) trees, and red-black trees, but it 
does so using a simple binary tree that does not need any extra balance 
information stored at each of its nodes. In addition, splay trees have a number of 
other interesting properties that are not shared by these other balanced search 
trees. We explore one such additional property in the following proposition 
(which is sometimes called the "Static Optimality" proposition for splay trees): 
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Proposition 10.6: Consider a sequence ofm operations on a splay tree, 
each one a search, insertion, or deletion, starting from a splay tree T with zero 
keys. Also, let f(i) denote the number of times the entry i is accessed in the splay 
tree, that is, its frequency, and let n denote the total number of entries. Assuming 
that each entry is accessed at least once, then the total running time for 
performing the sequence of operations is 

 

We omit the proof of this proposition, but it is not as hard to justify as one might 
imagine. The remarkable thing is that this proposition states that the amortized 
running time of accessing an entry i is O(log(m/f(i))). 

10.4  (2,4) Trees 

Some data structures we discuss in this chapter, including (2,4) trees, are multi-way 
search trees, that is, trees with internal nodes that have two or more children. Thus, 
before we define (2,4) trees, let us discuss multi-way search trees. 

10.4.1  Multi-Way Search Trees 

Recall that multi-way trees are defined so that each internal node can have many 
children. In this section, we discuss how multi-way trees can be used as search 
trees. Recall that the entries that we store in a search tree are pairs of the form (k,x), 
where k is the key and x is the value associated with the key. However, we do not 
discuss how to perform updates in multi-way search trees now, since the details for 
update methods depend on additional properties we wish to maintain for multi-way 
trees, which we discuss in Section 14.3.1. 

Definition of a Multi-way Search Tree 

Let v be a node of an ordered tree. We say that v is a d-node if v has d children. 
We define a multi-way search tree to be an ordered tree T that has the following 
properties, which are illustrated in Figure 10.19a:  

• Each internal node of T has at least two children. That is, each internal 
node is a d-node such that d > 2. 

• Each internal d-node v of T with children v1,…, vd stores an ordered set of 
d − 1 key-value entries (k1,x1),…, (kd − 1,xd − 1), where k1≤ … ≤ kd − 1. 

• Let us conventionally define k0 = − ∞ and kd = +∞. For each entry (k,x) 
stored at a node in the subtree of v rooted at v, i = 1,…,d, we have that ki − 1 ≤k≤ 
ki. 
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That is, if we think of the set of keys stored at v as including the special fictitious 
keys k0 = − ∞ and kd = +∞, then a key k stored in the subtree of T rooted at a child 
node vi must be "in between" two keys stored at v. This simple viewpoint gives 
rise to the rule that a d-node stores d − 1 regular keys, and it also forms the basis 
of the algorithm for searching in a multi-way search tree. 

By the above definition, the external nodes of a multi-way search do not store any 
entries and serve only as "placeholders," as has been our convention with binary 
search trees (Section 10.1); hence, a binary search tree can be viewed as a special 
case of a multi-way search tree, where each internal node stores one entry and has 
two children. In addition, while the external nodes could be null, we make the 
simplifying assumption here that they are actual nodes that don't store anything. 

Figure 10.19:  (a) A multi-way search tree T; (b) 
search path in T for key 12 (unsuccessful search); (c) 
search path in T for key 24 (successful search). 
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Whether internal nodes of a multi-way tree have two children or many, however, 
there is an interesting relationship between the number of entries and the number 
of external nodes. 

Proposition 10.7: An n-entry multi-way search tree has n+1 external 
nodes. 

We leave the justification of this proposition as an exercise (C-10.14). 

Searching in a Multi-Way Tree 

Given a multi-way search tree T, we note that searching for an entry with key k is 
simple. We perform such a search by tracing a path in T starting at the root. (See 
Figure 10.19b and c.) When we are at a d-node v during this search, we compare 
the key k with the keys k1,…, kd − 1 stored at v. If k = ki for some i, the search is 
successfully completed. Otherwise, we continue the search in the child vi of v 
such that ki − 1 ≤ k ≤ ki. (Recall that we conventionally define k0 = - ∞ and kd = 
+∞.) If we reach an external node, then we know that there is no entry with key k 
in T, and the search terminates unsuccessfully. 

Data Structures for Representing Multi-way Search 
Trees 

In Section 7.1.3, we discuss a linked data structure for representing a general tree. 
This representation can also be used for a multi-way search tree. In fact, in using a 
general tree to implement a multi-way search tree, the only additional information 
that we need to store at each node is the set of entries (including keys) associated 
with that node. That is, we need to store with v a reference to some collection that 
stores the entries for v. 

Recall that when we use a binary search tree to represent an ordered dictionary D, 
we simply store a reference to a single entry at each internal node. In using a 
multi-way search tree T to represent D, we must store a reference to the ordered 
set of entries associated with v at each internal node v of T. This reasoning may at 
first seem like a circular argument, since we need a representation of an ordered 
dictionary to represent an ordered dictionary. We can avoid any circular 
arguments, however, by using the bootstrapping technique, where we use a 
previous (less advanced) solution to a problem to create a new (more advanced) 
solution. In this case, bootstrapping consists of representing the ordered set 
associated with each internal node using a dictionary data structure that we have 
previously constructed (for example, a search table based on a sorted array, as 
shown in Section 9.3.3). In particular, assuming we already have a way of 
implementing ordered dictionaries, we can realize a multi-way search tree by 
taking a tree T and storing such a dictionary at each node of T. 
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The dictionary we store at each node v is known as a secondary data structure, for 
we are using it to support the bigger, primary data structure. We denote the 
dictionary stored at a node v of T as D(v). The entries we store in D(v) will allow 
us to find which child node to move to next during a search operation. 
Specifically, for each node v of T, with children v1,…,vd and entries (k1,x1), …,
(k

 

. 

 

d−1,xd−1), we store in the dictionary D(v) the entries 

(k1, (x1, v1)), (k2, (x2, v2)), ..., (kd − 1, (xd − 1, vd − 1)), ( + ∞, (φ, vd))
That is, an entry (ki, (xi,vi)) of dictionary D(v) has key ki and value (xi, vi). Note
that the last entry stores the special key +∞. 

With the realization of the multi-way search tree T above, processing a d-node v 
while searching for an entry of T with key k can be done by performing a search 
operation to find the entry (ki,(xi,vi)) in D(v) with smallest key greater than or 
equal to k. We distinguish two cases:  

• If k < ki, then we continue the search by processing child vi. (Note that if 
the special key kd = +∞ is returned, then k is greater than all the keys stored at 
node v, and we continue the search processing child vd). 

• Otherwise (k =ki), then the search terminates successfully. 

Consider the space requirement for the above realization of a multi-way search 
tree T storing n entries. By Proposition 10.7, using any of the common 
realizations of ordered dictionaries (Chapter 9) for the secondary structures of the 
nodes of T, the overall space requirement for T is O(n). 

Consider next the time spent answering a search in T. The time spent at a d-node v 
of T during a search depends on how we realize the secondary data structure D(v). 
If D(v) is realized with a sorted array (that is, an ordered search table), then we 
can process v in O(logd) time. If instead D(v) is realized using an unsorted list 
instead, then processing v takes O(d) time. Let dmax denote the maximum 
number of children of any node of T, and let h denote the height of T. The search 
time in a multi-way search tree is either O(hdmax) or O(hlogdmax), depending on 
the specific implementation of the secondary structures at the nodes of T (the 
dictionaries D(v)). If dmax is a constant, the running time for performing a search 
is O(h), irrespective of the implementation of the secondary structures. 

Thus, the primary efficiency goal for a multi-way search tree is to keep the height 
as small as possible, that is, we want h to be a logarithmic function of n, the total 
number of entries stored in the dictionary. A search tree with logarithmic height, 
such as this, is called a balanced search tree. We discuss a balanced search tree 
that caps dmax at 4 next. 

Definition of a (2,4) Tree 
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A multi-way search tree that keeps the secondary data structures stored at each 
node small and also keeps the primary multi-way tree balanced is the (2,4) tree, 
which is sometimes called 2–4 tree or 2–3–4 tree. This data structure achieves 
these goals by maintaining two simple properties (see Figure 10.20): 

Size Property: Every internal node has at most four children. 

Depth Property: All the external nodes have the same depth. 

Figure 10.20: A (2,4) tree. 

 

Again, we assume that external nodes are empty and, for the sake of simplicity, 
we describe our search and update methods assuming that external nodes are real 
nodes, although this latter requirement is not strictly needed. 

Enforcing the size property for (2,4) trees keeps the nodes in the multi-way search 
tree simple. It also gives rise to the alternative name "2–3–4 tree," since it implies 
that each internal node in the tree has 2, 3, or 4 children. Another implication of 
this rule is that we can represent the dictionary D(v) stored at each internal node v 
using an unordered list or an ordered array, and still achieve O(1)-time 
performance for all operations (since dmax = 4). The depth property, on the other 
hand, enforces an important bound on the height of a (2,4) tree. 

Proposition 10.8: The height of a (2,4) tree storing n entries is O(log n). 

Justification: Let h be the height of a (2,4) tree T storing n entries. We 
justify the proposition by showing that the claims 

1/2log(n +1)≤h                    (10.9) 

and 
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h≤log(n+1)                    (10.10) 

are true. 

To justify these claims note first that, by the size property, we can have at most 4 
nodes at depth 1, at most 42 nodes at depth 2, and so on. Thus, the number of 
external nodes in T is at most 4h. Likewise, by the depth property and the 
definition of a (2,4) tree, we must have at least 2 nodes at depth 1, at least 22 
nodes at depth 2, and so on. Thus, the number of external nodes in T is at least 2h 
In addition, by Proposition 10.7, the number of external nodes in T is n+ 1. 
Therefore, we obtain 

2h≤n+1 

and 

n+1≤4h. 

Taking the logarithm in base 2 of each of the above terms, we get that 

h≤log(n+1) 

and 

log(n+1) ≤2h, 

which justifies our claims (10.9 and 10.10). 

 

Proposition 10.8 states that the size and depth properties are sufficient for keeping 
a multi-way tree balanced (Section 10.4.1). Moreover, this proposition implies 
that performing a search in a (2,4) tree takes O(logn) time and that the specific 
realization of the secondary structures at the nodes is not a crucial design choice, 
since the maximum number of children dmax is a constant (4). We can, for 
example, use a simple ordered dictionary implementation, such as an array-list 
search table, for each secondary structure. 

10.4.2  Update Operations for (2,4) Trees 

Maintaining the size and depth properties requires some effort after performing 
insertions and removals in a (2,4) tree, however. We discuss these operations next. 

Insertion 

To insert a new entry (k,x), with key k, into a (2,4) tree T, we first perform a 
search for k. Assuming that T has no entry with key k, this search terminates 
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unsuccessfully at an external node z. Let v be the parent of z. We insert the new 
entry into node v and add a new child w (an external node) to v on the left of z. 
That is, we add entry (k, x, w) to the dictionary D(v). 

Our insertion method preserves the depth property, since we add a new external 
node at the same level as existing external nodes. Nevertheless, it may violate the 
size property. Indeed, if a node v was previously a 4-node, then it may become a 
5-node after the insertion, which causes the tree T to no longer be a (2,4) tree. 
This type of violation of the size property is called an overflow at node v, and it 
must be resolved in order to restore the properties of a (2,4) tree. Let v1… ,v5 be 
the children of v, and let k1,…, k4 be the keys stored at v. To remedy the overflow 
at node v, we perform a split operation on v as follows (see Figure 10.21):  

• Replace v with two nodes v ′ and v ′′, where  

○ v ′ is a 3-node with children v1, v2, v3 storing keys k1 and k2 

○ v ′′ is a 2-node with children v4,v5 storing key k4. 

• If v was the root of T, create a new root node u; else, let u be the parent of 
v. 

• Insert key k3 into u and make v ′ and v ′′ children of u, so that if v was 
child i of u, then v ′ and v ′′ become children i and i + 1 of u, respectively. 

We show a sequence of insertions in a (2,4) tree in Figure 10.22. 

Figure 10.21: A node split: (a) overflow at a 5-node v; 
(b) the third key of v inserted into the parent u of v; (c) 
node v replaced with a 3-node v ′ and a 2-node v ′′. 

 
Figure 10.22: A sequence of insertions into a (2,4) 
tree: (a) initial tree with one entry; (b) insertion of 6; (c) 
insertion of 12; (d) insertion of 15, which causes an 
overflow; (e) split, which causes the creation of a new 
root node; (f) after the split; (g) insertion of 3; (h) 
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insertion of 5, which causes an overflow; (i) split; (j) 
after the split; (k) insertion of 10; (l) insertion of 8. 
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Analysis of Insertion in a (2,4) Tree 
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A split operation affects a constant number of nodes of the tree and O(1) entries 
stored at such nodes. Thus, it can be implemented to run in O(1) time. 

As a consequence of a split operation on node v, a new overflow may occur at the 
parent u of v. If such an overflow occurs, it triggers in turn a split at node u. (See 
Figure 10.23.) A split operation either eliminates the overflow or propagates it 
into the parent of the current node. Hence, the number of split operations is 
bounded by the height of the tree, which is O(logn) by Proposition 10.8. 
Therefore, the total time to perform an insertion in a (2,4) tree is O(logn). 

Figure 10.23:  An insertion in a (2,4) tree that 
causes a cascading split: (a) before the insertion; (b) 
insertion of 17, causing an overflow; (c) a split; (d) after 
the split a new overflow occurs; (e) another split, 
creating a new root node; (f) final tree. 

 

Removal 
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Let us now consider the removal of an entry with key k from a (2,4) tree T. We 
begin such an operation by performing a search in T for an entry with key k. 
Removing such an entry from a (2,4) tree can always be reduced to the case where 
the entry to be removed is stored at a node v whose children are external nodes. 
Suppose, for instance, that the entry with key k that we wish to remove is stored in 
the ith entry (ki,xi) at a node z that has only internal-node children. In this case, 
we swap the entry (ki,xi) with an appropriate entry that is stored at a node v w
external-node children as follows (see 

ith 
Figure 10.24d):  

1. We find the right-most internal node v in the subtree rooted at the ith child 
of z, noting that the children of node v are all external nodes. 

2. We swap the entry (ki, xi) at z with the last entry of v. 

Once we ensure that the entry to remove is stored at a node v with only 
externalnode children (because either it was already at v or we swapped it into v), 
we simply remove the entry from v (that is, from the dictionary D(v)) and remove 
the ith external node of v. 

Removing an entry (and a child) from a node v as described above preserves the 
depth property, for we always remove an external node child from a node v with 
only external-node children. However, in removing such an external node we may 
violate the size property at v. Indeed, if v was previously a 2-node, then it 
becomes a 1-node with no entries after the removal (Figure 10.24d and e), which 
is not allowed in a (2,4) tree. This type of violation of the size property is called 
an underflow at node v. To remedy an underflow, we check whether an 
immediate sibling of v is a 3-node or a 4-node. If we find such a sibling w, then 
we perform a transfer operation, in which we move a child of w to v, a key of w 
to the parent u of v and w, and a key of u to v. (See Figure 10.24b and c.) If v has 
only one sibling, or if both immediate siblings of v are 2-nodes, then we perform a 
fusion operation, in which we merge v with a sibling, creating a new node v ′, and 
move a key from the parent u of v to v ′. (See Figure 10.25e and f.) 

A fusion operation at node v may cause a new underflow to occur at the parent u 
of v, which in turn triggers a transfer or fusion at u. (See Figure 10.25.) Hence, the 
number of fusion operations is bounded by the height of the tree, which is O(logn) 
by Proposition 10.8. If an underflow propagates all the way up to the root, then 
the root is simply deleted. (See Figure 10.25c and d.) We show a sequence of 
removals from a (2,4) tree in Figures 10.24 and 10.25. 

Figure 10.24:  A sequence of removals from a 
(2,4) tree: (a) removal of 4, causing an underflow; (b) a 
transfer operation; (c) after the transfer operation; (d) 
removal of 12, causing an underflow; (e) a fusion 
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operation; (f) after the fusion operation; (g) removal of 
13; (h) after removing 13. 
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Figure 10.25:  A propagating sequence of fusions 
in a (2,4) tree: (a) removal of 14, which causes an 
underflow; (b) fusion, which causes another underflow; 
(c) second fusion operation, which causes the root to 
be removed; (d) final tree. 

 

Performance of (2,4) Trees 

Table 10.3 summarizes the running times of the main operations of a dictionary 
realized with a (2,4) tree. The time complexity analysis is based on the following:  

• The height of a (2,4) tree storing n entries is O(logn), by Proposition 10.8. 

• A split, transfer, or fusion operation takes O(1) time. 

• A search, insertion, or removal of an entry visits O(logn) nodes. 

Table 10.3:  Performance of an n-entry dictionary 
realized by a (2,4) tree, where s denotes the size of the 
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collection returned by findAll. The space usage is 
O(n). 

Operation 

Time 

size, isEmpty 

O(1) 

find, insert, remove 

O(logn) 

findAll 

O(logn + s) 

Thus, (2,4) trees provide for fast dictionary search and update operations. (2,4) 
trees also have an interesting relationship to the data structure we discuss next. 

10.5  Red-Black Trees 

Although AVL trees and (2,4) trees have a number of nice properties, there are some 
dictionary applications for which they are not well suited. For instance, AVL trees 
may require many restructure operations (rotations) to be performed after a removal, 
and (2,4) trees may require many fusing or split operations to be performed after 
either an insertion or removal. The data structure we discuss in this section, the red-
black tree, does not have these drawbacks, however, as it requires that only O(1) 
structural changes be made after an update in order to stay balanced. 

A red-black tree is a binary search tree (see Section 10.1) with nodes colored red and 
black in a way that satisfies the following properties: 

Root Property: The root is black. 

External Property: Every external node is black. 

Internal Property: The children of a red node are black. 

Depth Property: All the external nodes have the same black depth, defined as the 
number of black ancestors minus one. (Recall that a node is an ancestor of itself.) 

An example of a red-black tree is shown in Figure 10.26. 
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Figure 10.26:  Red-black tree associated with the (2,4) 
tree of Figure 10.20. Each external node of this red-black 
tree has 4 black ancestors (including itself); hence, it has 
black depth 3. We use the color blue instead of red. Also, 
we use the convention of giving an edge of the tree the 
same color as the child node. 

 

As for previous types of search trees, we assume that entries are stored at the internal 
nodes of a red-black tree, with the external nodes being empty placeholders. Also, we 
assume that the external nodes are actual nodes, but we note that, at the expense of 
slightly more complicated methods, external nodes could be null. 

We can make the red-black tree definition more intuitive by noting an interesting 
correspondence between red-black trees and (2,4) trees, as illustrated in Figure 10.27. 
Namely, given a red-black tree, we can construct a corresponding (2,4) tree by 
merging every red node v into its parent and storing the entry from v at its parent. 
Conversely, we can transform any (2,4) tree into a corresponding red-black tree by 
coloring each node black and performing the following transformation for each 
internal node v:  

• If v is a 2-node, then keep the (black) children of v as is. 

• If v is a 3-node, then create a new red node w, give v's first two (black) children to 
w, and make w and v's third child be the two children of v. 

• If v is a 4-node, then create two new red nodes w and z, give v's first two (black) 
children to w, give v's last two (black) children to z, and make w and z be the two 
children of v. 

 642



Figure 10.27:  Correspondence between a (2,4) tree 
and a red-black tree: (a) 2-node; (b) 3-node; (c) 4-node. 

 

The correspondence between (2,4) trees and red-black trees provides important 
intuition that we will use in our discussion of how to perform updates in red-black 
trees. In fact, the update algorithms for red-black trees are mysteriously complex 
without this intuition. 

Proposition 10.9: The height of a red-black tree storing n entries is O(logn). 

Justification: Let T be a red-black tree storing n entries, and let h be the 
height of T. We justify this proposition by establishing the following fact: 

log(n + 1) ≤ h ≤ 2log(n + 1). 

Let d be the common black depth of all the external nodes of T. Let T ′ be the (2,4) 
tree associated with T, and let h ′ be the height of T ′. Because of the correspondence 
between red-black trees and (2,4) trees, we know that h ′ = d. Hence, by Proposition 
10.8, d = h ′ ≤ log(n + 1). By the internal node property, h ≤ 2d. Thus, we obtain h ≤ 
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2log(n + 1). The other inequality, log(n + 1) ≤ h, follows from Proposition 7.10 and 
the fact that T has n internal nodes. 

 

We assume that a red-black tree is realized with a linked structure for binary trees 
(Section 7.3.4), in which we store a dictionary entry and a color indicator at each 
node. Thus the space requirement for storing n keys is O(n). The algorithm for 
searching in a red-black tree T is the same as that for a standard binary search tree 
(Section 10.1). Thus, searching in a red-black tree takes O(logn) time. 

10.5.1  Update Operations 

Performing the update operations in a red-black tree is similar to that of a binary 
search tree, except that we must additionally restore the color properties. 

Insertion 

Now consider the insertion of an entry with key k into a red-black tree T, keeping 
in mind the correspondence between T and its associated (2,4) tree T ′ and the 
insertion algorithm for T ′. The algorithm initially proceeds as in a binary search 
tree (Section 10.1.2). Namely, we search for k in T until we reach an external 
node of T, and we replace this node with an internal node z, storing (k,x) and 
having two external-node children. If z is the root of T, we color z black, else we 
color z red. We also color the children of z black. This action corresponds to 
inserting (k,x) into a node of the (2,4) tree T ′ with external children. In addition, 
this action preserves the root, external and depth properties of T, but it may 
violate the internal property. Indeed, if z is not the root of T and the parent v of z 
is red, then we have a parent and a child (namely, v and z) that are both red. Note 
that by the root property, v cannot be the root of T, and by the internal property 
(which was previously satisfied), the parent u of v must be black. Since z and its 
parent are red, but z's grandparent u is black, we call this violation of the internal 
property a double red at node z. 

To remedy a double red, we consider two cases. 

Case 1: The Sibling w of v is Black. (See Figure 10.28.) In this case, the double 
red denotes the fact that we have created in our red-black tree T a malformed 
replacement for a corresponding 4-node of the (2,4) tree T1, which has as its 
children the four black children of u, v, and z. Our malformed replacement has 
one red node (v) that is the parent of another red node (z), while we want it to 
have the two red nodes as siblings instead. To fix this problem, we perform a 
trinode restructuring of T. The trinode restructuring is done by the operation 
restructure(z), which consists of the following steps (see again Figure 10.28; this 
operation is also discussed in Section 10.2):  
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• Take node z, its parent v, and grandparent u, and temporarily relabel them 
as a, b, and c, in left-to-right order, so that a, b, and c will be visited in this 
order by an inorder tree traversal. 

• Replace the grandparent u with the node labeled b, and make nodes a and 
c the children of b, keeping inorder relationships unchanged. 

After performing the restructure(z) operation, we color b black and we color a and 
c red. Thus, the restructuring eliminates the double red problem. 

Figure 10.28: Restructuring a red-black tree to 
remedy a double red: (a) the four configurations for u, 
v, and z before restructuring; (b) after restructuring. 

 

Case 2: The Sibling w of v is Red. (See Figure 10.29.) In this case, the double red 
denotes an overflow in the corresponding (2,4) tree T. To fix the problem, we 
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perform the equivalent of a split operation. Namely, we do a recoloring: we color 
v and w black and their parent u red (unless u is the root, in which case, it is 
colored black). It is possible that, after such a recoloring, the double red problem 
reappears, albeit higher up in the tree T, since u may have a red parent. If the 
double red problem reappears at u, then we repeat the consideration of the two 
cases at u. Thus, a recoloring either eliminates the double red problem at node z, 
or propagates it to the grandparent u of z. We continue going up T performing 
recolorings until we finally resolve the double red problem (with either a final 
recoloring or a trinode restructuring). Thus, the number of recolorings caused by 
an insertion is no more than half the height of tree T, that is, no more than log(n + 
1) by Proposition 10.9. 

Figure 10.29:  Recoloring to remedy the double 
red problem: (a) before recoloring and the 
corresponding 5-node in the associated (2,4) tree 
before the split; (b) after the recoloring (and 
corresponding nodes in the associated (2,4) tree after 
the split). 
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Figures 10.30 and 10.31 show a sequence of insertion operations in a red-black 
tree. 

Figure 10.30:  A sequence of insertions in a red-
black tree: (a) initial tree; (b) insertion of 7; (c) insertion 
of 12, which causes a double red; (d) after 
restructuring; (e) insertion of 15, which causes a 
double red; (f) after recoloring (the root remains 
black); (g) insertion of 3; (h) insertion of 5; (i) insertion 
of 14, which causes a double red; (j) after restructuring; 
(k) insertion of 18, which causes a double red; (l) after 
recoloring. (Continues in Figure 10.31.) 
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Figure 10.31:  A sequence of insertions in a red-
black tree: (m) insertion of 16, which causes a double 
red; (n) after restructuring; (o) insertion of 17, which 
causes a double red; (p) after recoloring there is again 
a double red, to be handled by a restructuring; (q) 
after restructuring. (Continued from Figure 10.30.) 
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The cases for insertion imply an interesting property for red-black trees. Namely, 
since the Case 1 action eliminates the double-red problem with a single trinode 
restructuring and the Case 2 action performs no restructuring operations, at most 
one restructuring is needed in a red-black tree insertion. By the above analysis and 
the fact that a restructuring or recoloring takes O(1) time, we have the following: 

Proposition 10.10: The insertion of a key-value entry in a red-black tree 
storing n entries can be done in O(logn) time and requires O(logn) recolorings and 
one trinode restructuring (a restructure operation). 
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Removal 

Suppose now that we are asked to remove an entry with key k from a red-black 
tree T. Removing such an entry initially proceeds as for a binary search tree 
(Section 10.1.2). First, we search for a node u storing such an entry. If node u 
does not have an external child, we find the internal node v following u in the 
inorder traversal of T, move the entry at v to u, and perform the removal at v. 
Thus, we may consider only the removal of an entry with key k stored at a node v 
with an external child w. Also, as we did for insertions, we keep in mind the 
correspondence between red-black tree T and its associated (2,4) tree T ′ (and the 
removal algorithm for T ′). 

To remove the entry with key k from a node v of T with an external child w we 
proceed as follows. Let r be the sibling of w and x be the parent of v. We remove 
nodes v and w, and make r a child of x. If v was red (hence r is black) or r is red 
(hence v was black), we color r black and we are done. If, instead, r is black and v 
was black, then, to preserve the depth property, we give r a fictitious double black 
color. We now have a color violation, called the double black problem. A double 
black in T denotes an underflow in the corresponding (2,4) tree T. Recall that x is 
the parent of the double black node r. To remedy the double-black problem at r, 
we consider three cases. 

Case 1: The Sibling y of r is Black and has a Red Child z. (See Figure 10.32.) 
Resolving this case corresponds to a transfer operation in the (2,4) tree T ′. We 
perform a trinode restructuring by means of operation restructure(z). Recall that 
the operation restructure(z) takes the node z, its parent y, and grandparent x, labels 
them temporarily left to right as a, b, and c, and replaces x with the node labeled 
b, making it the parent of the other two. (See also the description of restructure in 
Section 10.2.) We color a and c black, give b the former color of x, and color r 
black. This trinode restructuring eliminates the double black problem. Hence, at 
most one restructuring is performed in a removal operation in this case. 

Figure 10.32:  Restructuring of a red-black tree to 
remedy the double black problem: (a) and (b) 
configurations before the restructuring, where r is a 
right child and the associated nodes in the 
corresponding (2,4) tree before the transfer (two other 
symmetric configurations where r is a left child are 
possible); (c) configuration after the restructuring and 
the associated nodes in the corresponding (2,4) tree 
after the transfer. The grey color for node x in parts (a) 
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and (b) and for node b in part (c) denotes the fact that 
this node may be colored either red or black. 
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Case 2: The Sibling y of r is Black and Both Children of y are Black. (See 
Figures 10.33 and 10.34.) Resolving this case corresponds to a fusion operation in 
the corresponding (2,4) tree T ′. We do a recoloring; we color r black, we color y 
red, and, if x is red, we color it black (Figure 10.33); otherwise, we color x double 
black (Figure 10.34). Hence, after this recoloring, the double black problem may 
reappear at the parent x of r. (See Figure 10.34.) That is, this recoloring either 
eliminates the double black problem or propagates it into the parent of the current 
node. We then repeat a consideration of these three cases at the parent. Thus, 
since Case 1 performs a trinode restructuring operation and stops (and, as we will 
soon see, Case 3 is similar), the number of recolorings caused by a removal is no 
more than log(n+ 1). 

Figure 10.33:  Recoloring of a red-black tree that 
fixes the double black problem: (a) before the 
recoloring and corresponding nodes in the associated 
(2,4) tree before the fusion (other similar 
configurations are possible); (b) after the recoloring 
and corresponding nodes in the associated (2,4) tree 
after the fusion. 

 653



 
Figure 10.34:  Recoloring of a red-black tree that 
propagates the double black problem: (a) 
configuration before the recoloring and corresponding 
nodes in the associated (2,4) tree before the fusion 
(other similar configurations are possible); (b) 
configuration after the recoloring and corresponding 
nodes in the associated (2,4) tree after the fusion. 
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Case 3: The Sibling y of r is Red. (See Figure 10.35.) In this case, we perform an 
adjustment operation, as follows. If y is the right child of x, let z be the right child 
of y; otherwise, let z be the left child of y. Execute the trinode restructuring 
operation restructure(z), which makes y the parent of x. Color y black and x red. 
An adjustment corresponds to choosing a different representation of a 3-node in 
the (2,4) tree T ′. After the adjustment operation, the sibling of r is black, and 
either Case 1 or Case 2 applies, with a different meaning of x and y. Note that if 
Case 2 applies, the double-black problem cannot reappear. Thus, to complete 
Case 3 we make one more application of either Case 1 or Case 2 above and we 
are done. Therefore, at most one adjustment is performed in a removal operation. 

Figure 10.35:  Adjustment of a red-black tree in 
the presence of a double black problem: (a) 
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configuration before the adjustment and 
corresponding nodes in the associated (2,4) tree (a 
symmetric configuration is possible); (b) configuration 
after the adjustment with the same corresponding 
nodes in the associated (2,4) tree. 

 

From the above algorithm description, we see that the tree updating needed after a 
removal involves an upward march in the tree T, while performing at most a 
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constant amount of work (in a restructuring, recoloring, or adjustment) per node. 
Thus, since any changes we make at a node in T during this upward march takes 
O(1) time (because it affects a constant number of nodes), we have the following: 

Proposition 10.11: The algorithm for removing an entry from a red-black 
tree with n entries takes O(logn) time and performs O(logn) recolorings and at 
most one adjustment plus one additional trinode restructuring. Thus, it performs at 
most two restructure operations. 

In Figures 10.36 and 10.37, we show a sequence of removal operations on a red-
black tree. We illustrate Case 1 restructurings in Figure 10.36c and d. We 
illustrate Case 2 recolorings at several places in Figures 10.36 and 10.37. Finally, 
in Figure 10.37i and j, we show an example of a Case 3 adjustment. 

Figure 10.36:  Sequence of removals from a red-
black tree: (a) initial tree; (b) removal of 3; (c) removal 
of 12, causing a double black (handled by 
restructuring); (d) after restructuring. (Continues in 
Figure 10.37.) 

 
Figure 10.37:  Sequence of removals in a red-
black tree (continued): (e) removal of 17; (f) removal of 
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18, causing a double black (handled by recoloring); (g) 
after recoloring; (h) removal of 15; (i) removal of 16, 
causing a double black (handled by an adjustment); (j) 
after the adjustment the double black needs to be 
handled by a recoloring; (k) after the recoloring. 
(Continued from Figure 10.36.) 
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Performance of Red-Black Trees 

Table 10.4 summarizes the running times of the main operations of a dictionary 
realized by means of a red-black tree. We illustrate the justification for these 
bounds in Figure 10.38. 
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Table 10.4:  Performance of an n-entry dictionary 
realized by a red-black tree, where s denotes the size 
of the collection returned by findAll. The space usage 
is O(n). 

Operation 

Time 

size, isEmpty 

O(1) 

find, insert, remove 

O(logn) 

findAll 

O(logn +s) 

Figure 10.38:  Illustrating the running time of 
searches and updates in a red-black tree. The time 
performance is O(1) per level, broken into a down 
phase, which typically involves searching, and an up 
phase, which typically involves recolorings and 
performing local trinode restructurings (rotations). 
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Thus, a red-black tree achieves logarithmic worst-case running times for both 
searching and updating in a dictionary. The red-black tree data structure is slightly 
more complicated than its corresponding (2,4) tree. Even so, a red-black tree has a 
conceptual advantage that only a constant number of trinode restructurings are 
ever needed to restore the balance in a red-black tree after an update. 

10.5.2  Java Implementation 

In Code Fragments 10.9 through 10.11, we show the major portions of a Java 
implementation of a dictionary realized by means of a red-black tree. The main 
class includes a nested class, RBNode, shown in Code Fragment 10.9, which 
extends the BTNode class used to represent a key-value entry of a binary search 
tree. It defines an additional instance variable isRed, representing the color of the 
node, and methods to set and return it. 

Code Fragment 10.9:  Instance variables, nested 
class, and constructor for RBTree. 
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Class RBTree (Code Fragments 10.9 through 10.11) extends 
BinarySearchTree (Code Fragments 10.3 through 10.5). We assume the 
parent class supports the method restructure for performing trinode restructurings 
(rotations); its implementation is left as an exercise (P-10.3). Class RBTree 
inherits methods size, isEmpty, find, and findAll from BinarySearchTree 
but overrides methods insert and remove. It implements these two operations by 
first calling the corresponding method of the parent class and then remedying any 
color violations that this update may have caused. Several auxiliary methods of 
class RBTree are not shown, but their names suggest their meanings and their 
implementations are straightforward. 

Code Fragment 10.10:  The dictionary ADT method 
insert and auxiliary methods createNode and 
remedyDoubleRed of class RBTree. 
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Methods insert (Code Fragment 10.10) and remove (Code Fragment 10.11) call the 
corresponding methods of the superclass first and then rebalance the tree by calling 

 663



auxiliary methods to perform rotations along the path from the update position 
(given by the actionPos variable inherited from the superclass) to the root. 

Code Fragment 10.11:  Method remove and auxiliary 
method remedyDoubleBlack of class RBTree. 
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10.6  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-10.1 

We defined a binary search tree so that keys equal to a node's key can be in 
either the left or right subtree of that node. Suppose we change the definition so 
that we restrict equal keys to the right subtree. What must a subtree of a binary 
search tree containing only equal keys look like in this case? 

R-10.2 

How many different binary search trees can store the keys {1,2,3}? 

R-10.3 

How many different binary search trees can store the keys {1,2,3,4}? 

R-10.4 

Insert, into an empty binary search tree, entries with keys 30, 40, 24, 58, 48, 26, 
11, 13 (in this order). Draw the tree after each insertion. 

R-10.5 

Suppose that the methods of BinarySearchTree (Code Fragments 10.3–
10.5) are used to perform the updates shown in Figures 10.3, 10.4, and 10.5. 
What is the node referenced by action Pos after each update? 

R-10.6 

Dr. Amongus claims that the order in which a fixed set of entries is inserted into 
a binary search tree does not matter—the same tree results every time. Give a 
small example that proves he is wrong. 

R-10.7 

Dr. Amongus claims that the order in which a fixed set of entries is inserted into 
an AVL tree does not matter—the same AVL tree results every time. Give a 
small example that proves he is wrong. 

R-10.8 
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Are the rotations in Figures 10.8 and 10.10 single or double rotations? 

R-10.9 

Draw the AVL tree resulting from the insertion of an entry with key 52 into the 
AVL tree of Figure 10.10b. 

R-10.10 

Draw the AVL tree resulting from the removal of the entry with key 62 from the 
AVL tree of Figure 10.10b. 

R-10.11 

Explain why performing a rotation in an n-node binary tree represented using an 
array list takes Ω(n) time. 

R-10.12 

Is the search tree of Figure 10.19a a (2,4) tree? Why or why not? 

R-10.13 

An alternative way of performing a split at a node v in a (2,4) tree is to partition 
v into v ′ and v ′′, with v ′ being a 2-node and v ′′ a 3-node. Which of the keys k1, 
k2, k3, or k4 do we store at v's parent in this case? Why? 

R-10.14 

Dr. Amongus claims that a (2,4) tree storing a set of entries will always have the 
same structure, regardless of the order in which the entries are inserted. Show 
that he is wrong. 

R-10.15 

Draw four different red-black trees that correspond to the same (2,4) tree. 

R-10.16 

Consider the set of keys K = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}. 

a. 

Draw a (2,4) tree storing K as its keys using the fewest number of nodes. 

b. 

Draw a (2,4) tree storing K as its keys using the maximum number of nodes. 
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R-10.17 

Consider the sequence of keys (5,16,22,45,2,10,18,30,50,12,1). Draw the result 
of inserting entries with these keys (in the given order) into 

a. 

An initially empty (2,4) tree. 

b. 

An initially empty red-black tree. 

R-10.18 

For the following statements about red-black trees, provide a justification for 
each true statement and a counterexample for each false one. 

a. 

A subtree of a red-black tree is itself a red-black tree. 

b. 

The sibling of an external node is either external or it is red. 

c. 

There is a unique (2,4) tree associated with a given red-black tree. 

d. 

There is a unique red-black tree associated with a given (2,4) tree. 

R-10.19 

Draw an example red-black tree that is not an AVL tree. 

R-10.20 

Consider a tree T storing 100,000 entries. What is the worst-case height of T in 
the following cases? 

a. 

T is an AVL tree. 

b. 
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T is a (2,4) tree. 

c. 

T is a red-black tree. 

d. 

T is a splay tree. 

e. 

T is a binary search tree. 

R-10.21 

Perform the following sequence of operations in an initially empty splay tree 
and draw the tree after each set of operations. 

a. 

Insert keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order. 

b. 

Search for keys 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, in this order. 

c. 

Delete keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order. 

R-10.22 

What does a splay tree look like if its entries are accessed in increasing order by 
their keys? 

R-10.23 

Explain how to use an AVL tree or a red-black tree to sort n comparable 
elements in O(nlogn) time in the worst case. 

R-10.24 

Can we use a splay tree to sort n comparable elements in O(nlogn) time in the 
worst case? Why or why not? 

Creativity 
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C-10.1 

Design a variation of algorithm TreeSearch for performing the operation 
findAl(k) in an ordered dictionary implemented with a binary search tree T, 
and show that it runs in time O(h + s), where h is the height of T and s is the size 
of the collection returned. 

C-10.2 

Describe how to perform an operation removeAll(k), which removes all the 
entries whose keys equal k in an ordered dictionary implemented with a binary 
search tree T, and show that this method runs in time O(h + s), where h is the 
height of T and s is the size of the iterator returned. 

C-10.3 

Draw a schematic of an AVL tree such that a single remove operation could 
require Ω(logn) trinode restructurings (or rotations) from a leaf to the root in 
order to restore the height-balance property. 

C-10.4 

Show how to perform an operation, removeAll(k), which removes all entries 
with keys equal to K, in a dictionary implemented with an AVL tree in time 
O(slogn), where n is the number of entries in the dictionary and s is the size of 
the iterator returned. 

C-10.5 

If we maintain a reference to the position of the left-most internal node of an 
AVL tree, then operation first (Section 9.5.2) can be performed in O(1) time. 
Describe how the implementation of the other dictionary methods needs to be 
modified to maintain a reference to the left-most position. 

C-10.6 

Show that any n-node binary tree can be converted to any other n-node binary 
tree using O(n) rotations. 

C-10.7 

Let D be an ordered dictionary with n entries implemented by means of an AVL 
tree. Show how to implement the following operation on D in time O(logn + s), 
where s is the size of the iterator returned: 

findAllInRange(k1,k2): Return an iterator of all the entries in D with key k 
such that k1 ≤ k ≤ k2. 
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C-10.8 

Let D be an ordered dictionary with n entries. Show how to modify the AVL 
tree to implement the following method for D in time O(logn): 

countAllInRange(k1,k2): Compute and return the number of entries in D 
with key k such that k1 ≤ k ≤ k2. 

C-10.9 

Show that the nodes that become unbalanced in an AVL tree after operation 
insertAtExternal is performed, within the execution of an insert 
operation, may be nonconsecutive on the path from the newly inserted node to 
the root. 

C-10.10 

Show that at most one node in an AVL tree becomes unbalanced after operation 
removeExternal is performed within the execution of a remove 
dictionary operation. 

C-10.11 

Show that at most one trinode restructuring operation is needed to restore 
balance after any insertion in an AVL tree. 

C-10.12 

Let T and U be (2,4) trees storing n and m entries, respectively, such that all the 
entries in T have keys less than the keys of all the entries in U. Describe an 
O(logn + logm) time method for joining Tand U into a single tree that stores all 
the entries in T and U. 

C-10.13 

Repeat the previous problem for red-black trees T and U. 

C-10.14 

Justify Proposition 10.7. 

C-10.15 

The Boolean indicator used to mark nodes in a red-black tree as being "red" or 
"black" is not strictly needed when we have distinct keys. Describe a scheme for 
implementing a red-black tree without adding any extra space to standard binary 
search tree nodes. How does your scheme affect the search and update times? 
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C-10.16 

Let T be a red-black tree storing n entries, and let k be the key of an entry in T. 
Show how to construct from T, in O(logn) time, two red-black trees T ′ and T ′′, 
such that T ′ contains all the keys of T less than k, and T ′′ contains all the keys 
of T greater than k. This operation destroys T. 

C-10.17 

Show that the nodes of any AVL tree T can be colored "red" and "black" so that 
T becomes a red-black tree. 

C-10.18 

The mergeable heap ADT consists of operations insert(k,x), removeMin(), 
unionWith(h), and min(), where the unionWith(h) operation performs a union of 
the mergeable heap h with the present one, destroying the old versions of both. 
Describe a concrete implementation of the mergeable heap ADT that achieves 
O(logn) performance for all its operations. 

C-10.19 

Consider a variation of splay trees, called half-splay trees, where splaying a 
node at depth d stops as soon as the node reaches depth [d/2\. Perform an 
amortized analysis of half-splay trees. 

C-10.20 

The standard splaying step requires two passes, one downward pass to find the 
node x to splay, followed by an upward pass to splay the node x. Describe a 
method for splaying and searching for x in one downward pass. Each substep 
now requires that you consider the next two nodes in the path down to x, with a 
possible zig substep performed at the end. Describe how to perform the zig-zig, 
zig-zag, and zig steps. 

C-10.21 

Describe a sequence of accesses to an n-node splay tree T, where n is odd, that 
results in T consisting of a single chain of internal nodes with external node 
children, such that the internal-node path down T alternates between left 
children and right children. 

C-10.22 

Explain how to implement an array list of n elements so that the methods add 
and get take O(logn) time in the worst case (with no need for an expandable 
array). 
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Projects 

P-10.1 

N-body simulations are an important modeling tool in physics, astronomy, and 
chemistry. In this project, you are to write a program that performs a simple n-
body simulation called "Jumping Leprechauns." This simulation involves n 
leprechauns, numbered 1 to n. It maintains a gold value g for each leprechaun i, 
which begins with each leprechaun starting out with a million dollars worth of 
gold, that is, g = 1000000 for eachi= 1,2,... ,n. In addition, the simulation also 
maintains, for each leprechaun i, a place on the horizon, which is represented as 
a double-precision floating point number, xi. In each iteration of the simulation, 
the simulation processes the leprechauns in order. Processing a leprechaun i 
during this iteration begins by computing a new place on the horizon for i, 
which is determined by the assignment 

xi←xi + rgi, 

where r is a random floating-point number between −1 and 1. Leprechaun i then 
steals half the gold from the nearest leprechauns on either side of him and adds 
this gold to his gold value, gi. Write a program that can perform a series of 
iterations in this simulation for a given number, n, of leprechauns. Try to 
include a visualization of the leprechauns in this simulation, including their gold 
values and horizon positions. You must maintain the set of horizon positions 
using an ordered dictionary data structure described in this chapter. 

P-10.2 

Extend class BinarySearchTree (Code Fragments 10.3–10.5) to support 
the methods of the ordered dictionary ADT (see Section 9.5.2). 

P-10.3 

Implement a class RestructurableNodeBinaryTree that supports the 
methods of the binary tree ADT, plus a method restructure for performing a 
rotation operation. This class is a component of the implementation of an AVL 
tree given in Section 10.2.2. 

P-10.4 

Write a Java class that implements all the methods of the ordered dictionary 
ADT (see Section 9.5.2) using an AVL tree. 

P-10.5 

Write a Java class that implements all the methods of the ordered dictionary 
ADT (see Section 9.5.2) using a (2,4) tree. 
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P-10.6 

Write a Java class that implements all the methods of the ordered dictionary 
ADT (see Section 9.5.2) using a red-black tree. 

P-10.7 

Form a three-programmer team and have each member implement a different 
one of the previous three projects. Perform extensive experimental studies to 
compare the speed of these three implementations. Design three sets of 
experiments, each favoring a different implementation. 

P-10.8 

Write a Java class that can take any red-black tree and convert it into its 
corresponding (2,4) tree and can take any (2,4) tree and convert it into its 
corresponding red-black tree. 

P-10.9 

Perform an experimental study to compare the performance of a red-black tree 
with that of a skip list. 

P-10.10 

Prepare an implementation of splay trees that uses bottom-up splaying as 
described in this chapter and another that uses top-down splaying as described 
in Exercise C-10.20. Perform extensive experimental studies to see which 
implementation is better in practice, if any. 

Chapter Notes 

Some of the data structures discussed in this chapter are extensively covered by 
Knuth in his Sorting and Searching book [63], and by Mehlhorn in [74]. AVL trees 
are due to Adel'son-Vel'skii and Landis [1], who invented this class of balanced 
search trees in 1962. Binary search trees, AVL trees, and hashing are described in 
Knuth's Sorting and Searching [63] book. Average-height analyses for binary search 
trees can be found in the books by Aho, Hopcroft, and Ullman [5] and Cormen, 
Leiserson, and Rivest [25]. The handbook by Gonnet and Baeza-Yates [41] contains a 
number of theoretical and experimental comparisons among dictionary 
implementations. Aho, Hopcroft, and Ullman [4] discuss (2,3) trees, which are similar 
to (2,4) trees. Red-black trees were defined by Bayer [10]. Variations and interesting 
properties of red-black trees are presented in a paper by Guibas and Sedgewick [46]. 
The reader interested in learning more about different balanced tree data structures is 
referred to the books by Mehlhorn [74] and Tarjan [91], and the book chapter by 
Mehlhorn and Tsakalidis [76]. Knuth [63] is excellent additional reading that includes 
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early approaches to balancing trees. Splay trees were invented by Sleator and Tarjan 
[86] (see also [91]). 
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11.1  Merge-Sort 

In this section, we present a sorting technique, called merge-sort, which can be 
described in a simple and compact way using recursion. 

11.1.1  Divide-and-Conquer 

Merge-sort is based on an algorithmic design pattern called divide-and-conquer. 
The divide-and-conquer pattern consists of the following three steps:  

1. Divide: If the input size is smaller than a certain threshold (say, one or two 
elements), solve the problem directly using a straightforward method and return 
the solution so obtained. Otherwise, divide the input data into two or more 
disjoint subsets. 

2. Recur: Recursively solve the subproblems associated with the subsets. 

3. Conquer: Take the solutions to the subproblems and "merge" them into a 
solution to the original problem. 

Using Divide-and-Conquer for Sorting 

Recall that in a sorting problem we are given a sequence of n objects, stored in a 
linked list or an array, together with some comparator defining a total order on 
these objects, and we are asked to produce an ordered representation of these 
objects. To allow for sorting of either representation, we will describe our sorting 
algorithm at a high level for sequences and explain the details needed to 
implement it for linked lists and arrays. To sort a sequence S with n elements 
using the three divide-and-conquer steps, the merge-sort algorithm proceeds as 
follows:  

1. Divide:If S has zero or one element, return S immediately; it is already 
sorted. Otherwise (S has at least two elements), remove all the elements from S 
and put them into two sequences, S1 and S2, each containing about half of the 
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elements of S; that is, S1 contains the first �n/2� elements of S, and S2 contains 
the remaining �n/2� elements. 

2. Recur: Recursively sort sequences S1 and S2. 

3. Conquer: Put back the elements into S by merging the sorted sequences S1 
and S2 into a sorted sequence. 

In reference to the divide step, we recall that the notation �x� indicates the 
ceiling of x, that is, the smallest integer m, such that x ≤ m. Similarly, the notation 
�x� indicates the floor of x, that is, the largest integer k, such that k ≤ x. 

We can visualize an execution of the merge-sort algorithm by means of a binary 
tree T, called the merge-sort tree. Each node of T represents a recursive 
invocation (or call) of the merge-sort algorithm. We associate with each node v of 
T the sequence S that is processed by the invocation associated with v. The 
children of node v are associated with the recursive calls that process the 
subsequences S1 and S2 of S. The external nodes of T are associated with 
individual elements of S, corresponding to instances of the algorithm that make no 
recursive calls. 

Figure 11.1 summarizes an execution of the merge-sort algorithm by showing the 
input and output sequences processed at each node of the merge-sort tree. The 
step-by-step evolution of the merge-sort tree is shown in Figures 11.2 through 
11.4. 

This algorithm visualization in terms of the merge-sort tree helps us analyze the 
running time of the merge-sort algorithm. In particular, since the size of the input 
sequence roughly halves at each recursive call of merge-sort, the height of the 
merge-sort tree is about log n (recall that the base of log is 2 if omitted). 

Figure 11.1:  Merge-sort tree T for an execution of 
the merge-sort algorithm on a sequence with 8 
elements: (a) input sequences processed at each node 
of T; (b) output sequences generated at each node of 
T. 
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Figure 11.2:  Visualization of an execution of merge-
sort. Each node of the tree represents a recursive call 
of merge-sort. The nodes drawn with dashed lines 
represent calls that have not been made yet. The node 
drawn with thick lines represents the current call. The 
empty nodes drawn with thin lines represent 
completed calls. The remaining nodes (drawn with thin 
lines and not empty) represent calls that are waiting 
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for a child invocation to return. (Continues in Figure 
11.3.) 

 
Figure 11.3:  Visualization of an execution of merge-
sort. (Continues in Figure 11.4.) 
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Figure 11.4:  Visualization of an execution of merge-
sort. Several invocations are omitted between (l) and 
(m) and between (m) and (n). Note the conquer step 
performed in step (p). (Continued from Figure 11.3.). 
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Proposition 11.1: The merge-sort tree associated with an execution of 
merge-sort on a sequence of size n has height �log n�. 

We leave the justification of Proposition 11.1 as a simple exercise (R-11.3). We 
will use this proposition to analyze the running time of the merge-sort algorithm. 

Having given an overview of merge-sort and an illustration of how it works, let us 
consider each of the steps of this divide-and-conquer algorithm in more detail. 
The divide and recur steps of the merge-sort algorithm are simple; dividing a 
sequence of size n involves separating it at the element with index �n/2�, and the 
recursive calls simply involve passing these smaller sequences as parameters. The 
difficult step is the conquer step, which merges two sorted sequences into a single 
sorted sequence. Thus, before we present our analysis of merge-sort, we need to 
say more about how this is done. 

11.1.2  Merging Arrays and Lists 

To merge two sorted sequences, it is helpful to know if they are implemented as 
arrays or lists. Thus, we give detailed pseudo-code describing how to merge two 
sorted sequences represented as arrays and as linked lists in this section. 

Merging Two Sorted Arrays 
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We begin with the array implementation, which we show in Code Fragment 11.1. 
We illustrate a step in the merge of two sorted arrays in Figure 11.5. 

Code Fragment 11.1:  Algorithm for merging two 
sorted array-based sequences. 

 
Figure 11.5:  A step in the merge of two sorted arrays. 
We show the arrays before the copy step in (a) and 
after it in (b). 

 

Merging Two Sorted Lists. 

In Code Fragment 11.2, we give a list-based version of algorithm merge, for 
merging two sorted sequences, S1 and S2, implemented as linked lists. The main 
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idea is to iteratively remove the smallest element from the front of one of the two 
lists and add it to the end of the output sequence, S, until one of the two input lists 
is empty, at which point we copy the remainder of the other list to S. We show an 
example execution of this version of algorithm merge in Figure 11.6. 

Code Fragment 11.2:  Algorithm merge for merging 
two sorted sequences implemented as linked lists. 

 

The Running Time for Merging 

We analyze the running time of the merge algorithm by making some simple 
observations. Let n1 and n2 be the number of elements of S1 and S2, respectively.
Algorithm merge has three while loops. Independent of whether we are analyzing 
the array-based version or the list-based version, the operations performed inside 
each loop take O(1) time each. The key observation is that during each iteration of 
one of the loops, one element is copied or moved from either S

 

n2). 

1 or S2 into S (and 
that element is considered no further). Since no insertions are performed into S1 
or S2, this observation implies that the overall number of iterations of the three 
loops is n1 +n2. Thus, the running time of algorithm merge is 0(n1 + 

Figure 11.6:  Example of an execution of the 
algorithm merge shown in Code Fragment 11.2. 
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11.1.3  The Running Time of Merge-Sort 

Now that we have given the details of the merge-sort algorithm, in both its 
arraybased and list-based versions, and we have analyzed the running time ofthe 
crucial merge algorithm used in the conquer step, let us analyze the running time of 
the entire merge-sort algorithm, assuming it is given an input sequence of n 
elements. For simplicity, we restrict our attention to the case where n is a power of 
2. We leave it to an exercise (R-11.6) to show that the result of our analysis also 
holds when n is not a power of 2. 

As we did in the analysis of the merge algorithm, we assume that the input 
sequence S and the auxiliary sequences S1 and S2, created by each recursive call of 
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merge-sort, are implemented by either arrays or linked lists (the same as S), so that 
merging two sorted sequences can be done in linear time. 

As we mentioned earlier, we analyze the merge-sort algorithm by referring to the 
merge-sort tree T. (Recall Figures 11.2 through 11.4.) We call the time spent at a 
node v of T the running time of the recursive call associated with v, excluding the 
time taken waiting for the recursive calls associated with the children of v to 
terminate. In other words, the time spent at node v includes the running times of the 
divide and conquer steps, but excludes the running time of the recur step. We have 
already observed that the details of the divide step are straightforward; this step runs 
in time proportional to the size of the sequence for v. In addition, as discussed 
above, the conquer step, which consists of merging two sorted subsequences, also 
takes linear time, independent of whether we are dealing with arrays or linked lists. 
That is, letting i denote the depth of node v, the time spent at node v is O(n/2i), 
since the size of the sequence handled by the recursive call associated with v is 
equal to n/2i. 

Looking at the tree T more globally, as shown in Figure 11.7, we see that, given our 
definition of "time spent at a node," the running time of merge-sort is equal to the 
sum of the times spent at the nodes of T. Observe that T has exactly 2i nodes at 
depth i. This simple observation has an important consequence, for it implies that 
the overall time spent at all the nodes of T at depth i is O(2i • n/2i), which is O(n). 
By Proposition 11.1, the height of T is …logn…. Thus, since the time spent at each 
of the …logn… + 1 levels of T is O(n), we have the following result: 

Proposition 11.2: Algorithm merge-sort sorts a sequence S of size n in 
O(nlogn) time, assuming two elements of S can be compared in O(1) time. 

In other words, the merge-sort algorithm asymptotically matches the fast running 
time of the heap-sort algorithm. 

Figure 11.7:  A visual time analysis of the merge-sort 
tree T. Each node is shown labeled with the size of its 
subproblem. 
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11.1.4  Java Implementations of Merge-Sort 

In this section, we present two Java implementations of the merge-sort algorithm, 
one for lists and the other for arrays. 

A Recursive List-Based Implementation of Merge-Sort 

In Code Fragment 11.3, we show a complete Java implementation of the list-
based merge-sort algorithm as a static recursive method, mergeSort. A 
comparator (see Section 8.1.2) is used to decide the relative order of two 
elements. 

In this implementation, the input is a list, L, and auxiliary lists, L1 and L2, are 
processed by the recursive calls. Each list is modified by insertions and deletions 
only at the head and tail; hence, each list update takes O(1) time, assuming the 
lists are implemented with doubly linked lists (see Table 6.4). In our code, we use 
class NodeList (Code Fragments 6.9–6.11) for the auxiliary lists. Thus, for a 
list L of size n, method mergeSort(L,c) runs in time O(nlogn) provided the list 
L is implemented with a doubly linked list and the comparator c can compare two 
elements of L in O(1) time. 

 688



Code Fragment 11.3:  Methods mergeSort and 
merge implementing the recursive merge-sort 
algorithm. 
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A Nonrecursive Array-Based Implementation of Merge-
Sort 

There is a nonrecursive version of array-based merge-sort, which runs in O(n log 
n) time. It is a bit faster than recursive list-based merge-sort in practice, as it 
avoids the extra overheads of recursive calls and node creation. The main idea is 
to perform merge-sort bottom-up, performing the merges level-by-level going up 
the merge-sort tree. Given an input array of elements, we begin by merging every 
odd-even pair of elements into sorted runs of length two. We merge these runs 
into runs of length four, merge these new runs into runs of length eight, and so on, 
until the array is sorted. To keep the space usage reasonable, we deploy an output 
array that stores the merged runs (swapping input and output arrays after each 
iteration). We give a Java implementation in Code Fragment 11.4, where we use 
the built-in method System.arraycopy to copy a range of cells between two 
arrays. 

Code Fragment 11.4:  An implementation of the 
nonrecursive merge-sort algorithm. 
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11.1.5.  Merge-Sort and Recurrence Equations � 

There is another way to justify that the running time of the merge-sort algorithm is 
O(n log n) (Proposition 11.2). Namely, we can deal more directly with the recursive 
nature of the merge-sort algorithm. In this section, we present such an analysis of 
the running time of merge-sort, and in so doing introduce the mathematical concept 
of a recurrence equation (also known as recurrence relation). 

Let the function t(n) denote the worst-case running time of merge-sort on an input 
sequence of size n. Since merge-sort is recursive, we can characterize function t(n) 
by means of an equation where the function t(n) is recursively expressed in terms of 
itself. In order to simplify our characterization of t (n), let us restrict our attention to 
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the case when n is a power of 2. (We leave the problem of showing that our 
asymptotic characterization still holds in the general case as an exercise.) In this 
case, we can specify the definition of t(n) as 

 

An expression such as the one above is called a recurrence equation, since the 
function appears on both the left- and right-hand sides of the equal sign. Although 
such a characterization is correct and accurate, what we really desire is a big-Oh 
type of characterization of t(n) that does not involve the function t(n) itself. That is, 
we want a closed-form characterization of t(n). 

We can obtain a closed-form solution by applying the definition of a recurrence 
equation, assuming n is relatively large. For example, after one more application of 
the equation above, we can write a new recurrence for t(n) as 

               t(n) = 2(2t(n/22) + (cn/2)) + cn 

                    = 22t(n/22) + 2(cn/2) + cn = 22t(n/22) + 2cn. 

If we apply the equation again, we get t(n) = 23t(n/23) + 3cn. At this point, we 
should see a pattern emerging, so that after applying this equation i times we get 

t(n) = 2it(n/2i) + icn. 

The issue that remains, then, is to determine when to stop this process. To see when 
to stop, recall that we switch to the closed form t(n) = b when n ≤ 1, which will 
occur when 2i = n. In other words, this will occur when i = log n. Making this 
substitution, then, yields 

t(n) = 2lognt(n/2logn) + (logn)cn 

= nt(1) + cnlogn 

= nb + cnlogn. 

That is, we get an alternative justification of the fact that t(n) is O(nlogn). 

11.2  Quick-Sort 

The next sorting algorithm we discuss is called quick-sort. Like merge-sort, this 
algorithm is also based on the divide-and-conquer paradigm, but it uses this 
technique in a somewhat opposite manner, as all the hard work is done before the 
recursive calls. 

High-Level Description of Quick-Sort 
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The quick-sort algorithm sorts a sequence S using a simple recursive approach. The 
main idea is to apply the divide-and-conquer technique, whereby we divide S into 
subsequences, recur to sort each subsequence, and then combine the sorted 
subsequences by a simple concatenation. In particular, the quick-sort algorithm 
consists of the following three steps (see Figure 11.8):  

1. Divide: If S has at least two elements (nothing needs to be done if S has 
zero or one element), select a specific element x from S, which is called the pivot. 
As is common practice, choose the pivot x to be the last element in S. Remove all 
the elements from S and put them into three sequences:  

• L, storing the elements in S less than x 

• E, storing the elements in S equal to x 

• G, storing the elements in S greater than x. 

Of course, if the elements of S are all distinct, then E holds just one element—the 
pivot itself. 

2. Recur: Recursively sort sequences L and G. 

3. Conquer: Put back the elements into S in order by first inserting the 
elements of L, then those of E, and finally those of G. 

Figure 11.8:  A visual schematic of the quick-sort 
algorithm. 

 

Like merge-sort, the execution of quick-sort can be visualized by means of a binary 
recursion tree, called the quick-sort tree. Figure 11.9 summarizes an execution of 
the quick-sort algorithm by showing the input and output sequences processed at 
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each node of the quick-sort tree. The step-by-step evolution of the quick-sort tree is 
shown in Figures 11.10, 11.11, and 11.12. 

Unlike merge-sort, however, the height of the quick-sort tree associated with an 
execution of quick-sort is linear in the worst case. This happens, for example, if the 
sequence consists of n distinct elements and is already sorted. Indeed, in this case, 
the standard choice of the pivot as the largest element yields a subsequence L of 
size n − 1, while subsequence E has size 1 and subsequence G has size 0. At each 
invocation of quick-sort on subsequence L, the size decreases by 1. Hence, the 
height of the quick-sort tree is n − 1. 

Figure 11.9:  Quick-sort tree T for an execution of the 
quick-sort algorithm on a sequence with 8 elements: (a) 
input sequences processed at each node of T; (b) 
output sequences generated at each node of T. The 
pivot used at each level of the recursion is shown in 
bold. 
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Figure 11.10:  Visualization of quick-sort. Each node of 
the tree represents a recursive call. The nodes drawn 
with dashed lines represent calls that have not been 
made yet. The node drawn with thick lines represents 
the running invocation. The empty nodes drawn with 
thin lines represent terminated calls. The remaining 
nodes represent suspended calls (that is, active 
invocations that are waiting for a child invocation to 
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return). Note the divide steps performed in (b), (d), and 
(f). (Continues in Figure 11.11.) 

 
Figure 11.11:  Visualization of an execution of quick-
sort.Note the conquer step performed in (k). (Continues 
in Figure 11.12.) 
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Figure 11.12:  Visualization of an execution of quick-
sort. Several invocations between (p) and (q) have been 
omitted. Note the conquer steps performed in (o) and 
(r). (Continued from Figure 11.11.) 
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Performing Quick-Sort on Arrays and Lists 

In Code Fragment 11.5, we give a pseudo-code description of the quick-sort 
algorithm that is efficient for sequences implemented as arrays or linked lists. The 
algorithm follows the template for quick-sort given above, adding the detail of 
scanning the input sequence S backwards to divide it into the lists L, E, and G of 
elements that are respectively less than, equal to, and greater than the pivot. We 
perform this scan backwards, since removing the last element in a sequence is a 
constant-time operation independent of whether the sequence is implemented as an 
array or a linked list. We then recur on the L and G lists, and copy the sorted lists L, 
E, and G back to S We perform this latter set of copies in the forward direction, 
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since inserting elements at the end of a sequence is a constant-time operation 
independent of whether the sequence is implemented as an array or a linked list. 

Code Fragment 11.5:  Quick-sort for an input 
sequence S implemented with a linked list or an array. 

 

Running Time of Quick-Sort 

We can analyze the running time of quick-sort with the same technique used for 
merge-sort in Section 11.1.3. Namely, we can identify the time spent at each node 
of the quick-sort tree T and sum up the running times for all the nodes. 

Examining Code Fragment 11.5, we see that the divide step and the conquer step of 
quick-sort can be implemented in linear time. Thus, the time spent at a node v of T 
is proportional to the input size s(v) of v, defined as the size of the sequence 
handled by the invocation of quick-sort associated with node v. Since subsequence 
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E has at least one element (the pivot), the sum of the input sizes of the children of v 
is atmosts(v) − 1. 

Given a quick-sort tree T, let si denote the sum of the input sizes of the nodes at 
depth i in T. Clearly, s0 = n, since the root r of T is associated with the entire 
sequence. Also, s1 ≤ n − 1, since the pivot is not propagated to the children of r. 
Consider next s2. If both children of r have nonzero input size, then s2 = n − 3. 
Otherwise (one child of the root has zero size, the other has size n − 1), s2 = n − 2. 
Thus, s2 ≤ n − 2. Continuing this line of reasoning, we obtain that si ≤ n − i. As 
observed in Section 11.2, the height of T is n − 1 in the worst case. Thus, the worst-

case running time of quick-sort is , which is , that is, 

 . By Proposition 4.3, . Thus, quick-sort runs in O(n2) worst-case 
time. 

Given its name, we would expect quick-sort to run quickly. However, the quadratic 
bound above indicates that quick-sort is slow in the worst case. Paradoxically, this 
worst-case behavior occurs for problem instances when sorting should be easy—if 
the sequence is already sorted. 

Going back to our analysis, note that the best case for quick-sort on a sequence of 
distinct elements occurs when subsequences L and G happen to have roughly the 
same size. That is, in the best case, we have 

s0 

= 

n 

s1 

= 

n − 1 

s2 

= 

n − (1 + 2) = n − 3 

� 

si 

= 
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n − (1 + 2 + 22 + … + 2i−1) = n − (2i − 1). 

Thus, in the best case, T has height O(logn) and quick-sort runs in O(nlogn) time; 
we leave the justification of this fact as an exercise (R-11.11). 

The informal intuition behind the expected behavior of quick-sort is that at each 
invocation the pivot will probably divide the input sequence about equally. Thus, 
we expect the average running time quick-sort to be similar to the best-case running 
time, that is, O(nlogn). We will see in the next section that introducing 
randomization makes quick-sort behave exactly in this way. 

11.2.1  Randomized Quick-Sort 

One common method for analyzing quick-sort is to assume that the pivot will 
always divide the sequence almost equally. We feel such an assumption would 
presuppose knowledge about the input distribution that is typically not available, 
however. For example, we would have to assume that we will rarely be given 
"almost" sorted sequences to sort, which are actually common in many applications. 
Fortunately, this assumption is not needed in order for us to match our intuition to 
quick-sort's behavior. 

In general, we desire some way of getting close to the best-case running time for 
quick-sort. The way to get close to the best-case running time, of course, is for the 
pivot to divide the input sequence S almost equally. If this outcome were to occur, 
then it would result in a running time that is asymptotically the same as the best-
case running time. That is, having pivots close to the "middle" of the set of elements 
leads to an O(nlogn) running time for quick-sort. 

Picking Pivots at Random 

Since the goal of the partition step of the quick-sort method is to divide the 
sequence S almost equally, let us introduce randomization into the algorithm and 
pick as the pivot a random element of the input sequence. That is, instead of 
picking the pivot as the last element of S, we pick an element of S at random as 
the pivot, keeping the rest of the algorithm unchanged. This variation of quick-
sort is called randomized quick-sort. The following proposition shows that the 
expected running time of randomized quick-sort on a sequence with n elements is 
O(nlogn). This expectation is taken over all the possible random choices the 
algorithm makes, and is independent of any assumptions about the distribution of 
the possible input sequences the algorithm is likely to be given. 

Proposition 11.3: The expected running time of randomized quick-sort on 
a sequence S of size n is O(nlogn). 

Justification: We assume two elements of S can be compared in O(1) 
time. Consider a single recursive call of randomized quick-sort, and let n denote 
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the size of the input for this call. Say that this call is "good" if the pivot chosen is 
such that subsequences L and G have size at least n/4 and at most 3n/4 each; 
otherwise, a call is "bad." 

Now, consider the implications of our choosing a pivot uniformly at random. Note 
that there are n/2 possible good choices for the pivot for any given call of size n of 
the randomized quick-sort algorithm. Thus, the probability that any call is good is 
1/2. Note further that a good call will at least partition a list of size n into two lists 
of size 3n/4 and n/4, and a bad call could be as bad as producing a single call of 
size n − 1. 

Now consider a recursion trace for randomized quick-sort. This trace defines a 
binary tree, T, such that each node in T corresponds to a different recursive call on 
a subproblem of sorting a portion of the original list. 

Say that a node v in T is in size group i if the size of v's subproblem is greater than 
(3/4)i + 1n and at most (3/4)in. Let us analyze the expected time spent working on 
all the subproblems for nodes in size group i. By the linearity of expectation 
(Proposition A.19), the expected time for working on all these subproblems is the 
sum of the expected times for each one. Some of these nodes correspond to good 
calls and some correspond to bad calls. But note that, since a good call occurs 
with probability 1/2, the expected number of consecutive calls we have to make 
before getting a good call is 2. Moreover, notice that as soon as we have a good 
call for a node in size group i, its children will be in size groups higher than i. 
Thus, for any element x from in the input list, the expected number of nodes in 
size group i containing x in their subproblems is 2. In other words, the expected 
total size of all the subproblems in size group i is 2n. Since the nonrecursive work 
we perform for any subproblem is proportional to its size, this implies that the 
total expected time spent processing subproblems for nodes in size group i is 
O(n). 

The number of size groups is log4/3n, since repeatedly multiplying by 3/4 is the 
same as repeatedly dividing by 4/3. That is, the number of size groups is O(logn). 
Therefore, the total expected running time of randomized quick-sort is O(nlogn). 
(See Figure 11.13.)  

Figure 11.13:  A visual time analysis of the quick-
sort tree T. Each node is shown labeled with the size of 
its subproblem. 
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Actually, we can show that the running time of randomized quick-sort is O(nlogn) 
with high probability. (See Exercise C-11.10.) 

11.2.2  In-Place Quick-Sort 

Recall from Section 8.3.5 that a sorting algorithm is in-place if it uses only a small 
amount of memory in addition to that needed for the objects being sorted 
themselves. The merge-sort algorithm, as we have described it above, is not in-
place, and making it be in-place requires a more complicated merging method than 
the one we discuss in Section 11.1.2. In-place sorting is not inherently difficult, 
however. For, as with heap-sort, quick-sort can be adapted to be in-place. 

Performing the quick-sort algorithm in-place requires a bit of ingenuity, however, 
for we must use the input sequence itself to store the subsequences for all the 
recursive calls. We show algorithm inPlaceQuickSort, which performs in-
place quick-sort, in Code Fragment 11.6. Algorithm inPlaceQuickSort 
assumes that the input sequence, S, is given as an array of distinct elements. The 
reason for this restriction is explored in Exercise R-11.14. The extension to the 
general case is discussed in Exercise C-11.8. 

Code Fragment 11.6:  In-place quick-sort for an 
input array S.  
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In-place quick-sort modifies the input sequence using element swapping and does 
not explicitly create subsequences. Indeed, a subsequence of the input sequence is 
implicitly represented by a range of positions specified by a left-most index l and a 
right-most index r. The divide step is performed by scanning the array 
simultaneously from l forward and from r backward, swapping pairs of elements 
that are in reverse order, as shown in Figure 11.14. When these two indices "meet," 
subarrays L and G are on opposite sides of the meeting point. The algorithm 
completes by recurring on these two subarrays. 

In-place quick-sort reduces the running time caused by the creation of new 
sequences and the movement of elements between them by a constant factor. We 
show a Java version of in-place quick-sort in Code Fragment 11.7. 

Figure 11.14:  Divide step of in-place quick-sort. Index 
l scans the sequence from left to right, and index r 
scans the sequence from right to left. A swap is 
performed when l is at an element larger than the pivot 
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and r is at an element smaller than the pivot. A final 
swap with the pivot completes the divide step. 

 
Code Fragment 11.7:  A coding of in-place quick-
sort, assuming distinct elements. 
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Unfortunately, the implementation above is not guaranteed to be in-place. Recalling 
Section 14.1.1, we note that we need space for a stack proportional to the depth of 
the recursion tree, which in this case can be as large as n − 1. Admittedly, the 
expected stack depth is O(logn), which is small compared to n. Nevertheless, a 
simple trick lets us guarantee the stack size is O(logn). The main idea is to design a 
nonrecursive version of in-place quick-sort using an explicit stack to iteratively 
process subproblems (each of which can be represented with a pair of indices 
marking subarray boundaries. Each iteration involves popping the top subproblem, 
splitting it in two (if it is big enough), and pushing the two new subproblems. The 
trick is that when pushing the new subproblems, we should first push the larger 
subproblem and then the smaller one. In this way, the sizes of the subproblems will 
at least double as we go down the stack; hence, the stack can have depth at most 
O(logn). We leave the details of this implementation to an exercise (C-11.9). 
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11.3  A Lower Bound on Sorting 

Recapping our discussions on sorting to this point, we have described several 
methods with either a worst-case or expected running time of O(nlogn) on an input 
sequence of size n. These methods include merge-sort and quick-sort, described in 
this chapter, as well as heap-sort, described in Section 8.3.5. A natural question to 
ask, then, is whether it is possible to sort any faster than in O(nlogn) time. 

In this section, we show that if the computational primitive used by a sorting 
algorithm is the comparison of two elements, then this is the best we can do—
comparison-based sorting has an Ω(nlogn) worst-case lower bound on its running 
time. (Recall the notation Ω(·) from Section 4.2.3.) To focus on the main cost of 
comparison-based sorting, let us only count the comparisons that a sorting algorithm 
performs. Since we want to derive a lower bound, this will be sufficient. 

Suppose we are given a sequence S = (x0,x1,<…>,xn−1) that we wish to sort, and 
assume that all the elements of S are distinct (this is not really a restriction since we 
are deriving a lower bound). We do not care if S is implemented as an array or a 
linked list, for the sake of our lower bound, since we are only counting comparisons. 
Each time a sorting algorithm compares two elements xi and xj (that is, it asks, “is xi 
< xj?”), there are two outcomes: "yes" or "no." Based on the result of this comparison
the sorting algorithm may perform some internal calculations (which we are not 
counting here) and will eventually perform another comparison between two other 
elements of S, which again will have two outcomes. Therefore, we can represent a 
comparison-based sorting algorithm with a decision tree T (recall 

, 

Example 7.8). That 
is, each internal node v in T corresponds to a comparison and the edges from node to 
its children correspond to the computations resulting from either a "yes" or "no" 
answer (see Figure 11.15). 

It is important to note that the hypothetical sorting algorithm in question probably has 
no explicit knowledge of the tree T. We simply use T to represent all the possible 
sequences of comparisons that a sorting algorithm might make, starting from the first 
comparison (associated with the root) and ending with the last comparison (associated 
with the parent of an external node) just before the algorithm terminates its execution. 

Each possible initial ordering, or permutation, of the elements in S will cause our 
hypothetical sorting algorithm to execute a series of comparisons, traversing a path in 
T from the root to some external node. Let us associate with each external node v in 
T, then, the set of permutations of S that cause our sorting algorithm to end up in v. 
The most important observation in our lower-bound argument is that each external 
node v in T can represent the sequence of comparisons for at most one permutation of 
S. The justification for this claim is simple: if two different 

permutations P1 and P2 of S are associated with the same external node, then there 
are at least two objects xi and xj, such that xi is before xj in P1 but xi is after xj in P2. 
At the same time, the output associated with v must be a specific reordering of S, with 
either xi or xj appearing before the other. But if P1 and P2 both cause the sorting 
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algorithm to output the elements of S in this order, then that implies there is a way
trick the algorithm into outputting x

 to 

following result: 

i and xj in the wrong order. Since this cannot be 
allowed by a correct sorting algorithm, each external node of T must be associated 
with exactly one permutation of S. We use this property of the decision tree 
associated with a sorting algorithm to prove the 

Proposition 11.4: The running time of any comparison-based algorithm for 
sorting an n-element sequence is Ω(nlogn)in the worst case. 

Justification: The running time of a comparison-based sorting algorithm must 
be greater than or equal to the height of the decision tree T associated with this 
algorithm, as described above. (See Figure 11.15.) By the argument above, each 
external node in T must be associated with one permutation of S. Moreover, each 
permutation of S must result in a different external node of T. The number of 
permutations of n objects is n! = n(n − 1)(n − 2) … 2 · 1. Thus, T must have at least n! 
external nodes. By Proposition 7.10, the height of T is at least log(n!). This 
immediately justifies the proposition, because there are at least n/2 terms that are 
greater than or equal to n/2 in the product n!; hence 

 

which is Ω(nlogn). 

 
Figure 11.15:  Visualizing the lower bound for 
comparison-based sorting. 
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11.4  Bucket-Sort and Radix-Sort 

In the previous section, we showed that Ω(nlogn) time is necessary, in the worst case, 
to sort an n-element sequence with a comparison-based sorting algorithm. A natural 
question to ask, then, is whether there are other kinds of sorting algorithms that can 
be designed to run asymptotically faster than O(nlogn) time. Interestingly, such 
algorithms exist, but they require special assumptions about the input sequence to be 
sorted. Even so, such scenarios often arise in practice, so discussing them is 
worthwhile. In this section, we consider the problem of sorting a sequence of entries, 
each a key-value pair. 

11.4.1  Bucket-Sort 

Consider a sequence S of n entries whose keys are integers in the range [0,N − 1], 
for some integer N ≥ 2, and suppose that S should be sorted according to the keys of 
the entries. In this case, it is possible to sort S in O(n + N) time. It might seem 
surprising, but this implies, for example, that if N is O(n), then we can sort S in O(n) 
time. Of course, the crucial point is that, because of the restrictive assumption about 
the format of the elements, we can avoid using comparisons. 

The main idea is to use an algorithm called bucket-sort, which is not based on 
comparisons, but on using keys as indices into a bucket array B that has cells 
indexed from 0 to N − 1. An entry with key k is placed in the "bucket" B[k], which 
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itself is a sequence (of entries with key k). After inserting each entry of the input 
sequence S into its bucket, we can put the entries back into S in sorted order by 
enumerating the contents of the buckets B[0], B[1],…,B[N − 1] in order. We 
describe the bucket-sort algorithm in Code Fragment 11.8. 

Code Fragment 11.8:  Bucket-sort. 

 

It is easy to see that bucket-sort runs in O(n + N) time and uses O(n + N) space. 
Hence, bucket-sort is efficient when the range N of values for the keys is small 
compared to the sequence size n, say N = O(n) or N = O(nlogn). Still, its 
performance deteriorates as N grows compared to n. 

An important property of the bucket-sort algorithm is that it works correctly even if 
there are many different elements with the same key. Indeed, we described it in a 
way that anticipates such occurrences. 

Stable Sorting 

When sortting key-value pairs, an important issue is how equal keys are handled. 
Let S = ((k0,x0),…,(kn−1,xn−1)) be a sequence of such entries. We say that a sorting
algorithm is stable if, for any two entries (k

 
 

 
i,xi) and (kj,xj) of S, such that ki = kj

and (ki,xi) precedes (kj,xj) in S before sorting (that is, i < j), entry (ki,xi) also
precedes entry (kj,xj) after sorting. Stability is important for a sorting algorithm 
because applications may want to preserve the initial ordering of elements with 
the same key. 

Our informal description of bucket-sort in Code Fragment 11.8 does not guarantee 
stability. This is not inherent in the bucket-sort method itself, however, for we can 
easily modify our description to make bucket-sort stable, while still preserving its 
O(n + N) running time. Indeed, we can obtain a stable bucket-sort algorithm by 
always removing the first element from sequence S and from the sequences B[i] 
during the execution of the algorithm. 
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11.4.2  Radix-Sort 

One of the reasons that stable sorting is so important is that it allows the bucket-sort 
approach to be applied to more general contexts than to sort integers. Suppose, for 
example, that we want to sort entries with keys that are pairs (k,l), where k and l are 
integers in the range [0,N − 1], for some integer N ≥ 2. In a context such as this, it is 
natural to define an ordering on these keys using the lexicographical (dictionary) 
convention, where (k1,l1) < (k2,l2) if k1 < k2 or if k1 = k2 and l1 < l2 (Section 8.1.2). 
This is a pair-wise version of the lexicographic comparison function, usually 
applied to equal-length character strings (and it easily generalizes to tuples of d 
numbers for d > 2). 

The radix-sort algorithm sorts a sequence S of entries with keys that are pairs, by 
applying a stable bucket-sort on the sequence twice; first using one component of 
the pair as the ordering key and then using the second component. But which order 
is correct? Should we first sort on the k’s (the first component) and then on the l’s 
(the second component), or should it be the other way around? 

Before we answer this question, we consider the following example. 

Example 11.5: Consider the following sequence S (we show only the keys): 

S = ((3,3),(1,5), (2,5), (1,2), (2,3), (1,7), (3,2),(2,2)). 

If we sort S stably on the first component, then we get the sequence 

S1 = ((1,5), (1,2), (1,7), (2,5), (2,3), (2,2), (3,3), (3,2)). 

If we then stably sort this sequence S1 using the second component, then we get the 
sequence 

S1,2 = ((1,2), (2,2), (3,2), (2,3), (3,3), (1,5), (2,5), (1,7)), 

which is not exactly a sorted sequence. On the other hand, if we first stably sort S 
using the second component, then we get the sequence 

S2 = ((1,2), (3,2), (2,2), (3,3), (2,3), (1,5), (2,5), (1,7)). 

If we then stably sort sequence S2 using the first component, then we get the 
sequence 

S2,1 = ((1,2), (1,5), (1,7), (2,2), (2,3), (2,5), (3,2), (3,3)), 

which is indeed sequence S lexicographically ordered. 

So, from this example, we are led to believe that we should first sort using the 
second component and then again using the first component. This intuition is 
exactly right. By first stably sorting by the second component and then again by the 
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first component, we guarantee that if two entries are equal in the second sort (by the 
first component), then their relative order in the starting sequence (which is sorted 
by the second component) is preserved. Thus, the resulting sequence is guaranteed 
to be sorted lexicographically every time. We leave to a simple exercise (R-11.19) 
the determination of how this approach can be extended to triples and other d-tuples 
of numbers. We can summarize this section as follows: 

Proposition 11.6: Let S be a sequence of n key-value pairs, each of which 
has a key (k1,k2,…,kd), where ki is an integer in the range [0,N − 1] for some 
integer N ≥ 2. We can sort S lexicographically in time O(d(n + N)) using radix-sort. 

As important as it is, sorting is not the only interesting problem dealing with a total 
order relation on a set of elements. There are some applications, for example, that 
do not require an ordered listing of an entire set, but nevertheless call for some 
amount of ordering information about the set. Before we study such a problem 
(called "selection"), let us step back and briefly compare all of the sorting 
algorithms we have studied so far. 

11.5  Comparison of Sorting Algorithms 

At this point, it might be useful for us to take a breath and consider all the algorithms 
we have studied in this book to sort an n-element array list, node list, or general 
sequence. 

Considering Running Time and Other Factors 

We have studied several methods, such as insertion-sort, and selection-sort, that 
have O(n2)-time behavior in the average and worst case. We have also studied 
several methods with O(nlogn)-time behavior, including heap-sort, merge-sort, and 
quick-sort. Finally, we have studied a special class of sorting algorithms, namely, 
the bucket-sort and radix-sort methods, that run in linear time for certain types of 
keys. Certainly, the selection-sort algorithm is a poor choice in any application, 
since it runs in O(n2) time even in the best case. But, of the remaining sorting 
algorithms, which is the best? 

As with many things in life, there is no clear "best" sorting algorithm from the 
remaining candidates. The sorting algorithm best suited for a particular application 
depends on several properties of that application. We can offer some guidance and 
observations, therefore, based on the known properties of the "good" sorting 
algorithms. 

Insertion-Sort 

If implemented well, the running time of insertion-sort is O(n + m), where m is the 
number of inversions (that is, the number of pairs of elements out of order). Thus, 
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insertion-sort is an excellent algorithm for sorting small sequences (say, less than 50 
elements), because insertion-sort is simple to program, and small sequences 
necessarily have few inversions. Also, insertion-sort is quite effective for sorting 
sequences that are already "almost" sorted. By "almost," we mean that the number 
of inversions is small. But the O(n2)-time performance of insertion-sort makes it a 
poor choice outside of these special contexts. 

Merge-Sort 

Merge-sort, on the other hand, runs in O(nlogn) time in the worst case, which is 
optimal for comparison-based sorting methods. Still, experimental studies have 
shown that, since it is difficult to make merge-sort run in-place, the overheads 
needed to implement merge-sort make it less attractive than the in-place 
implementations of heap-sort and quick-sort for sequences that can fit entirely in a 
computer's 

main memory area. Even so, merge-sort is an excellent algorithm for situations 
where the input cannot all fit into main memory, but must be stored in blocks on an 
external memory device, such as a disk. In these contexts, the way that merge-sort 
processes runs of data in long merge streams makes the best use of all the data 
brought into main memory in a block from disk. Thus, for external memory sorting, 
the merge-sort algorithm tends to minimize the total number of disk reads and 
writes needed, which makes the merge-sort algorithm superior in such contexts. 

Quick-Sort 

Experimental studies have shown that if an input sequence can fit entirely in main 
memory, then the in-place versions of quick-sort and heap-sort run faster than 
merge-sort. The extra overhead needed for copying nodes or entries puts mergesort 
at a disadvantage to quick-sort and heap-sort in these applications. In fact, quick-
sort tends, on average, to beat heap-sort in these tests. 

So, quick-sort is an excellent choice as a general-purpose, in-memory sorting 
algorithm. Indeed, it is included in the qsort sorting utility provided in C language 
libraries. Still, its O(n2) time worst-case performance makes quick-sort a poor 
choice in real-time applications where we must make guarantees on the time needed 
to complete a sorting operation. 

Heap-Sort 

In real-time scenarios where we have a fixed amount of time to perform a sorting 
operation and the input data can fit into main memory, the heap-sort algorithm is 
probably the best choice. It runs in O(nlogn) worst-case time and can easily be 
made to execute in-place. 
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Bucket-Sort and Radix-Sort 

Finally, if our application involves sorting entries with small integer keys or d-
tuples of small integer keys, then bucket-sort or radix-sort is an excellent choice, 
for it runs in O(d(n + N)) time, where [0,N − 1] is the range of integer keys (and d = 
1 for bucket sort). Thus, if d(n + N) is significantly "below" the nlogn function, then 
this sorting method should run faster than even quick-sort or heap-sort. 

Thus, our study of all these different sorting algorithms provides us with a versatile 
collection of sorting methods in our algorithm engineering "toolbox." 

11.6  The Set ADT and Union/Find Structures 

In this section, we introduce the set ADT. A set is a collection of distinct objects. 
That is, there are no duplicate elements in a set, and there is no explicit notion of keys 
or even an order. Even so, we include our discussion of sets here in a chapter on 
sorting, because sorting can play an important role in efficient implementations of the 
operations of the set ADT. 

Sets and Some of Their Uses 

First, we recall the mathematical definitions of the union, intersection, and 
subtraction of two sets A and B: 

               A � B = {x:xis in A or x is in B}, 

               A ∩ B = {x:x is in A and x is in B}, 

               A − B = {x:x is in A and x /is in B}. 

Example 11.7: Most Internet search engines store, for each word x in their 
dictionary database, a set, W(x), of Web pages that contain x, where each Web page 
is identified by a unique Internet address. When presented with a query for a word 
x, such a search engine need only return the Web pages in the set W(x), sorted 
according to some proprietary priority ranking of page "importance." But when 
presented with a two-word query for words x and y, such a search engine must first 
compute the intersection W(x) ∩ W(y), and then return the Web pages in the 
resulting set sorted by priority. Several search engines use the set intersection 
algorithm described in this section for this computation. 

Fundamental Methods of the Set ADT 

The fundamental methods of the set ADT, acting on a set A, are as follows: 

union(B): Replace A with the union of A and B, that is, execute A←A � B. 
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intersect(B): Replace A with the intersection of A and B, that is, execute A←A 
∩ B. 

subtract(B): Replace A with the difference of A and B, that is, execute A←A − 
B. 

11.6.1  A Simple Set Implementation 

One of the simplest ways of implementing a set is to store its elements in an ordered 
sequence. This implementation is included in several software libraries for generic 
data structures, for example. Therefore, let us consider implementing the set ADT 
with an ordered sequence (we consider other implementations in several exercises). 
Any consistent total order relation among the elements of the set can be used, 
provided the same order is used for all the sets. 

We implement each of the three fundamental set operations using a generic version 
of the merge algorithm that takes, as input, two sorted sequences representing the 
input sets, and constructs a sequence representing the output set, be it the union, 
intersection, or subtraction of the input sets. Incidentally, we have defined these 
operations so that they modify the contents of the set A involved. Alternatively, we 
could have defined these methods so that they do not modify A but return a new set 
instead. 

The generic merge algorithm iteratively examines and compares the current 
elements a and b of the input sequence A and B, respectively, and finds out whether 
a < b, a = b, or a > b. Then, based on the outcome of this comparison, it determines 
whether it should copy one of the elements a and b to the end of the output 
sequence C. This determination is made based on the particular operation we are 
performing, be it a union, intersection, or subtraction. For example, in a union 
operation, we proceed as follows:  

• If a < b, we copy a to the end of C and advance to the next element of A. 

• If a = b, we copy a to the end of C and advance to the next elements of A 
and B. 

• If a > b, we copy b to the end of C and advance to the next element of B. 

Performance of Generic Merging 

Let us analyze the running time of generic merging. At each iteration, we 
compare two elements of the input sequences A and B, possibly copy one element 
to the output sequence, and advance the current element of A, B, or both. 
Assuming that comparing and copying elements takes O(1) time, the total running 
time is O(nA + nB), where nA is the size of A and nB is the size of B; that is, 
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generic merging takes time proportional to the number of elements. Thus, we 
have the following: 

Proposition 11.8: The set ADT can be implemented with an ordered 
sequence and a generic merge scheme that supports operationsunion, 
intersect, andsubtract in O(n) time, where n denotes the sum of sizes of 
the sets involved. 

Generic Merging as a Template Method Pattern 

The generic merge algorithm is based on the template method pattern (see 
Section 7.3.7). The template method pattern is a software engineering design 
pattern describing a generic computation mechanism that can be specialized by 
redefining certain steps. In this case, we describe a method that merges two 
sequences into one and can be specialized by the behavior of three abstract 
methods. 

Code Fragment 11.9 shows the class Merge providing a Java implementation of 
the generic merge algorithm. 

Code Fragment 11.9:  Class Merge for generic 
merging. 
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To convert the generic Merge class into useful classes, we must extend it with 
classes that redefine the three auxiliary methods, aIsLess, bothAreEqual, 
and bIsLess. We show how union, intersection, and subtraction can be easily 
described in terms of these methods in Code Fragment 11.10. The auxiliary 
methods are redefined so that the template method merge performs as follows:  
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• In class Union Merge, merge copies every element from A and B into 
C, but does not duplicate any element. 

• In class IntersectMerge, merge copies every element that is in both 
A and B into C, but "throws away" elements in one set but not in the other. 

• In class SubtractMerge, merge copies every element that is in A and 
not in B into C. 

Code Fragment 11.10:  Classes extending the Merge 
class by specializing the auxiliary methods to perform 
set union, intersection, and subtraction, respectively. 
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11.6.2  Partitions with Union-Find Operations 

A partition is a collection of disjoint sets. We define the methods of the partition 
ADT using position objects (Section 6.2.2), each of which stores an element x. The 
parition ADT supports the following methods. 

          makeSet(x): Create a singleton set containing the element x and return the 
position storing x in this set. 

          union(A, B): Return the set A � B, destroying the old A and B. 

          find(p): Return the set containing the element in position p. 

A simple implementation of a partition with a total of n elements is with a 
collection of sequences, one for each set, where the sequence for a set A stores set 
positions as its elements. Each position object stores a variable, element, which 
references its associated element x and allows the execution of the element() 
method in O(1) time. In addition, we also store a variable, set, in each position, 
which references the sequence storing p, since this sequence is representing the set 
containing p's element. (See Figure 11.16.) Thus, we can perform operation 
find(p) in O(1) time, by following the set reference for p. Likewise, makeSet 
also takes O(1) time. Operation union(A,B) requires that we join two sequences 
into one and update the set references of the positions in one of the two. We 
choose to implement this operation by removing all the positions from the sequence 
with smaller size, and inserting them in the sequence with larger size. Each time we 
take a position p from the smaller set s and insert it into the larger set t, we update 
the set reference for p to now point to t. Hence, the operation union(A,B) takes time 
O(min(|A|,|B|)), which is O(n), because, in the worst case, |A| = |B| = n/2. 
Nevertheless, as shown below, an amortized analysis shows this implementation to 
be much better than appears from this worst-case analysis. 

Figure 11.16:  Sequence-based implementation of a 
partition consisting of three sets: A = 1,4,7, B = 2,3,6,9, 
and C = 5,8,10,11,12. 
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Performance of the Sequence Implementation 

The sequence implementation above is simple, but it is also efficient, as the 
following theorem shows. 

Proposition 11.9: Performing a series of nmakeSet, union, andfind 
operations, using the sequence-based implementation above, starting from an 
initially empty partition takes O(nlogn) time. 

Justification: We use the accounting method and assume that one cyber-
dollar can pay for the time to perform a find operation, a makeSet operation, 
or the movement of a position object from one sequence to another in a union 
operation. In the case of a find or makeSet operation, we charge the operation 
itself 1 cyber-dollar. In the case of a union operation, however, we charge 1 
cyber-dollar to each position that we move from one set to another. Note that we 
charge nothing to the union operations themselves. Clearly, the total charges to 
find and makeSet operations sum to be O(n). 

Consider, then, the number of charges made to positions on behalf of union 
operations. The important observation is that each time we move a position from 
one set to another, the size of the new set at least doubles. Thus, each position is 
moved from one set to another at most logn times; hence, each position can be 
charged at most O(logn) times. Since we assume that the partition is initially 
empty, there are O(n) different elements referenced in the given series of 
operations, which implies that the total time for all the union operations is 
O(nlogn).  

The amortized running time of an operation in a series of makeSet, union, and 
find operations, is the total time taken for the series divided by the number of 
operations. We conclude from the proposition above that, for a partition 
implemented using sequences, the amortized running time of each operation is 
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O(logn). Thus, we can summarize the performance of our simple sequence-based 
partition implementation as follows. 

Proposition 11.10: Using a sequence-based implementation of a 
partition, in a series of nmakeSet, union, andfind operations starting from 
an initially empty partition, the amortized running time of each operation is 
O(logn). 

Note that in this sequence-based implementation of a partition, each find 
operation takes worst-case O(1) time. It is the running time of the union 
operations that is the computational bottleneck. 

In the next section, we describe a tree-based implementation of a partition that 
does not guarantee constant-time find operations, but has amortized time much 
better than O(logn) per union operation. 

11.6.3  A Tree-Based Partition Implementation � 

An alternative data structure uses a collection of trees to store the n elements in sets, 
where each tree is associated with a different set. (See Figure 11.17.) In particular, 
we implement each tree with a linked data structure whose nodes are themselves the 
set position objects. We still view each position p as being a node having a variable, 
element, referring to its element x, and a variable, set, referring to a set containing x, 
as before. But now we also view each position p as being of the "set" data type. 
Thus, the set reference of each position p can point to a position, which could even 
be p itself. Moreover, we implement this approach so that all the positions and their 
respective set references together define a collection of trees. 

We associate each tree with a set. For any position p, if p's set reference points back 
to p, then p is the root of its tree, and the name of the set containing p is "p" (that is, 
we will be using position names as set names in this case). Otherwise, the set 
reference for p points to p's parent in its tree. In either case, the set containing p is 
the one associated with the root of the tree containing p. 

Figure 11.17:  Tree-based implementation of a 
partition consisting of three disjoint sets: A = 1,4,7, B = 
2,3,6,9, and C = 5,8,10,11,12. 
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With this partition data structure, operation union(A,B) is called with position 
arguments p and q that respectively represent the sets A and B (that is, A = p and B 
= q). We perform this operation by making one of the trees a subtree of the other 
(Figure 11.18b), which can be done in O(1) time by setting the set reference of the 
root of one tree to point to the root of the other tree. Operation find for a position p 
is performed by walking up to the root of the tree containing the position p (Figure 
11.18a), which takes O(n) time in the worst case. 

Note that this representation of a tree is a specialized data structure used to 
implement a partition, and is not meant to be a realization of the tree abstract data 
type (Section 7.1). Indeed, the representation has only "upward" links, and does not 
provide a way to access the children of a given node. 

Figure 11.18:  Tree-based implementation of a 
partition: (a) operation union(A,B); (b) operation 
find(p), where p denotes the position object for 
element 12. 
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At first, this implementation may seem to be no better than the sequence-based data 
structure, but we add the following simple heuristics to make it run faster: 

Union-by-Size: Store, with each position node p, the size of the subtree rooted 
at p. In a union operation, make the tree of the smaller set become a subtree 
of the other tree, and update the size field of the root of the resulting tree. 

Path Compression: In a find operation, for each node v that the find visits, 
reset the parent pointer from v to point to the root. (See Figure 11.19.) 

These heuristics increase the running time of an operation by a constant factor, but 
as we discuss below, they significantly improve the amortized running time. 

Figure 11.19:  Path-compression heuristic: (a) path 
traversed by operation find on element 12; (b) 
restructured tree. 
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The Log-Star and Inverse Ackermann Functions 

A surprising property of the tree-based partition data structure, when implemented 
using the union-by-size and path-compression heuristics, is that performing a 
series of nunion and find operations takes 0(nlog*n) time, where log*n is the 
log-star function, which is the inverse of the tower-of-twos function. Intuitively, 
log*n is the number of times that one can iteratively take the logarithm (base 2) of 
a number before getting a number smaller than 2. Table 11.1 shows a few sample 
values. 

Table 11.1:  Some values of log* n and critical values 
for its inverse. 

 

As is demonstrated in Table 11.1, for all practical purposes, log* n ≤ 5. It is an 
amazingly slow-growing function (but one that is growing nonetheless). 

In fact, the running time of a series of n partition operations implemented as 
above can actually be shown to be O(nα(n)), where α(n) is the inverse of the 
Ackermann function,A, which grows asymptotically even slower than log* n. 
Although we will not prove this fact, let us define the Ackermann function here, 
so as to appreciate just how quickly it grows; hence, how slowly its inverse 
grows. We first define an indexed Ackermann function, Ai, as follows: 

A0(n)= 2n                        for n≥0 
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Ai(1)= Ai−1(2)                for i≥1 

Ai(n)= Ai−1(Ai(n − 1))     for i ≥ 1 and n ≥ 2. 

In other words, the Ackermann functions define a progression of functions:  

• A0(n) = 2n is the multiply-by-two function 

• A1 (n) = 2n is the power-of-two function 

• A2(n) =Math (with n 2's) is the tower-of-twos function 

• and so on. 

We then define the Ackermann function as A(n) = An(n), which is an incredibly 
fast growing function. Likewise, the inverse Ackermann function, 

α(n) = min{m: A(m) ≥ n}, 

is an incredibly slow growing function. It grows much slower than the log* n 
function (which is the inverse of A2(n)), for example, and we have already noted 
that log* n is a very slow-growing function. 

11.7  Selection 

There are a number of applications in which we are interested in identifying a single 
element in terms of its rank relative to an ordering of the entire set. Examples include 
identifying the minimum and maximum elements, but we may also be interested in, 
say, identifying the median element, that is, the element such that half of the other 
elements are smaller and the remaining half are larger. In general, queries that ask for 
an element with a given rank are called order statistics. 

Defining the Selection Problem 

In this section, we discuss the general order-statistic problem of selecting the kth 
smallest element from an unsorted collection of n comparable elements. This is 
known as the selection problem. Of course, we can solve this problem by sorting 
the collection and then indexing into the sorted sequence at index k−1. Using the 
best comparison-based sorting algorithms, this approach would take O(nlogn) time, 
which is obviously an overkill for the cases where k = 1 or k = n (or even k = 2, k = 
3, k = n − 1, or k = n − 5), because we can easily solve the selection problem for 
these values of k in O(n) time. Thus, a natural question to ask is whether we can 
achieve an O(n) running time for all values of k (including the interesting case of 
finding the median, where k =floorln/2 floorr;). 

11.7.1  Prune-and-Search 
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This may come as a small surprise, but we can indeed solve the selection problem 
in O(n) time for any value of k. Moreover, the technique we use to achieve this 
result involves an interesting algorithmic design pattern. This design pattern is 
known as prune-and-search or decrease-and-conquer. In applying this design 
pattern, we solve a given problem that is defined on a collection of n objects by 
pruning away a fraction of the n objects and recursively solving the smaller 
problem. When we have finally reduced the problem to one defined on a constant-
sized collection of objects, then we solve the problem using some brute-force 
method. Returning back from all the recursive calls completes the construction. In 
some cases, we can avoid using recursion, in which case we simply iterate the 
prune-and-search reduction step until we can apply a brute-force method and stop. 
Incidentally, the binary search method described in Section 9.3.3 is an example of 
the prune-andsearch design pattern. 

11.7.2  Randomized Quick-Select 
Code Fragment 11.11:  Randomized quick-select 
algorithm. 

 

In applying the prune-and-search pattern to the selection problem, we can design a 
simple and practical method, called randomized quick-select, for finding the kth 
smallest element in an unordered sequence of n elements on which a total order 
relation is defined. Randomized quick-select runs in O(n) expected time, taken over 
all possible random choices made by the algorithm, and this expectation does not 
depend whatsoever on any randomness assumptions about the input distribution. 
We note though that randomized quick-select runs in O(n2) time in the worst case, 
the justification of which is left as an exercise (R-11.25). We also provide an 
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Exercise (C-1 1.31) for modifying randomized quick-select to get a deterministic 
selection algorithm that runs in O(n) worst-case time. The existence of this 
deterministic algorithm is mostly of theoretical interest, however, since the constant 
factor hidden by the big-Oh notation is relatively large in this case. Suppose we are 
given an unsorted sequence S of n comparable elements together with an integer k > 
[1,n]. At a high level, the quick-select algorithm for finding the kth smallest element 
in S is similar in structure to the randomized quicksort algorithm described in 
Section 11.2.1. We pick an element x from S at random and use this as a "pivot" to 
subdivide S into three subsequences L, E, and G, storing the elements of S less than 
x, equal to x, and greater than x, respectively. This is the prune step. Then, based on 
the value of k, we then determine which of these sets to recur on. Randomized 
quick-select is described in Code Fragment 11.11. Algorithm quickSelect(S,k): 
Input: Sequence S of n comparable elements, and an integer k [1,n] Output: The 
kth smallest element of S if n = 1 then return the (first) element of S. pick a random 
(pivot) element x of S and divide S into three sequences: •L, storing the elements in 
S less than x •E, storing the elements in S equal to x •G, storing the elements in S 
greater than x. if k≤|L| then quickSelect(L,k) else if k≤ |L| + |E| then return x {each 
element in E is equal to x} else quickSelect(G,k − |L| — |E|) {note the new selection 
parameter} 

11.7.3  Analyzing Randomized Quick-Select 

Showing that randomized quick-select runs in O(n) time requires a simple 
probabilistic argument. The argument is based on the linearity of expectation, 
which states that if X and Y are random variables and c is a number, then 

E(X + Y)=E(X)+E(Y)   and    E(cX)=cE(X), 

where we use E(Z) to denote the expected value of the expression Z. 

Let t (n) be the running time of randomized quick-select on a sequence of size n. 
Since this algorithm depends on random events, its running time, t(n), is a random 
variable. We want to bound E(t(n)), the expected value of t(n). Say that a recursive 
invocation of our algorithm is "good" if it partitions S so that the size of L and G is 
at most 3n/4. Clearly, a recursive call is good with probability 1/2. Let g(n) denote 
the number of consecutive recursive calls we make, including the present one, 
before we get a good one. Then we can characterize t (n) using the following 
recurrence equation: 

t(n)≤bn·g(n) + t(3n/4), 

where b ≥ 1 is a constant. Applying the linearity of expectation for n > 1, we get 

E (t(n)) ≤E(bn·g(n) + t(3n/4)) =bn·E (g(n)) + E (t(3n/4)). 

Since a recursive call is good with probability 1/2, and whether a recursive call is 
good or not is independent of its parent call being good, the expected value of g(n) 
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is the same as the expected number of times we must flip a fair coin before it comes 
up "heads." That is, E(g(n)) = 2. Thus, if we let T(n) be shorthand for E(t(n)), then 
we can write the case for n > 1 as 

T(n)≤T(3n/4) + 2bn. 

To convert this relation into a closed form, let us iteratively apply this inequality 
assuming n is large. So, for example, after two applications, 

T(n) ≤T((3/4)2n) + 2b(3/4)n + 2bn. 

At this point, we should see that the general case is 

 

In other words, the expected running time is at most 2bn times a geometric sum 
whose base is a positive number less than 1. Thus, by Proposition 4.5, T(n) is O(n). 

Proposition 11.11: The expected running time of randomized quick-select 
on a sequence S of size n is O(n), assuming two elements of S can be compared in 
O(1) time. 

11.8  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 

Reinforcement 

R-11.1 

Suppose S is a list of n bits, that is, n 0's and 1's. How long will it take to sort S 
with the merge-sort algorithm? What about quick-sort? 

R-11.2 

Suppose S is a list of n bits, that is, n 0's and 1's. How long will it take to sort S 
stably with the bucket-sort algorithm? 

R-11.3 

Give a complete justification of Proposition 11.1. 

R-11.4 
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In the merge-sort tree shown in Figures 11.2 through 11.4, some edges are 
drawn as arrows. What is the meaning of a downward arrow? How about an 
upward arrow? 

R-11.5 

Give a complete pseudo-code description of the recursive merge-sort algorithm 
that takes an array as its input and output. 

R-11.6 

Show that the running time of the merge-sort algorithm on an n-element 
sequence is O(nlogn), even when n is not a power of 2. 

R-11.7 

Suppose we are given two n-element sorted sequences A and B that should not 
be viewed as sets (that is, A and B may contain duplicate entries). Describe an 
O(n)-time method for computing a sequence representing the set A > B (with no 
duplicates). 

R-11.8 

Show that (X − A) (X − B) = X − (A ∩ B), for any three sets X, A, and B. 

R-11.9 

Suppose we modify the deterministic version of the quick-sort algorithm so that, 
instead of selecting the last element in an n-element sequence as the pivot, we 
choose the element at index … ln/2…. What is the running time of this version 
of quick-sort on a sequence that is already sorted? 

R-11.10 

Consider again the modification of the deterministic version of the quicksort 
algorithm so that, instead of selecting the last element in an n-element sequence 
as the pivot, we choose the element at index …ln/2…. Describe the kind of 
sequence that would cause this version of quick-sort to run in (n2) time. 

R-11.11 

Show that the best-case running time of quick-sort on a sequence of size n with 
distinct elements is O(nlogn). 

R-11.12 

Describe a randomized version of in-place quick-sort in pseudo-code. 

R-11.13 
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Show that the probability that any given input element x belongs to more than 
2logn subproblems in size group i, for randomized quick-sort, is at most 1/n2. 

R-11.14 

Suppose algorithm inPlaceQuickSort (Code Fragment 11.6) is executed on a 
sequence with duplicate elements. Show that the algorithm still correctly sorts 
the input sequence, but the result of the divide step may differ from the high-
level description given in Section 11.2 and may result in inefficiencies. In 
particular, what happens in the partition step when there are elements equal to 
the pivot? Is the sequence E (storing the elements equal to the pivot) actually 
computed? Does the algorithm recur on the subsequences L and G, or on some 
other subsequences? What is the running time of the algorithm if all the input 
elements are equal? 

R-11.15 

Of the n# possible inputs to a given comparison-based sorting algorithm, what is 
the absolute maximum number of inputs that could be sorted with just n 
comparisons? 

R-11.16 

Jonathan has a comparison-based sorting algorithm that sorts the first k elements 
in sequence of size n in O(n) time. Give a big-Oh characterization of the biggest 
that k can be? 

R-11.17 

Is the merge-sort algorithm in Section 11.1 stable? Why or why not? 

R-11.18 

An algorithm that sorts key-value entries by key is said to be straggling if, any 
time two entries ei and ej have equal keys, but ei appears before ej in the input, 
then the algorithm places ei after ej in the output. Describe a change to the 
merge-sort algorithm in Section 11.1 to make it straggling. 

R-11.19 

Describe a radix-sort method for lexicographically sorting a sequence S of 
triplets (k,l,m), where k, l, and m are integers in the range [0,N − 1], for some 
N≥2. How could this scheme be extended to sequences of d-tuples (k1,k2,...,kd), 
where each ki is an integer in the range [0, N − 1] ? 

R-11.20 

Is the bucket-sort algorithm in-place? Why or why not? 
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R-11.21 

Give an example input list that requires merge-sort and heap-sort to take 
O(nlogn) time to sort, but insertion-sort runs in O(n) time. What if you reverse 
this list? 

R-11.22 

Describe, in pseudo-code, how to perform path compression on a path of length 
h in O(h) time in a tree-based partition union/find structure. 

R-11.23 

George claims he has a fast way to do path compression in a partition structure, 
starting at a node v. He puts v into a list L, and starts following parent pointers. 
Each time he encounters a new node, u, he adds u to L and updates the parent 
pointer of each node in L to point to u'S parent. Show that George's algorithm 
runs in (h2) time on a path of length h. 

R-11.24 

Describe an in-place version of the quick-select algorithm in pseudo-code. 

R-11.25 

Show that the worst-case running time of quick-select on an n-element sequence 
is (n2). 

Creativity 

C-11.1 

Linda claims to have an algorithm that takes an input sequence S and produces 
an output sequence T that is a sorting of the n elements in S. 

a. 

Give an algorithm, isSorted, for testing in O(n) time if T is sorted. 

b. 

Explain why the algorithm isSorted is not sufficient to prove a particular 
output T to Linda's algorithm is a sorting of S. 

c. 
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Describe what additional information Linda's algorithm could output so that 
her algorithm's correctness could be established on any given S and T in 
O(n) time. 

C-11.2 

Given two sets A and B represented as sorted sequences, describe an efficient 
algorithm for computing A > B, which is the set of elements that are in A or B, 
but not in both. 

C-11.3 

Suppose that we represent sets with balanced search trees. Describe and analyze 
algorithms for each of the methods in the set ADT, assuming that one of the two 
sets is much smaller than the other. 

C-11.4 

Describe and analyze an efficient method for removing all duplicates from a 
collection A of n elements. 

C-11.5 

Consider sets whose elements are integers in the range [0,N − 1]. A popular 
scheme for representing a set A of this type is by means of a Boolean array, B, 
where we say that x is in A if and only if B[x] = true. Since each cell of B can be 
represented with a single bit, B is sometimes referred to as a bit vector. Describe 
and analyze efficient algorithms for performing the methods of the set ADT 
assuming this representation. 

C-11.6 

Consider a version of deterministic quick-sort where we pick as our pivot the 
median of the d last elements in the input sequence of n elements, for a fixed, 
constant odd number d ≥ 3. Argue informally why this should be a good choice 
for pivot. What is the asymptotic worst-case running time of quick-sort in this 
case, in terms of n and d? 

C-11.7 

Another way to analyze randomized quick-sort is to use a recurrence equation. 
In this case, we let T(n) denote the expected running time of randomized quick-
sort, and we observe that, because of the worst-case partitions for good and bad 
splits, we can write 

               T(n) ≤ 1/2 (T(3n/4) + T(n/4)) + (T(n − 1)) + bn, 
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where bn is the time needed to partition a list for a given pivot and concatenate 
the result sublists after the recursive calls return. Show, by induction, that T(n) 
is O(nlogn). 

C-11.8 

Modify inPlaceQuickSort (Code Fragment 11.6) to handle the general case 
efficiently when the input sequence, S, may have duplicate keys. 

C-11.9 

Describe a nonrecursive, in-place version of the quick-sort algorithm. The 
algorithm should still be based on the same divide-and-conquer approach, but 
use an explicit stack to process subproblems. Your algorithm should also 
guarantee the stack depth is at most O(logn). 

C-11.10 

Show that randomized quick-sort runs in O(nlogn) time with probability at least 
1 − 1/n, that is, with high probability, by answering the following: 

a. 

For ach input element x, define Ci,j(x) to be a 0/1 random variable that is 1 
if and only if element x is in j + 1 subproblems that belong to size group i. 
Argue why we need not define Ci,j for j > n. 

b. 

Let Xi,j be a 0/1 random variable that is 1 with probability 1/2j, independent 
of any other events, and let L = …log4/3 n…. Argue why 

. 

c. 

Show t the expected value of  

d. 

Show that the probability that  is at most 1/n2 using the 
Chernoff bound that states that if X is the sum of a finite number of 
independent 0/1 random variables with expected value μ > 0, then Pr(X > 
2……) < (4/e)−…, where e = 2.71828128.... 

e. 
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Argue why the previous claim proves randomized quick-sort runs in 
O(nlogn) time with probability at least 1 − 1/n. 

C-11.11 

Given an array A of n entries with keys equal to 0 or 1, describe an in-place 
method for ordering A so that all the 0's are before every 1. 

C-11.12 

Suppose we are given an n-element sequence S such that each element in S 
represents a different vote for president, where each vote is given as an integer 
representing a particular candidate. Design an O(nlogn)time algorithm to see 
who wins the election S represents, assuming the candidate with the most votes 
wins (even if there are O(n) candidates). 

C-11.13 

Consider the voting problem from Exercise C-11.12, but now suppose that we 
know the number k < n of candidates running. Describe an O(nlogk)time 
algorithm for determining who wins the election. 

C-11.14 

Consider the voting problem from Exercise C-11.12, but now suppose a 
candidate wins only if he or she gets a majority of the votes cast. Design and 
analyze a fast algorithm for determining the winner if there is one. 

C-11.15 

Show that any comparison-based sorting algorithm can be made to be stable 
without affecting its asymptotic running time. 

C-11.16 

Suppose we are given two sequences A and B of n elements, possibly containing 
duplicates, on which a total order relation is defined. Describe an efficient 
algorithm for determining if A and B contain the same set of elements. What is 
the running time of this method? 

C-11.17 

Given an array A of n integers in the range [0,n2 − 1], describe a simple method 
for sorting A in O(n) time. 

C-11.18 

Let S1,S2,...,Sk be k different sequences whose elements have integer keys in the 
range [0,N − 1], for some parameter N ≥ 2. Describe an algorithm running in 
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O(n + N) time for sorting all the sequences (not as a union), where n denotes the 
total size of all the sequences. 

C-11.19 

Given a sequence S of n elements, on which a total order relation is defined, 
describe an efficient method for determining whether there are two equal 
elements in S. What is the running time of your method? 

C-11.20 

Let S be a sequence of n elements on which a total order relation is defined. 
Recall that an inversion in S is a pair of elements x and y such that x appears 
before y in S but x > y. Describe an algorithm running in O(nlogn) time for 
determining the number of inversions in S. 

C-11.21 

Let S be a sequence of n integers. Describe a method for printing out all the 
pairs of inversions in S in O(n + k) time, where k is the number of such 
inversions. 

C-11.22 

Let S be a random permutation of n distinct integers. Argue that the expected 
running time of insertion-sort on S is (n2) . (Hint: Note that half of the elements 
ranked in the top half of a sorted version of S are expected to be in the first half 
of S.) 

C-11.23 

Let A and B be two sequences of n integers each. Given an integer m, describe 
an O(n log n) -time algorithm for determining if there is an integer a in A and an 
integer b in B such that m = a + b. 

C-11.24 

Given a set of n integers, describe and analyze a fast method for finding the 
…logn… integers closest to the median. 

C-11.25 

Bob has a set A of n nuts and a set B of n bolts, such that each nut in A has a 
unique matching bolt in B. Unfortunately, the nuts in A all look the same, and 
the bolts in B all look the same as well. The only kind of a comparison that Bob 
can make is to take a nut-bolt pair (a, b), such that a is in A and b is in B, and 
test it to see if the threads of a are larger, smaller, or a perfect match with the 
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threads of b. Describe and analyze an efficient algorithm for Bob to match up all 
of his nuts and bolts. 

C-11.26 

Show how to use a deterministic O(n)-time selection algorithm to sort a 
sequence of n elements in O(n log n) worst-case time. 

C-11.27 

Given an unsorted sequence S of n comparable elements, and an integer k, give 
an O(nlogk) expected-time algorithm for finding the O(k) elements that have 
rank …n/k…, 2…n/k…, 3 …n/k…, and so on. 

C-11.28 

Let S be a sequence of n insert and removeMin operations, where all the keys 
involved are integers in the range [0,n − 1]. Describe an algorithm running in 
O(nlog* n) for determining the answer to each removeMin. 

C-11.29 

Space aliens have given us a program, alienSplit, that can take a sequence S of n 
integers and partition S in O(n) time into sequences s1, S2, …, Sk of size at most 
…n/k… each, such that the elements in Si are less than or equal to every 
element in Si+1, for i = 1,2,…, k − 1, for a fixed number, k < n. Show how to 
use alienSplit to sort S in O(nlogn/logk) time. 

C-11.30 

Karen has a new way to do path compression in a tree-based union/find partition 
data structure starting at a node v. She puts all the nodes that are on the path 
from v to the root in a set S. Then she scans through S and sets the parent pointer 
of each node in S to its parent's parent pointer (recall that the parent pointer of 
the root points to itself). If this pass changed the value of any node's parent 
pointer, then she repeats this process, and goes on repeating this process until 
she makes a scan through S that does not change any node's parent value. Show 
that Karen's algorithm is correct and analyze its running time for a path of 
length h. 

C-11.31 

This problem deals with modification of the quick-select algorithm to make it 
deterministic yet still run in O(n) time on an n-element sequence. The idea is to 
modify the way we choose the pivot so that it is chosen deterministically, not 
randomly, as follows: 
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Partition the set S into …n/5… groups of size 5 each (except possibly for one 
group). Sort each little set and identify the median element in this set. From this 
set of …n/5… "baby" medians, apply the selection algorithm recursively to find 
the median of the baby medians. Use this element as the pivot and proceed as in 
the quick-select algorithm. 

Show that this deterministic method runs in O(n) time by answering the 
following questions (please ignore floor and ceiling functions if that simplifies 
the mathematics, for the asymptotics are the same either way): 

a. 

How many baby medians are less than or equal to the chosen pivot? How 
many are greater than or equal to the pivot? 

b. 

For each baby median less than or equal to the pivot, how many other 
elements are less than or equal to the pivot? Is the same true for those 
greater than or equal to the pivot? 

c. 

Argue why the method for finding the deterministic pivot and using it to 
partition S takes O(n) time. 

d. 

Based on these estimates, write a recurrence equation to bound the worst-
case running time t(n) for this selection algorithm (note that in the worst 
case there are two recursive calls—one to find the median of the baby 
medians and one to recur on the larger of L and G). 

e. 

Using this recurrence equation, show by induction that t(n) is O(n). 

Projects 

P-11.1 

Experimentally compare the performance of in-place quick-sort and a version of 
quick-sort that is not in-place. 

P-11.2 
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Design and implement a stable version of the bucket-sort algorithm for sorting a 
sequence of n elements with integer keys taken from the range [0,N − 1], for N 
≥ 2. The algorithm should run in O(n + N) time. 

P-11.3 

Implement merge-sort and deterministic quick-sort and perform a series of 
benchmarking tests to see which one is faster. Your tests should include 
sequences that are "random" as well as "almost" sorted. 

P-11.4 

Implement deterministic and randomized versions of the quick-sort algorithm 
and perform a series of benchmarking tests to see which one is faster. Your tests 
should include sequences that are very "random" looking as well as ones that 
are "almost" sorted. 

P-11.5 

Implement an in-place version of insertion-sort and an in-place version of 
quick-sort. Perform benchmarking tests to determine the range of values of n 
where quick-sort is on average better than insertion-sort. 

P-11.6 

Design and implement an animation for one of the sorting algorithms described 
in this chapter. Your animation should illustrate the key properties of this 
algorithm in an intuitive manner. 

P-11.7 

Implement the randomized quick-sort and quick-select algorithms, and design a 
series of experiments to test their relative speeds. 

P-11.8 

Implement an extended set ADT that includes the methods union(B), 
intersect(B), subtract(B), size(), isEmpty(), plus the methods equals(B), 
contains(e), insert(e), and remove(e) with obvious meaning. 

P-11.9 

Implement the tree-based union/find partition data structure with both the 
union-by-size and path-compression heuristics. 

Chapter Notes 
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Knuth's classic text on Sorting and Searching [63] contains an extensive history of 
the sorting problem and algorithms for solving it. Huang and Langston [52] describe 
how to merge two sorted lists in-place in linear time. Our set ADT is derived from the 
set ADT of Aho, Hopcroft, and Ullman [5]. The standard quick-sort algorithm is due 
to Hoare [49]. More information about randomization, including Chernoff bounds, 
can be found in the appendix and the book by Motwani and Raghavan [79]. The 
quick-sort analysis given in this chapter is a combination of an analysis given in a 
previous edition of this book and the analysis of Kleinberg and Tardos [59]. The 
quick-sort analysis of Exercise C-11.7 is due to Littman. Gonnet and Baeza-Yates 
[41] provide experimental comparisons and theoretical analyses of a number of 
different sorting algorithms. The term "prune-and-search" comes originally from the 
computational geometry literature (such as in the work of Clarkson [22] and Megiddo 
[72, 73]). The term "decrease-and-conquer" is from Levitin [68]. 
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java.datastructures.net 

12.1  String Operations 

Document processing is rapidly becoming one of the dominant functions of 
computers. Computers are used to edit documents, to search documents, to transport 
documents over the Internet, and to display documents on printers and computer 
screens. For example, the Internet document formats HTML and XML are primarily 
text formats, with added tags for multimedia content. Making sense of the many 
terabytes of information on the Internet requires a considerable amount of text 
processing. 

In addition to having interesting applications, text processing algorithms also 
highlight some important algorithmic design patterns. In particular, the pattern 
matching problem gives rise to the brute-force method, which is often inefficient but 
has wide applicability. For text compression, we can apply the greedy method, which 
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often allows us to approximate solutions to hard problems, and for some problems 
(such as in text compression) actually gives rise to optimal algorithms. Finally, in 
discussing text similarity, we introduce the dynamic programming design pattern, 
which can be applied in some special instances to solve a problem in polynomial time 
that appears at first to require exponential time to solve. 

Text Processing 

At the heart of algorithms for processing text are methods for dealing with character 
strings. Character strings can come from a wide variety of sources, including 
scientific, linguistic, and Internet applications. Indeed, the following are examples 
of such strings: 

               P = "CGTAAACTGCTTTAATCAAACGC" 

               S = "http://java.datastructures.net". 

The first string, P, comes from DNA applications, and the second string, S, is the 
Internet address (URL) for the Web site that accompanies this book. 

Several of the typical string processing operations involve breaking large strings 
into smaller strings. In order to be able to speak about the pieces that result from 
such operations, we use the term substring of an m-character string P to refer to a 
string of the form P[i]P[i + 1]P[i + 2] … P[j], for some 0 ≤ i ≤ j ≤ m− 1, that is, the 
string formed by the characters in P from index i to index j, inclusive. Technically, 
this means that a string is actually a substring of itself (taking i = 0 and j = m − 1), 
so if we want to rule this out as a possibility, we must restrict the definition to 
proper substrings, which require that either i > 0 or j − 1. 

To simplify the notation for referring to substrings, let us use P[i..j] to denote the 
substring of P from index i to index j, inclusive. That is, 

P[i..j]=P[i]P[i+1]…P[j]. 

We use the convention that if i > j, then P[i..j] is equal to the null string, which has 
length 0. In addition, in order to distinguish some special kinds of substrings, let us 
refer to any substring of the form P [0.. i], for 0 ≤ i ≤ m −1, as a prefix of P, and any 
substring of the form P[i..m − 1], for 0 ≤ i ≤ m − 1, as a suffix of P. For example, if 
we again take P to be the string of DNA given above, then "CGTAA" is a prefix of 
P, "CGC" is a suffix of P, and "TTAATC" is a (proper) substring of P. Note that the 
null string is a prefix and a suffix of any other string. 

To allow for fairly general notions of a character string, we typically do not restrict 
the characters in T and P to explicitly come from a well-known character set, like 
the Unicode character set. Instead, we typically use the symbol σ to denote the 
character set, or alphabet, from which characters can come. Since most document 
processing algorithms are used in applications where the underlying character set is 
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finite, we usually assume that the size of the alphabet σ, denoted with |σ|, is a fixed 
constant. 

String operations come in two flavors: those that modify the string they act on and 
those that simply return information about the string without actually modifying it. 
Java makes this distinction precise by defining the String class to represent 
immutable strings, which cannot be modified, and the StringBuffer class to 
represent mutable strings, which can be modified. 

12.1.1  The Java String Class 

The main operations of the Java String class are listed below: 

length(): 

Return the length, n, of S. 

charAt(i): 

Return the character at index i in S. 

startsWith(Q): 

Determine if Q is a prefix of S. 

endsWith(Q): 

Determine if Q is a suffix of S. 

substring(i,j): 

Return the substring S[i,j]. 

concat(Q): 

Return the concatenation of S and Q, that is, S+Q. 

equals(Q): 

Determine if Q is equal to S. 

indexOf(Q): 

If Q is a substring of S, return the index of the beginning of the first 
occurrence of Q in S, else return −1. 

This collection forms the typical operations for immutable strings. 
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Example 12.1: Consider the following set of operations, which are performed 
on the string S = "abcdefghijklmnop": 

Operation 

Output 

length() 

16 

charAt(5) 

'f' 

concat("qrs") 

"abcdefghijklmnopqrs" 

endsWith("javapop") 

false 

indexOf("ghi") 

6 

startsWith("abcd") 

true 

substring(4,9) 

"efghij" 

With the exception of the indexOf(Q) method, which we discuss in Section 12.2, 
all the methods above are easily implemented simply by representing the string as 
an array of characters, which is the standard String implementation in Java. 

12.1.2  The Java StringBuffer Class 

The main methods of the Java StringBuffer class are listed below: 

append(Q): 

Return S+Q, replacing S with S + Q. 

insert(i, Q): 
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Return and update S to be the string obtained by inserting Q inside S 
starting at index i. 

reverse(): 

Reverse and return the string S. 

setCharAt(i,ch): 

Set the character at index i in S to be ch. 

charAt(i): 

Return the character at index i in S. 

Error conditions occur when the index i is out of the bounds of the indices of the 
string. With the exception of the charAt method, most of the methods of the 
String class are not immediately available to a StringBuffer object S in 
Java. Fortunately, the Java StringBuffer class provides a toString() 
method that returns a String version of S, which can be used to access String 
methods. 

Example 12.2: Consider the following sequence of operations, which are 
performed on the mutable string that is initially S = abcdefghijklmnop": 

Operation 

S 

append("qrs") 

"abcdefghijklmnopqrs" 

insert(3,"xyz") 

"abcxyzdefghijklmnopqrs" 

reverse() 

"srqponmlkjihgfedzyxcba" 

setCharAt(7,'W') 

"srqponmWkjihgfedzyxcba" 

12.2  Pattern Matching Algorithms 
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In the classic pattern matching problem on strings, we are given a text string T of 
length n and apattern string P of length m, and want to find whether P is a substring 
of T. The notion of a "match" is that there is a substring of T starting at some index i 
that matches P, character by character, so that T[i] = P[0], T[i + 1] = P[1], …, T[i + 
m− 1] = P[m − 1]. That is, P = T[i..i + m − 1]. Thus, the output from a pattern 
matching algorithm could either be some indication that the pattern P does not exist 
in T or an integer indicating the starting index in T of a substring matching P. This is 
exactly the computation performed by the indexOf method of the Java String 
interface. Alternatively, one may want to find all the indices where a substring of T 
matching P begins. 

In this section, we present three pattern matching algorithms (with increasing levels 
of difficulty). 

12.2.1  Brute Force. 

The brute force algorithmic design pattern is a powerful technique for algorithm 
design when we have something we wish to search for or when we wish to optimize 
some function. In applying this technique in a general situation we typically 
enumerate all possible configurations of the inputs involved and pick the best of all 
these enumerated configurations. 

In applying this technique to design the brute-force pattern matching algorithm, 
we derive what is probably the first algorithm that we might think of for solving the 
pattern matching problem—we simply test all the possible placements of P relative 
to T. This algorithm, shown in Code Fragment 12.1, is quite simple. 

Algorithm BruteForceMatch(T,P): Input: Strings T (text) with n characters and P 
(pattern) with m characters Output: Starting index of the first substring of T 
matching P, or an indication that P is not a substring of T for i ← 0 to n − m {for 
each candidate index in T} do j ← 0 while (j and T[i + j] = P[j]) do j ← j + 1 if j = 
m then return i return "There is no substring of T matching P." 

Code Fragment 12.1:  Brute-force pattern matching. 
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Performance 

The brute-force pattern matching algorithm could not be simpler. It consists of 
two nested loops, with the outer loop indexing through all possible starting 
indices of the pattern in the text, and the inner loop indexing through each 
character of the pattern, comparing it to its potentially corresponding character in 
the text. Thus, the correctness of the brute-force pattern matching algorithm 
follows immediately from this exhaustive search approach. 

The running time of brute-force pattern matching in the worst case is not good, 
however, because, for each candidate index in T, we can perform up to m 
character comparisons to discover that P does not match T at the current index. 
Referring to Code Fragment 12.1, we see that the outer for loop is executed at 
most n − m+ 1 times, and the inner loop is executed at most m times. Thus, the 
running time of the brute-force method is O((n − m+ 1)m), which is simplified as 
O(nm). Note that when m = n/2, this algorithm has quadratic running time O(n2). 

Example 12.3: Suppose we are given the text string 

T = "abacaabaccabacabaabb" 

and the pattern string 

P= "abacab". 

In Figure 12.1 we illustrate the execution of the brute-force pattern matching 
algorithm on T and P. 

Figure 12.1:  Example run of the brute-force pattern 
matching algorithm. The algorithm performs 27 
character comparisons, indicated above with numerical 
labels. 
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12.2.2  The Boyer-Moore Algorithm 

At first, we might feel that it is always necessary to examine every character in T in 
order to locate a pattern P as a substring. But this is not always the case, for the 
Boyer-Moore (BM) pattern matching algorithm, which we study in this section, can 
sometimes avoid comparisons between P and a sizable fraction of the characters in 
T. The only caveat is that, whereas the brute-force algorithm can work even with a 
potentially unbounded alphabet, the BM algorithm assumes the alphabet is of fixed, 
finite size. It works the fastest when the alphabet is moderately sized and the pattern 
is relatively long. Thus, the BM algorithm is ideal for searching words in 
documents. In this section, we describe a simplified version of the original 
algorithm by Boyer and Moore. 

The main idea of the BM algorithm is to improve the running time of the brute-
force algorithm by adding two potentially time-saving heuristics. Roughly stated, 
these heuristics are as follows: 

Looking-Glass Heuristic: When testing a possible placement of P against T, begin 
the comparisons from the end of P and move backward to the front of P. 

Character-Jump Heuristic: During the testing of a possible placement of P against 
T, a mismatch of text character T[i] = c with the corresponding pattern character 
P[j] is handled as follows. If c is not contained anywhere in P, then shift P 
completely past T[i] (for it cannot match any character in P). Otherwise, shift P 
until an occurrence of character c in P gets aligned with T[i]. 
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We will formalize these heuristics shortly, but at an intuitive level, they work as an 
integrated team. The looking-glass heuristic sets up the other heuristic to allow us to 
avoid comparisons between P and whole groups of characters in T. In this case at 
least, we can get to the destination faster by going backwards, for if we encounter a 
mismatch during the consideration of P at a certain location in T, then we are likely 
to avoid lots of needless comparisons by significantly shifting P relative to T using 
the character-jump heuristic. The character-jump heuristic pays off big if it can be 
applied early in the testing of a potential placement of P against T. 

Let us therefore get down to the business of defining how the character-jump 
heuristics can be integrated into a string pattern matching algorithm. To implement 
this heuristic, we define a function last(c) that takes a character c from the 
alphabet and characterizes how far we may shift the pattern P if a character equal to 
c is found in the text that does not match the pattern. In particular, we define 
last(c) as 

• If c is in P, last(c) is the index of the last (right-most) occurrence of c in P. 

Otherwise, we conventionally define last(c) = − 1. 

If characters can be used as indices in arrays, then the last function can be easily 
implemented as a look-up table. We leave the method for computing this table in 
O(m+|σ|) time, given P, as a simple exercise (R-12.6). This last function will give 
us all the information we need to perform the character-jump heuristic. 

In Code Fragment 12.2, we show the BM pattern matching algorithm. 

Code Fragment 12.2:  The Boyer-Moore pattern 
matching algorithm. 
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The jump step is illustrated in Figure 12.2. 

Figure 12.2:  Illustration of the jump step in the 
algorithm of Code Fragment 12.2, where we let l = 
last(T[i]). We distinguish two cases: (a) 1 +l ≤ j, 
where we shift the pattern by j − l units; (b) j < 1 + l, 
where we shift the pattern by one unit. 
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In Figure 12.3, we illustrate the execution of the Boyer-Moore pattern matching 
algorithm on an input string similar to Example 12.3. 

Figure 12.3:  An illustration of the BM pattern 
matching algorithm. The algorithm performs 13 
character comparisons, which are indicated with 
numerical labels. 
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The correctness of the BM pattern matching algorithm follows from the fact that 
each time the method makes a shift, it is guaranteed not to "skip" over any possible 
matches. For last(c) is the location of the last occurrence of c in P. 

The worst-case running time of the BM algorithm is O(nm+|σ|). Namely, the 
computation of the last function takes time O(m+|σ|) and the actual search for the 
pattern takes O(nm) time in the worst case, the same as the brute-force algorithm. 
An example of a text-pattern pair that achieves the worst case is 

                     

                     

The worst-case performance, however, is unlikely to be achieved for English text, 
for, in this case, the BM algorithm is often able to skip large portions of text. (See 
Figure 12.4.) Experimental evidence on English text shows that the average number 
of comparisons done per character is 0.24 for a five-character pattern string. 

Figure 12.4:  An example of a Boyer-Moore execution 
on English text. 
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A Java implementation of the BM pattern matching algorithm is shown in Code 
Fragment 12.3. 

Code Fragment 12.3:  Java implementation of the 
BM pattern matching algorithm. The algorithm is 
expressed by two static methods: Method BMmatch 
performs the matching and calls the auxiliary method 
build LastFunction to compute the last function, 
expressed by an array indexed by the ASCII code of the 
character. Method BMmatch indicates the absence of a 
match by returning the conventional value − 1. 
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We have actually presented a simplified version of the Boyer-Moore (BM) 
algorithm. The original BM algorithm achieves running time O(n + m + |σ|) by 
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using an alternative shift heuristic to the partially matched text string, whenever it 
shifts the pattern more than the character-jump heuristic. This alternative shift 
heuristic is based on applying the main idea from the Knuth-Morris-Pratt pattern 
matching algorithm, which we discuss next. 

12.2.3  The Knuth-Morris-Pratt Algorithm 

In studying the worst-case performance of the brute-force and BM pattern matching 
algorithms on specific instances of the problem, such as that given in Example 12.3, 
we should notice a major inefficiency. Specifically, we may perform many 
comparisons while testing a potential placement of the pattern against the text, yet if 
we discover a pattern character that does not match in the text, then we throw away 
all the information gained by these comparisons and start over again from scratch 
with the next incremental placement of the pattern. The Knuth-Morris-Pratt (or 
"KMP") algorithm, discussed in this section, avoids this waste of information and, 
in so doing, it achieves a running time of O(n + m), which is optimal in the worst 
case. That is, in the worst case any pattern matching algorithm will have to examine 
all the characters of the text and all the characters of the pattern at least once. 

The Failure Function 

The main idea of the KMP algorithm is to preprocess the pattern string P so as to 
compute failure function f that indicates the proper shift of P so that, to the 
largest extent possible, we can reuse previously performed comparisons. 
Specifically, the failure function f(j) is defined as the length of the longest prefix 
of P that is a suffix of P[1..j] (note that we did not put P[0..j] here). We also use 
the convention that f(0) = 0. Later, we will discuss how to compute the failure 
function efficiently. The importance of this failure function is that it "encodes" 
repeated substrings inside the pattern itself. 

Example 12.4: Consider the pattern string P = "abacab" from Example 12.3. 
The Knuth-Morris-Pratt (KMP) failure function f(j) for the string P is as shown in 
the following table: 

 

The KMP pattern matching algorithm, shown in Code Fragment 12.4, 
incrementally processes the text string T comparing it to the pattern string P. Each 
time there is a match, we increment the current indices. On the other hand, if there 
is a mismatch and we have previously made progress in P, then we consult the 
failure function to determine the new index in P where we need to continue 
checking P against T. Otherwise (there was a mismatch and we are at the 
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beginning of P), we simply increment the index for T (and keep the index variable 
for P at its beginning). We repeat this process until we find a match of P in T or 
the index for T reaches n, the length of T (indicating that we did not find the 
pattern PinT). 

Code Fragment 12.4:  The KMP pattern matching 
algorithm. 

 

The main part of the KMP algorithm is the while loop, which performs a 
comparison between a character in T and a character in P each iteration. 
Depending upon the outcome of this comparison, the algorithm either moves on 
to the next characters in T and P, consults the failure function for a new candidate 
character in P, or starts over with the next index in T. The correctness of this 
algorithm follows from the definition of the failure function. Any comparisons 
that are skipped are actually unnecessary, for the failure function guarantees that 
all the ignored comparisons are redundant—they would involve comparing the 
same matching characters over again. 

Figure 12.5:  An illustration of the KMP pattern 
matching algorithm. The failure function f for this 
pattern is given in Example 12.4. The algorithm 
performs 19 character comparisons, which are 
indicated with numerical labels. 
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In Figure 12.5, we illustrate the execution of the KMP pattern matching algorithm 
on the same input strings as in Example 12.3. Note the use of the failure function 
to avoid redoing one of the comparisons between a character of the pattern and a 
character of the text. Also note that the algorithm performs fewer overall 
comparisons than the brute-force algorithm run on the same strings (Figure 12.1). 

Performance 

Excluding the computation of the failure function, the running time of the KMP 
algorithm is clearly proportional to the number of iterations of the while loop. For 
the sake of the analysis, let us define k = i − j. Intuitively, k is the total amount by 
which the pattern P has been shifted with respect to the text T. Note that 
throughout the execution of the algorithm, we have k ≤ n. One of the following 
three cases occurs at each iteration of the loop. 

• If T[i] = P[j], then i increases by 1, and k does not change, since j also 
increases by 1. 

• If T[i] ≠ P[j] and j > 0, then i does not change and k increases by at least 1, 
since in this case k changes from i − j to i − f(j − 1), which is an addition of j − 
f(j − 1), which is positive because f(j − 1) < j. 

• If T[i] ≠ P[j] and j = 0, then i increases by 1 and k increases by 1, since j 
does not change. 

Thus, at each iteration of the loop, either i or k increases by at least 1 (possibly 
both); hence, the total number of iterations of the while loop in the KMP pattern 
matching algorithm is at most 2n. Achieving this bound, of course, assumes that 
we have already computed the failure function for P. 
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Constructing the KMP Failure Function 

To construct the failure function, we use the method shown in Code Fragment 
12.5, which is a "bootstrapping" process quite similar to the KMPMatch 
algorithm. We compare the pattern to itself as in the KMP algorithm. Each time 
we have two characters that match, we set f(i) = j + 1. Note that since we have i > 
j throughout the execution of the algorithm, f(j − 1) is always defined when we 
need to use it. 

Code Fragment 12.5:  Computation of the failure 
function used in the KMP pattern matching algorithm. 
Note how the algorithm uses the previous values of 
the failure function to efficiently compute new values. 

 

Algorithm KMPFailureFunction runs in O(m) time. Its analysis is analogous 
to that of algorithm KMPMatch. Thus, we have: 

Proposition 12.5: The Knuth-Morris-Pratt algorithm performs pattern 
matching on a text string of length n and a pattern string of length m in O(n + m) 
time. 
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A Java implementation of the KMP pattern matching algorithm is shown in Code 
Fragment 12.6. 

Code Fragment 12.6:  Java implementation of the 
KMP pattern matching algorithm. The algorithm is 
expressed by two static methods: method KMPmatch 
performs the matching and calls the auxiliary method 
computeFailFunction to compute the failure function, 
expressed by an array. Method KMPmatch indicates 
the absence of a match by returning the conventional 
value −1. 
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12.3  Tries 

The pattern matching algorithms presented in the previous section speed up the search 
in a text by preprocessing the pattern (to compute the failure function in the KMP 
algorithm or the last function in the BM algorithm). In this section, we take a 
complementary approach, namely, we present string searching algorithms that 
preprocess the text. This approach is suitable for applications where a series of 
queries is performed on a fixed text, so that the initial cost of preprocessing the text is 
compensated by a speedup in each subsequent query (for example, a Web site that 
offers pattern matching in Shakespeare's Hamlet or a search engine that offers Web 
pages on the Hamlet topic). 

A trie (pronounced "try") is a tree-based data structure for storing strings in order to 
support fast pattern matching. The main application for tries is in information 
retrieval. Indeed, the name "trie" comes from the word "retrieval." In an information 
retrieval application, such as a search for a certain DNA sequence in a genomic 
database, we are given a collection S of strings, all defined using the same alphabet. 
The primary query operations that tries support are pattern matching and prefix 
matching. The latter operation involves being given a string X, and looking for all the 
strings in S that contain X as a prefix. 

12.3.1  Standard Tries 

Let S be a set of s strings from alphabet σ such that no string in S is a prefix of 
another string. A standard trie for S is an ordered tree T with the following 
properties (see Figure 12.6):  

• Each node of T, except the root, is labeled with a character of σ. 

• The ordering of the children of an internal node of T is determined by a 
canonical ordering of the alphabet σ. 

• T has s external nodes, each associated with a string of S, such that the 
concatenation of the labels of the nodes on the path from the root to an external 
node v of T yields the string of S associated with v. 

Thus, a trie T represents the strings of S with paths from the root to the external 
nodes of T. Note the importance of assuming that no string in S is a prefix of 
another string. This ensures that each string of S is uniquely associated with an 
external node of T. We can always satisfy this assumption by adding a special 
character that is not in the original alphabet σ at the end of each string. 

An internal node in a standard trie T can have anywhere between 1 and d children, 
where d is the size of the alphabet. There is an edge going from the root r to one of 
its children for each character that is first in some string in the collection S. In 
addition, a path from the root of T to an internal node v at depth i corresponds to 
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Figure 12.6:  Standard trie for the strings {bear, bell, 
bid, bull, buy, sell, stock, stop}. 

 

an i-character prefix X[0..i − 1] of a string X of S. In fact, for each character c that 
can follow the prefix X[0..i − 1] in a string of the set S, there is a child of v labeled 
with character c. In this way, a trie concisely stores the common prefixes that exist 
among a set of strings. 

If there are only two characters in the alphabet, then the trie is essentially a binary 
tree, with some internal nodes possibly having only one child (that is, it may be an 
improper binary tree). In general, if there are d characters in the alphabet, then the 
trie will be a multi-way tree where each internal node has between 1 and d children. 
In addition, there are likely to be several internal nodes in a standard trie that have 
fewer than d children. For example, the trie shown in Figure 12.6 has several 
internal nodes with only one child. We can implement a trie with a tree storing 
characters at its nodes. 

The following proposition provides some important structural properties of a 
standard trie: 

Proposition 12.6: A standard trie storing a collection S of s strings of total 
length n from an alphabet of size d has the following properties: 

• Every internal node of T has at most d children. 

• T has s external nodes. 

• The height of T is equal to the length of the longest string in S. 

• The number of nodes of T is O(n). 
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The worst case for the number of nodes of a trie occurs when no two strings share a 
common nonempty prefix; that is, except for the root, all internal nodes have one 
child. 

A trie T for a set S of strings can be used to implement a dictionary whose keys are 
the strings of S. Namely, we perform a search in T for a string X by tracing down 
from the root the path indicated by the characters in X. If this path can be traced and 
terminates at an external node, then we know X is in the dictionary. For example, in 
the trie in Figure 12.6, tracing the path for "bull" ends up at an external node. If the 
path cannot be traced or the path can be traced but terminates at an internal node, 
then X is not in the dictionary. In the example in Figure 12.6, the path for "bet" 
cannot be traced and the path for "be" ends at an internal node. Neither such word is 
in the dictionary. Note that in this implementation of a dictionary, single characters 
are compared instead of the entire string (key). It is easy to see that the running time 
of the search for a string of size m is O(dm), where d is the size of the alphabet. 
Indeed, we visit at most m + 1 nodes of T and we spend O(d) time at each node. For 
some alphabets, we may be able to improve the time spent at a node to be O(1) or 
O(logd) by using a dictionary of characters implemented in a hash table or search 
table. However, since d is a constant in most applications, we can stick with the 
simple approach that takes O(d) time per node visited. 

From the discussion above, it follows that we can use a trie to perform a special 
type of pattern matching, called word matching, where we want to determine 
whether a given pattern matches one of the words of the text exactly. (See Figure 
12.7.) Word matching differs from standard pattern matching since the pattern 
cannot match an arbitrary substring of the text, but only one of its words. Using a 
trie, word matching for a pattern of length m takes O(dm) time, where d is the size 
of the alphabet, independent of the size of the text. If the alphabet has constant size 
(as is the case for text in natural languages and DNA strings), a query takes O(m) 
time, proportional to the size of the pattern. A simple extension of this scheme 
supports prefix matching queries. However, arbitrary occurrences of the pattern in 
the text (for example, the pattern is a proper suffix of a word or spans two words) 
cannot be efficiently performed. 

To construct a standard trie for a set S of strings, we can use an incremental 
algorithm that inserts the strings one at a time. Recall the assumption that no string 
of S is a prefix of another string. To insert a string X into the current trie T, we first 
try to trace the path associated with X in T. Since X is not already in T and no string 
in S is a prefix of another string, we will stop tracing the path at an internal node v 
of T before reaching the end of X. We then create a new chain of node descendents 
of v to store the remaining characters of X. The time to insert X is O(dm), where m 
is the length of X and d is the size of the alphabet. Thus, constructing the entire trie 
for set S takes O(dn) time, where n is the total length of the strings of S. 

Figure 12.7:  Word matching and prefix matching 
with a standard trie: (a) text to be searched; (b) standard 
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trie for the words in the text (articles and prepositions, 
which are also known as stop words, excluded), with 
external nodes augmented with indications of the word 
positions. 

 

There is a potential space inefficiency in the standard trie that has prompted the 
development of the compressed trie, which is also known (for historical reasons) as 
the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie that 
have only one child, and the existence of such nodes is a waste. We discuss the 
compressed trie next. 

12.3.2  Compressed Tries 
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A compressed trie is similar to a standard trie but it ensures that each internal node 
in the trie has at least two children. It enforces this rule by compressing chains of 
single-child nodes into individual edges. (See Figure 12.8.) Let T be a standard trie. 
We say that an internal node v of T is redundant if v has one child and is not the 
root. For example, the trie of Figure 12.6 has eight redundant nodes. Let us also say 
that a chain of k ≥ 2 edges, 

(v0,v1)(v1,v2)…(vk−1,vk), 

ith the 

is redundant if:  

• vi is redundant for i = 1, …, k−1 1. 

• v0 and vk are not redundant. 

We can transform T into a compressed trie by replacing each redundant chain 
(v0,v1) … (vk−1,vk) of k ≥ 2 edges into a single edge (v0, vk), relabeling vk w
concatenation of the labels of nodes v1,…, vk. 

Figure 12.8:  Compressed trie for the strings bear, 
bell, bid, bull, buy, sell, stock, stop. Compare this with 
the standard trie shown in Figure 12.6. 

 

Thus, nodes in a compressed trie are labeled with strings, which are substrings of 
strings in the collection, rather than with individual characters. The advantage of a 
compressed trie over a standard trie is that the number of nodes of the compressed 
trie is proportional to the number of strings and not to their total length, as shown in 
the following proposition (compare with Proposition 12.6). 

Proposition 12.7: A compressed trie storing a collection S of s strings from 
an alphabet of size d has the following properties: 

• Every internal node of T has at least two children and most d children. 
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• T has s external nodes. 

• The number of nodes of T is O(s). 

The attentive reader may wonder whether the compression of paths provides any 
significant advantage, since it is offset by a corresponding expansion of the node 
labels. Indeed, a compressed trie is truly advantageous only when it is used as an 
auxiliary index structure over a collection of strings already stored in a primary 
structure, and is not required to actually store all the characters of the strings in the 
collection. 

Suppose, for example, that the collection S of strings is an array of strings S[0], 
S[1], …, S[s − 1]. Instead of storing the label X of a node explicitly, we represent it 
implicitly by a triplet of integers (i, j, k), such that X = S[i][j..k]; that is, X is the 
substring of S[i] consisting of the characters from the jth to the kth included. (See 
the example in Figure 12.9. Also compare with the standard trie of Figure 12.7.) 

Figure 12.9:  (a) Collection S of strings stored in an 
array. (b) Compact representation of the compressed 
trie for S. 

 

This additional compression scheme allows us to reduce the total space for the trie 
itself from O(n) for the standard trie to O(s) for the compressed trie, where n is the 
total length of the strings in S and s is the number of strings in S. We must still store 
the different strings in S, of course, but we nevertheless reduce the space for the 
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trie. In the next section, we present an application where the collection of strings 
can also be stored compactly. 

12.3.3  Suffix Tries 

One of the primary applications for tries is for the case when the strings in the 
collection S are all the suffixes of a string X. Such a trie is called the suffix trie (also 
known as a suffix tree or position tree) of string X. For example, Figure 12.10a 
shows the suffix trie for the eight suffixes of string "minimize." For a suffix trie, the 
compact representation presented in the previous section can be further simplified. 
Namely, the label of each vertex is a pair (i,j) indicating the string X[i..j]. (See 
Figure 12.10b.) To satisfy the rule that no suffix of X is a prefix of another suffix, 
we can add a special character, denoted with $, that is not in the original alphabet σ 
at the end of X (and thus to every suffix). That is, if string X has length n, we build a 
trie for the set of n strings X[i..n − 1]$, for i = 0,... ,n − 1. 

Saving Space 

Using a suffix trie allows us to save space over a standard trie by using several 
space compression techniques, including those used for the compressed trie. 

The advantage of the compact representation of tries now becomes apparent for 
suffix tries. Since the total length of the suffixes of a string X of length n is 

 

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suffix 
trie represents these strings implicitly in O(n) space, as formally stated in the 
following proposition. 

Proposition 12.8: The compact representation of a suffix trie T for a 
string X of length n uses O(n) space. 

Construction 

We can construct the suffix trie for a string of length n with an incremental 
algorithm like the one given in Section 12.3.1. This construction takes O(dn2) 
time because the total length of the suffixes is quadratic in n. However, the 
(compact) suffix trie for a string of length n can be constructed in O(n) time with 
a specialized algorithm, different from the one for general tries. This linear-time 
construction algorithm is fairly complex, however, and is not reported here. Still, 
we can take advantage of the existence of this fast construction algorithm when 
we want to use a suffix trie to solve other problems. 
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Figure 12.10:  (a) Suffix trie T for the string X = 
"minimize''. (b) Compact representation of T, where 
pair (i,j) denotes X[i..j]. 

 

Using a Suffix Trie 

The suffix trie T for a string X can be used to efficiently perform pattern matching 
queries on text X. Namely, we can determine whether a pattern P is a substring of 
X by trying to trace a path associated with P in T. P is a substring of X if and only 
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if such a path can be traced. The details of the pattern matching algorithm are 
given in Code Fragment 12.7, which assumes the following additional property on 
the labels of the nodes in the compact representation of the suffix trie: 

If node v has label (i,j) and Y is the string of length y associated with the path 
from the root to v (included), then X [j − y + 1. .j] =Y. 

This property ensures that we can easily compute the start index of the pattern in 
the text when a match occurs. 

Code Fragment 12.7:  Pattern matching with a suffix 
trie. We denote the label of a node v with 
(start(v),end(v)), that is, the pair of indices 
specifying the substring of the text associated with v. 

 771



 

The correctness of algorithm suffixTrieMatch follows from the fact that we 
search down the trie T, matching characters of the pattern P one at a time until 
one of the following events occurs:  

• We completely match the pattern p. 

• We get a mismatch (caught by the termination of the for loop without a 
break out). 

• We are left with characters of P still to be matched after processing an 
external node. 
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Let m be the size of pattern P and d be the size of the alphabet. In order to 
determine the running time of algorithm suffixTrieMatch, we make the 
following observations:  

• We process at most m + 1 nodes of the trie. 

• Each node processed has at most d children. 

• At each node v processed, we perform at most one character comparison 
for each child w of v to determine which child of v needs to be processed next 
(which may possibly be improved by using a fast dictionary to index the 
children of v). 

• We perform at most m character comparisons overall in the processed 
nodes. 

• We spend O(1) time for each character comparison. 

Performance 

We conclude that algorithm suffixTrieMatch performs pattern matching 
queries in O(dm) time (and would possibly run even faster if we used a dictionary 
to index children of nodes in the suffix trie). Note that the running time does not 
depend on the size of the text X. Also, the running time is linear in the size of the 
pattern, that is, it is O(m), for a constant-size alphabet. Hence, suffix tries are 
suited for repetitive pattern matching applications, where a series of pattern 
matching queries is performed on a fixed text. 

We summarize the results of this section in the following proposition. 

Proposition 12.9: Let X be a text string with n characters from an 
alphabet of size d. We can perform pattern matching queries on X in O(dm) time, 
where m is the length of the pattern, with the suffix trie of X, which uses O(n) 
space and can be constructed in O(dn) time. 

We explore another application of tries in the next subsection. 

12.3.4  Search Engines 

The World Wide Web contains a huge collection of text documents (Web pages). 
Information about these pages are gathered by a program called a Web crawler, 
which then stores this information in a special dictionary database. A Web search 
engine allows users to retrieve relevant information from this database, thereby 
identifying relevant pages on the Web containing given keywords. In this section, 
we present a simplified model of a search engine. 
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Inverted Files 

The core information stored by a search engine is a dictionary, called an inverted 
index or inverted file, storing key-value pairs (w,L), where w is a word and L is a 
collection of pages containing word w. The keys (words) in this dictionary are 
called index terms and should be a set of vocabulary entries and proper nouns as 
large as possible. The elements in this dictionary are called occurrence lists and 
should cover as many Web pages as possible. 

We can efficiently implement an inverted index with a data structure consisting 
of:  

1. An array storing the occurrence lists of the terms (in no particular order). 

2. A compressed trie for the set of index terms, where each external node 
stores the index of the occurrence list of the associated term. 

The reason for storing the occurrence lists outside the trie is to keep the size of the 
trie data structure sufficiently small to fit in internal memory. Instead, because of 
their large total size, the occurrence lists have to be stored on disk. 

With our data structure, a query for a single keyword is similar to a word 
matching query (See Section 12.3.1.). Namely, we find the keyword in the trie 
and we return the associated occurrence list. 

When multiple keywords are given and the desired output are the pages 
containing all the given keywords, we retrieve the occurrence list of each 
keyword using the trie and return their intersection. To facilitate the intersection 
computation, each occurrence list should be implemented with a sequence sorted 
by address or with a dictionary (see, for example, the generic merge computation 
discussed in Section 11.6). 

In addition to the basic task of returning a list of pages containing given 
keywords, search engines provide an important additional service by ranking the 
pages returned by relevance. Devising fast and accurate ranking algorithms for 
search engines is a major challenge for computer researchers and electronic 
commerce companies. 

12.4  Text Compression 

In this section, we consider an important text processing task, text compression. In 
this problem, we are given a string X defined over some alphabet, such as the ASCII 
or Unicode character sets, and we want to efficiently encode X into a small binary 
string Y (using only the characters 0 and 1). Text compression is useful in any 
situation where we are communicating over a low-bandwidth channel, such as a 
modem line or infrared connection, and we wish to minimize the time needed to 
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transmit our text. Likewise, text compression is also useful for storing collections of 
large documents more efficiently, so as to allow for a fixed-capacity storage device to 
contain as many documents as possible. 

The method for text compression explored in this section is the Huffman code. 
Standard encoding schemes, such as the ASCII and Unicode systems, use fixed-
length binary strings to encode characters (with 7 bits in the ASCII system and 16 in 
the Unicode system). A Huffman code, on the other hand, uses a variablelength 
encoding optimized for the string X. The optimization is based on the use of character 
frequencies, where we have, for each character c, a count f(c) of the number of times 
c appears in the string X. The Huffman code saves space over a fixed-length encoding 
by using short code-word strings to encode high-frequency characters and long code-
word strings to encode low-frequency characters. 

To encode the string X, we convert each character in X from its fixed-length code 
word to its variable-length code word, and we concatenate all these code words in 
order to produce the encoding Y for X. In order to avoid ambiguities, we insist that no 
code word in our encoding is a prefix of another code word in our encoding. Such a 
code is called a prefix code, and it simplifies the decoding of Y in order to get back X. 
(See Figure 12.11.) Even with this restriction, the savings produced by a variable-
length prefix code can be significant, particularly if there is a wide variance in 
character frequencies (as is the case for natural language text in almost every spoken 
language). 

Huffman's algorithm for producing an optimal variable-length prefix code for X is 
based on the construction of a binary tree T that represents the code. Each node in T, 
except the root, represents a bit in a code word, with each left child representing a "0" 
and each right child representing a "1." Each external node v is associated with a 
specific character, and the code word for that character is defined by the sequence of 
bits associated with the nodes in the path from the root of T to v. (See Figure 12.11.) 
Each external node v has a frequency f(v), which is simply the frequency in X of the 
character associated with v. In addition, we give each internal node v in T a 
frequency, f(v), that is the sum of the frequencies of all the external nodes in the 
subtree rooted at v. 

Figure 12.11:  An illustration of an example Huffman 
code for the input string X = "a fast runner need 
never be afraid of the dark": (a) frequency of 
each character of X; (b) Huffman tree T for string X. The 
code for a character c is obtained by tracing the path 
from the root of T to the external node where c is stored, 
and associating a left child with 0 and a right child with 1. 
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For example, the code for "a" is 010, and the code for "f" 
is 1100. 

 

12.4.1  The Huffman Coding Algorithm 

The Huffman coding algorithm begins with each of the d distinct characters of the 
string X to encode being the root node of a single-node binary tree. The algorithm 
proceeds in a series of rounds. In each round, the algorithm takes the two binary 
trees with the smallest frequencies and merges them into a single binary tree. It 
repeats this process until only one tree is left. (See Code Fragment 12.8.) 

Each iteration of the while loop in Huffman's algorithm can be implemented in 
O(logd) time using a priority queue represented with a heap. In addition, each 
iteration takes two nodes out of Q and adds one in, a process that will be repeated d 
− 1 times before exactly one node is left in Q. Thus, this algorithm runs in O(n + 
dlogd) time. Although a full justification of this algorithm's correctness is beyond 
our scope here, we note that its intuition comes from a simple idea—any optimal 
code can be converted into an optimal code in which the code words for the two 
lowest-frequency characters, a and b, differ only in their last bit. Repeating the 
argument for a string with a and b replaced by a character c, gives the following: 

Proposition 12.10: Huffman's algorithm constructs an optimal prefix code 
for a string of length n with d distinct characters in O(n + dlogd) time. 

Code Fragment 12.8:  Huffman coding algorithm. 
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12.4.2  The Greedy Method 

Huffman's algorithm for building an optimal encoding is an example application of 
an algorithmic design pattern called the greedy method. This design pattern is 
applied to optimization problems, where we are trying to construct some structure 
while minimizing or maximizing some property of that structure. 

The general formula for the greedy method pattern is almost as simple as that for 
the brute-force method. In order to solve a given optimization problem using the 
greedy method, we proceed by a sequence of choices. The sequence starts from 
some well-understood starting condition, and computes the cost for that initial 
condition. The pattern then asks that we iteratively make additional choices by 
identifying the decision that achieves the best cost improvement from all of the 
choices that are currently possible. This approach does not always lead to an 
optimal solution. 

But there are several problems that it does work for, and such problems are said to 
possess the greedy-choice property. This is the property that a global optimal 
condition can be reached by a series of locally optimal choices (that is, choices that 
are each the current best from among the possibilities available at the time), starting 
from a well-defined starting condition. The problem of computing an optimal 
variable-length prefix code is just one example of a problem that possesses the 
greedy-choice property. 
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12.5  Text Similarity Testing 

A common text processing problem, which arises in genetics and software 
engineering, is to test the similarity between two text strings. In a genetics 
application, the two strings could correspond to two strands of DNA, which could, for 
example, come from two individuals, who we will consider genetically related if they 
have a long subsequence common to their respective DNA sequences. Likewise, in a 
software engineering application, the two strings could come from two versions of 
source code for the same program, and we may wish to determine which changes 
were made from one version to the next. Indeed, determining the similarity between 
two strings is considered such a common operation that the Unix and Linux operating 
systems come with a program, called diff, for comparing text files. 

12.5.1  The Longest Common Subsequence 
Problem 

There are several different ways we can define the similarity between two strings. 
Even so, we can abstract a simple, yet common, version of this problem using 
character strings and their subsequences. Given a string X = x0x1x2 … xn−1, a
subsequence of X is any string that is of the form x

 
 i1 xi2 …xik where ij < ij+1; that is,

it is a sequence of characters that are not necessarily contiguous but are nevertheless 
taken in order from X. For example, the string AAAG is a subsequence of the string 
CGATAATTGAGA. Note that the concept of subsequence of a string is different 
from the one of substring of a string, defined in Section 12.1. 

Problem Definition 

The specific text similarity problem we address here is the longest common 
subsequence (LCS) problem. In this problem, we are given two character strings, 
X = x0x1x2 …xn−1 and Y = y0y1y2 … ym−1, over some alphabet (such as the 
alphabet {A,C, G, T} common in computational genetics) and are asked to find a
longest string S that is a subsequence of both X

 
 and Y. 

One way to solve the longest common subsequence problem is to enumerate all 
subsequences of X and take the largest one that is also a subsequence of Y. Since 
each character of X is either in or not in a subsequence, there are potentially 2n 
different subsequences of X, each of which requires O(m) time to determine 
whether it is a subsequence of Y. Thus, this brute-force approach yields an 
exponential-time algorithm that runs in O(2nm) time, which is very inefficient. In 
this section, we discuss how to use an algorithmic design pattern called dynamic 
programming to solve the longest common subsequence problem much faster 
than this. 

12.5.2  Dynamic Programming 
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There are few algorithmic techniques that can take problems that seem to require 
exponential time and produce polynomial-time algorithms to solve them. Dynamic 
programming is one such technique. In addition, the algorithms that result from 
applications of the dynamic programming technique are usually quite simple— 
often needing little more than a few lines of code to describe some nested loops for 
filling in a table. 

The Components of a Dynamic Programming Solution 

The dynamic programming technique is used primarily for optimization 
problems, where we wish to find the "best" way of doing something. Often the 
number of different ways of doing that "something" is exponential, so a brute-
force search for the best is computationally infeasible for all but the smallest 
problem sizes. We can apply the dynamic programming technique in such 
situations, however, if the problem has a certain amount of structure that we can 
exploit. This structure involves the following three components: 

Simple Subproblems: There has to be some way of repeatedly breaking the 
global optimization problem into subproblems. Moreover, there should be a 
simple way of defining subproblems with just a few indices, like i, j, k, and so on. 

Subproblem Optimization: An optimal solution to the global problem must be a 
composition of optimal subproblem solutions. We should not be able to find a 
globally optimal solution that contains suboptimal subproblems. 

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain 
subproblems in common. 

Having given the general components of a dynamic programming algorithm, we 
next show how to apply it to the longest common subsequence problem. 

12.5.3  Applying Dynamic Programming to the LCS 
Problem 

We can solve the longest common subsequence problem much faster than 
exponential time using the dynamic programming technique. As mentioned above, 
one of the key components of the dynamic programming technique is the definition 
of simple subproblems that satisfy the subproblem optimization and subproblem 
overlap properties. 

Recall that in the LCS problem, we are given two character strings, X and Y, of 
length n and m, respectively, and are asked to find a longest string S that is a 
subsequence of both X and Y. Since X and Y are character strings, we have a natural 
set of indices with which to define subproblems—indices into the strings X and Y. 
Let us define a subproblem, therefore, as that of computing the value L[i, j], 
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which we will use to denote the length of a longest string that is a subsequence of 
both X[0..i] = x0x1x2… xi and Y[0..j] = y0y1y2 … yj. This definition allows us to
rewrite L[i,j] in terms of optimal subproblem solutions. This definition depends on 
which of two cases we are in. (See 

 

Figure 12.12.) 

• xi = yj. In this case, we have a match between the last character of X[0..i] 
and the last character of Y[0..j]. We claim that this character belongs to a longest 
common subsequence of X[0..i] and Y[0..j]. To justify this claim, let us suppose it 
is not true. There has to be some longest common subsequence xi1xi2…xik = yj1yj2 

e set 

 set 

… yjk. If xik = xi or yjk = yj, then we get the same sequence by setting ik = i and jk 
= j. Alternately, if xjk ≠ xi, then we can get an even longer common subsequence 
by adding xi to the end. Thus, a longest common subsequence of X[0..i] and 
Y[0..j] ends with xi. Therefore, w

               L[i,j]=L[i−1,j − 1] + 1 if xi = yj. 

• xi ≠ yj. In this case, we cannot have a common subsequence that includes 
both xi and yj. That is, we can have a common subsequence end with xi or one 
that ends with yj (or possibly neither), but certainly not both. Therefore, we

               L[i, j] = max{L[i −1,j], L[i, j−1]} if xi ≠yj. 

In order to make both of these equations make sense in the boundary cases when i = 
0 or j = 0, we assign L[i, − 1] = 0 for i = −1, 0, 1,…n − 1 and L[−1, j] = 0 for j = 
−1,0,1,…,m−1. 

The definition of L[i,j] above satisfies subproblem optimization, for we cannot have 
a longest common subsequence without also having longest common subsequences 
for the subproblems. Also, it uses subproblem overlap, because a subproblem 
solution L[i, j] can be used in several other problems (namely, the problems L[i+ 1, 
j], L[i,j+ 1], and L[i+ 1,j+ 1]). 

Figure 12.12:  The two cases in the longest common 
subsequence algorithm: (a) xi = yj; (b) xi ≠ yj. Note that 
the algorithm stores only the L[i,j] values, not the 
matches. 

 

The LCS Algorithm 

 780



Turning this definition of L[i, j] into an algorithm is actually quite 
straightforward. We initialize an (n+ 1) × (m + 1) array, L, for the boundary cases 
when i = 0 or j = 0. Namely, we initialize L[i, − 1] = 0 for i = −1,0,1,…, n − 1 and 
L[− 1, j] = 0 for j = −1,0,1,…, m − 1. (This is a slight abuse of notation, since in 
reality, we would have to index the rows and columns of L starting with 0.) Then, 
we iteratively build up values in L until we have L[n − 1, m − 1], the length of a 
longest common subsequence of X and Y. We give a pseudo-code description of 
how this approach results in a dynamic programming solution to the longest 
common subsequence (LCS) problem in Code Fragment 12.9. 

Code Fragment 12.9:  Dynamic programming 
algorithm for the LCS problem. 

 

Performance 

The running time of the algorithm of Code Fragment 12.9 is easy to analyze, for it 
is dominated by two nested for loops, with the outer one iterating n times and the 
inner one iterating m times. Since the if-statement and assignment inside the loop 
each requires O(1) primitive operations, this algorithm runs in O(nm) time. Thus, 
the dynamic programming technique can be applied to the longest common 
subsequence problem to improve significantly over the exponential-time brute-
force solution to the LCS problem. 

Algorithm LCS (Code Fragment 12.9) computes the length of the longest 
common subsequence (stored in L[n − 1,m − 1]), but not the subsequence itself. 
As shown in the following proposition, a simple postprocessing step can extract 
the longest common subsequence from the array L returned by algorithm. 
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Proposition 12.11: Given a string X ofn characters and a string Y of m 
characters, we can find the longest common subsequence of X and Y in O(nm) 
time. 

Justification: Algorithm LCS computes L[n − 1,m − 1], the length of a 
longest common subsequence, in O(nm) time. Given the table of L[i, j] values, 
constructing a longest common subsequence is straightforward. One method is to 
start from L[n, m] and work back through the table, reconstructing a longest 
common subsequence from back to front. At any position L[i, j], we can 
determine whether xi = yj. If this is true, then we can take xi as the next character 
of the subsequence (noting that xi is before the previous character we found, if 
any), moving next to L[i − 1, j − 1]. If xi ≠ yj, then we can move to the larger of 
L[i, j − 1] and L[i −1,j]. (See Figure 12.13.) We stop when we reach a boundary 
cell (with i = − 1 or j = −1). This method constructs a longest common 
subsequence in O(n + m) additional time. 

 
Figure 12.13:  Illustration of the algorithm for 
constructing a longest common subsequence from the 
array L. 

 

12.6  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 
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Reinforcement 

R-12.1 

List the prefixes of the stringP = "aaabbaaa" that are also suffixes of P. 

R-12.2 

Draw a figure illustrating the comparisons done by brute-force pattern matching 
for the text "aaabaadaabaaa" and pattern "aabaaa". 

R-12.3 

Repeat the previous problem for the BM pattern matching algorithm, not 
counting the comparisons made to compute the last(c) function. 

R-12.4 

Repeat the previous problem for the KMP pattern matching algorithm, not 
counting the comparisons made to compute the failure function. 

R-12.5 

Compute a table representing the last function used in the BM pattern matching 
algorithm for the pattern string "the quick brown fox jumped over 
a lazy cat" assuming the following alphabet (which starts with the space 
character): σ = { ,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}. 

R-12.6 

Assuming that the characters in alphabet σ can be enumerated and can be used 
to index arrays, give an O(m+ |σ|)-time method for constructing the last function 
from an m-length pattern string P. 

R-12.7 

Compute a table representing the KMP failure function for the pattern string 
"cgtacgttcgt ac". 

R-12.8 

Draw a standard trie for the following set of strings: {abab,baba, 
ccccc,bbaaaa, caa,bbaacc,cbcc,cbca}. 

R-12.9 

Draw a compressed trie for the set of strings given in Exercise R-12.8. 
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R-12.10 

Draw the compact representation of the suffix trie for the string "minimize 
minime". 

R-12.11 

What is the longest prefix of the string "cgtacgttcgtacg" that is also a 
suffix of this string? 

R-12.12 

Draw the frequency array and Huffman tree for the following string: "dogs 
do not spot hot pots or cats". 

R-12.13 

Show the longest common subsequence array L for the two strings 

                    X = "skullandbones" 

                    Y = "lullabybabies". 

What is a longest common subsequence between these strings? 

Creativity 

C-12.1 

Give an example of a text T of length n and a pattern P of length m that force 
the brute-force pattern matching algorithm to have a running time that is Ω(nm). 

C-12.2 

Give a justification of why the KMPFailureFunction method (Code 
Fragment 12.5) runs in O(m) time on a pattern of length m. 

C-12.3 

Show how to modify the KMP string pattern matching algorithm so as to find 
every occurrence of a pattern string P that appears as a substring in T, while still 
running in O(n+m) time. (Be sure to catch even those matches that overlap.) 

C-12.4 

Let T be a text of length n, and let P be a pattern of length m. Describe an 
O(n+m)time method for finding the longest prefix of P that is a substring ofT. 

 784



C-12.5 

Say that a pattern P of length m is a circular substring of a text T of length n if 
there is an index 0 ≤ i < m, such that P = T[n − m + i..n − 1] + T[0..i − 1], that is, 
if P is a (normal) substring of T or P is equal to the concatenation of a suffix of 
T and a prefix of T. Give an O(n + m)-time algorithm for determining whether P 
is a circular substring of T. 

C-12.6 

The KMP pattern matching algorithm can be modified to run faster on binary 
strings by redefining the failure function as 

, where  
denotes the complement of the kth bit of P. Describe how to modify the KMP 
algorithm to be able to take advantage of this new failure function and also give 
a method for computing this failure function. Show that this method makes at 
most n comparisons between the text and the pattern (as opposed to the 2n 
comparisons needed by the standard KMP algorithm given in Section 12.2.3). 

C-12.7 

Modify the simplified BM algorithm presented in this chapter using ideas from 
the KMP algorithm so that it runs in O(n + m) time. 

C-12.8 

Given a string X of length n and a string Y of length m, describe an O(n + m)-
time algorithm for finding the longest prefix of X that is a suffix of Y. 

C-12.9 

Give an efficient algorithm for deleting a string from a standard trie and analyze 
its running time. 

C-12.10 

Give an efficient algorithm for deleting a string from a compressed trie and 
analyze its running time. 

C-12.11 

Describe an algorithm for constructing the compact representation of a suffix 
trie, given its noncompact representation, and analyze its running time. 

C-12.12 

Let T be a text string of length n. Describe an O(n)-time method for finding the 
longest prefix of T that is a substring of the reversal of T. 
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C-12.13 

Describe an efficient algorithm to find the longest palindrome that is a suffix of 
a string T of length n. Recall that apalindrome is a string that is equal to its 
reversal. What is the running time of your method? 

C-12.14 

Given a sequence S = (x0, x1, x2,…, xn−1) of numbers, describe an O(n2)-time
algorithm for finding a longest subsequence T = (x

 
i
0,xi

1, xi
2,…xi

k−1) of numbers, 
such that ij < ij+1 and xij > xij+1. That is, T is a longest decreasing subsequence of 
S. 

C-12.15 

Define the edit distance between two strings X and Y of length n and m, 
respectively, to be the number of edits that it takes to change X into Y. An edit 
consists of a character insertion, a character deletion, or a character 
replacement. For example, the strings "algorithm" and "rhythm" have 
edit distance 6. Design an O(nm)-time algorithm for computing the edit distance 
between X and Y. 

C-12.16 

Design a greedy algorithm for making change after someone buys some candy 
costing x cents and the customer gives the clerk $1. Your algorithm should try 
to minimize the number of coins returned. 

a. 

Show that your greedy algorithm returns the minimum number of coins if 
the coins have denominations $0.25, $0.10, $0.05, and $0.01. 

b. 

Give a set of denominations for which your algorithm may not return the 
minimum number of coins. Include an example where your algorithm fails. 

C-12.17 

Give an efficient algorithm for determining if a pattern P is a subsequence (not 
substring) of a text T. What is the running time of your algorithm? 

C-12.18 

Let x and y be strings of length n and m respectively. Define B(i,j) to be the 
length of the longest common substring of the suffix of length i in x and the 
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suffix of length j in y. Design an O(nm)-time algorithm for computing all the 
values of B(i,j) for i =1,…,n and j = 1,…,m. 

C-12.19 

Anna has just won a contest that allows her to take n pieces of candy out of a 
candy store for free. Anna is old enough to realize that some candy is expensive, 
costing dollars per piece, while other candy is cheap, costing pennies per piece. 
The jars of candy are numbered 0, 1, …, m − 1, so that jar j has nj pieces in it, 
with a price of cj per piece. Design an O(n + m)time algorithm that allows Anna 
to maximize the value of the pieces of candy she takes for her winnings. Show 
that your algorithm produces the maximum value for Anna. 

C-12.20 

Let three integer arrays, A, B, and C, be given, each of size n. Given an arbitrary 
integer x, design an O(n2 log n)-time algorithm to determine if there exist 
numbers, a in A, b in B, and c in C, such that x = a + b + c. 

C-12.21 

Give an O(n2)-time algorithm for the previous problem. 

Projects 

P-12.1 

Perform an experimental analysis, using documents found on the Internet, of the 
efficiency (number of character comparisons performed) of the brute-force and 
KMP pattern matching algorithms for varying-length patterns. 

P-12.2 

Perform an experimental analysis, using documents found on the Internet, of the 
efficiency (number of character comparisons performed) of the brute-force and 
BM pattern matching algorithms for varying-length patterns. 

P-12.3 

Perform an experimental comparison of the relative speeds of the bruteforce, 
KMP, and BM pattern matching algorithms. Document the time taken for 
coding up each of these algorithms as well as their relative running times on 
documents found on the Internet that are then searched using varying-length 
patterns. 

P-12.4 
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Implement a compression and decompression scheme that is based on Huffman 
coding. 

P-12.5 

Create a class that implements a standard trie for a set of ASCII strings. The 
class should have a constructor that takes as argument a list of strings, and the 
class should have a method that tests whether a given string is stored in the trie. 

P-12.6 

Create a class that implements a compressed trie for a set of ASCII strings. The 
class should have a constructor that takes as argument a list of strings, and the 
class should have a method that tests whether a given string is stored in the trie. 

P-12.7 

Create a class that implements a prefix trie for an ASCII string. The class should 
have a constructor that takes as argument a string and a method for pattern 
matching on the string. 

P-12.8 

Implement the simplified search engine described in Section 12.3.4 for the 
pages of a small Web site. Use all the words in the pages of the site as index 
terms, excluding stop words such as articles, prepositions, and pronouns. 

P-12.9 

Implement a search engine for the pages of a small Web site by adding a page-
ranking feature to the simplified search engine described in Section 12.3.4. 
Your page-ranking feature should return the most relevant pages first. Use all 
the words in the pages of the site as index terms, excluding stop words, such as 
articles, prepositions, and pronouns. P-12.10 Write a program that takes two 
character strings (which could be, for example, representations of DNA strands) 
and computes their edit distance, showing the corresponding pieces. (See 
Exercise C-12.15.) 

Chapter Notes 

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article 
[64], and Boyer and Moore describe their algorithm in a journal article published the 
same year [15]. In their article, however, Knuth et al. [64] also prove that the BM 
algorithm runs in linear time. More recently, Cole [23] shows that the BM algorithm 
makes at most 3n character comparisons in the worst case, and this bound is tight. All 
of the algorithms discussed above are also discussed in the book chapter by Aho [3], 
albeit in a more theoretical framework, including the methods for regular-expression 
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pattern matching. The reader interested in further study of string pattern matching 
algorithms is referred to the book by Stephen [87] and the book chapters by Aho [3] 
and Crochemore and Lecroq [27]. 

The trie was invented by Morrison [78] and is discussed extensively in the classic 
Sorting and Searching book by Knuth [63]. The name "Patricia" is short for "Practical 
Algorithm to Retrieve Information Coded in Alphanumeric" [78]. McCreight [70] 
shows how to construct suffix tries in linear time. An introduction to the field of 
information retrieval, which includes a discussion of search engines for the Web is 
provided in the book by Baeza-Yates and Ribeiro-Neto [8]. 
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13.1  The Graph Abstract Data Type 

A graph is a way of representing relationships that exist between pairs of objects. 
That is, a graph is a set of objects, called vertices, together with a collection of 
pairwise connections between them. By the way, this notion of a "graph" should not 
be confused with bar charts and function plots, as these kinds of "graphs" are 
unrelated to the topic of this chapter. Graphs have applications in a host of different 
domains, including mapping, transportation, electrical engineering, and computer 
networks. 

Viewed abstractly, a graph G is simply a set V of vertices and a collection E of pairs 
of vertices from V, called edges. Thus, a graph is a way of representing connections 
or relationships between pairs of objects from some set V. Incidentally, some books 
use different terminology for graphs and refer to what we call vertices as nodes and 
what we call edges as arcs. We use the terms "vertices" and "edges." 

Edges in a graph are either directed or undirected. An edge (u, v) is said to be 
directed from u to v if the pair (u, v) is ordered, with u preceding v. An edge (u, v) is 
said to be undirected if the pair (u, v) is not ordered. Undirected edges are sometimes 
denoted with set notation, as {u,v} but for simplicity we use the pair notation (u, v), 
noting that in the undirected case (u, v) is the same as (v, u). Graphs are typically 
visualized by drawing the vertices as ovals or rectangles and the edges as segments or 
curves connecting pairs of ovals and rectangles. The following are some examples of 
directed and undirected graphs. 

Example 13.1: We can visualize collaborations among the researchers of a 
certain discipline by constructing a graph whose vertices are associated with the 
researchers themselves, and whose edges connect pairs of vertices associated with 
researchers who have coauthored a paper or book. (See Figure 13.1.) Such edges are 
undirected because coauthorship is a symmetric relation; that is, if A has coauthored 
something with B, then B necessarily has coauthored something with A. 

Figure 13.1:  Graph of coauthorship among some 
authors. 
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Example 13.2: We can associate with an object-oriented program a graph whose 
vertices represent the classes defined in the program, and whose edges indicate 
inheritance between classes. There is an edge from a vertex v to a vertex u if the class 
for v extends the class for u. Such edges are directed because the inheritance relation 
only goes in one direction (that is, it is asymmetric). 

If all the edges in a graph are undirected, then we say the graph is an undirected 
graph. Likewise, a directed graph, also called a digraph, is a graph whose edges are 
all directed. A graph that has both directed and undirected edges is often called a 
mixed graph. Note that an undirected or mixed graph can be converted into a directed 
graph by replacing every undirected edge (u, v) by the pair of directed edges (u,v) and 
(v,u). It is often useful, however, to keep undirected and mixed graphs represented as 
they are, for such graphs have several applications, such as that of the following 
example. 

Example 13.3: A city map can be modeled by a graph whose vertices are 
intersections or dead-ends, and whose edges are stretches of streets without 
intersections. This graph has both undirected edges, which correspond to stretches of 
twoway streets, and directed edges, which correspond to stretches of one-way streets. 
Thus, in this way, a graph modeling a city map is a mixed graph. 

Example 13.4: Physical examples of graphs are present in the electrical wiring 
and plumbing networks of a building. Such networks can be modeled as graphs, 
where each connector, fixture, or outlet is viewed as a vertex, and each uninterrupted 
stretch of wire or pipe is viewed as an edge. Such graphs are actually components of 
much larger graphs, namely the local power and water distribution networks. 
Depending on the specific aspects of these graphs that we are interested in, we may 
consider their edges as undirected or directed, for, in principle, water can flow in a 
pipe and current can flow in a wire in either direction. 
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The two vertices joined by an edge are called the end vertices (or endpoints) of the 
edge. If an edge is directed, its first endpoint is its origin and the other is the 
destination of the edge. Two vertices u and v are said to be adjacent if there is an 
edge whose end vertices are u and v. An edge is said to be incident on a vertex if the 
vertex is one of the edge's endpoints. The outgoing edges of a vertex are the directed 
edges whose origin is that vertex. The incoming edges of a vertex are the directed 
edges whose destination is that vertex. The degree of a vertex v, denoted deg(v), is 
the number of incident edges of v. The in-degree and out-degree of a vertex v are the 
number of the incoming and outgoing edges of v, and are denoted indeg(v) and 
outdeg(v), respectively. 

Example 13.5: We can study air transportation by constructing a graph G, called 
a flight network, whose vertices are associated with airports, and whose edges are 
associated with flights. (See Figure 13.2.) In graph G, the edges are directed because 
a given flight has a specific travel direction (from the origin airport to the destination 
airport). The endpoints of an edge e in G correspond respectively to the origin and 
destination for the flight corresponding to e. Two airports are adjacent in G if there is 
a flight that flies between them, and an edge e is incident upon a vertex v in G if the 
flight for e flies to or from the airport for v. The outgoing edges of a vertex v 
correspond to the outbound flights from v's airport, and the incoming edges 
correspond to the inbound flights to v 's airport. Finally, the in-degree of a vertex 
vofG corresponds to the number of inbound flights to v's airport, and the out-degree 
of a vertex v in G corresponds to the number of outbound flights. 

The definition of a graph refers to the group of edges as a collection, not a set, thus 
allowing for two undirected edges to have the same end vertices, and for two directed 
edges to have the same origin and the same destination. Such edges are called 
parallel edges or multiple edges. Parallel edges can be in a flight network (Example 
13.5), in which case multiple edges between the same pair of vertices could indicate 
different flights operating on the same route at different times of the day. Another 
special type of edge is one that connects a vertex to itself. Namely, we say that an 
edge (undirected or directed) is a self-loop if its two endpoints coincide. A self-loop 
may occur in a graph associated with a city map (Example 13.3), where it would 
correspond to a "circle" (a curving street that returns to its starting point). 

With few exceptions, graphs do not have parallel edges or self-loops. Such graphs are 
said to be simple. Thus, we can usually say that the edges of a simple graph are a set 
of vertex pairs (and not just a collection). Throughout this chapter, we assume that a 
graph is simple unless otherwise specified. 

Figure 13.2:  Example of a directed graph 
representing a flight network. The endpoints of edge UA 
120 are LAX and ORD; hence, LAX and ORD are adjacent. 
The in-degree of DFW is 3, and the out-degree of DFW is 
2. 
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In the propositions that follow, we explore a few important properties of graphs. 

Proposition 13.6: If G is a graph with m edges, then 

 

Justification: An edge (u,v) is counted twice in the summation above; once by 
its endpoint u and once by its endpoint v. Thus, the total contribution of the edges to 
the degrees of the vertices is twice the number of edges. 

 

Proposition 13.7: If G is a directed graph with m edges, then 

 

Justification: In a directed graph, an edge (u,v) contributes one unit to the out-
degree of its origin u and one unit to the in-degree of its destination v. Thus, the total 
contribution of the edges to the out-degrees of the vertices is equal to the number of 
edges, and similarly for the out-degrees. 

 

We next show that a simple graph with n vertices has O(n2) edges. 

Proposition 13.8: Let G be a simple graph with n vertices and m edges. If G 
is undirected, then m ≤ n(n − 1)/2, and if G is directed, then m ≤ n(n − 1). 
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Justification: Suppose that G is undirected. Since no two edges can have the 
same endpoints and there are no self-loops, the maximum degree of a vertex in G is n 
− 1 in this case. Thus, by Proposition 13.6, 2m ≤ n(n − 1). Now suppose that G is 
directed. Since no two edges can have the same origin and destination, and there are 
no self-loops, the maximum in-degree of a vertex in G is n − 1 in this case. Thus, by 
Proposition 13.7, m ≤ n(n − 1). 

 

A path is a sequence of alternating vertices and edges that starts at a vertex and ends 
at a vertex such that each edge is incident to its predecessor and successor vertex. A 
cycle is a path with at least one edge that has its start and end vertices the same. We 
say that a path is simple if each vertex in the path is distinct, and we say that a cycle 
is simple if each vertex in the cycle is distinct, except for the first and last one. A 
directed path is a path such that all edges are directed and are traversed along their 
direction. A directed cycle is similarly defined. For example, in Figure 13.2, (BOS, 
NW 35, JFK, AA 1387, DFW) is in a directed simple path, and (LAX, UA 120, ORD, 
UA 877, DFW, AA 49, LAX) is a directed simple cycle. If a path P or cycle C is a 
simple graph, we may omit the edges in P or C, as these are well defined, in which 
case P is a list of adjacent vertices and C is a cycle of adjacent vertices. 

Example 13.9: Given a graph G representing a city map (see Example 13.3), we 
can model a couple driving to dinner at a recommended restaurant as traversing a path 
though G. If they know the way, and don't accidentally go through the same 
intersection twice, then they traverse a simple path in G. Likewise, we can model the 
entire trip the couple takes, from their home to the restaurant and back, as a cycle. If 
they go home from the restaurant in a completely different way than how they went, 
not even going through the same intersection twice, then their entire round trip is a 
simple cycle. Finally, if they travel along one-way streets for their entire trip, we can 
model their night out as a directed cycle. 

A subgraph of a graph G is a graph H whose vertices and edges are subsets of the 
vertices and edges of G, respectively. For example, in the flight network of Figure 
13.2, vertices BOS, JFK, and MIA, and edges AA 903 and DL 247 form a subgraph. 
A spanning subgraph of G is a subgraph of G that contains all the vertices of the 
graph G. A graph is connected if, for any two vertices, there is a path between them. 
If a graph G is not connected, its maximal connected subgraphs are called the 
connected components of G. A forest is a graph without cycles. A tree is a connected 
forest, that is, a connected graph without cycles. Note that this definition of a tree is 
somewhat different from the one given in Chapter 7. Namely, in the context of 
graphs, a tree has no root. Whenever there is ambiguity, the trees of Chapter 7 should 
be referred to as rooted trees, while the trees of this chapter should be referred to as 
free trees. The connected components of a forest are (free) trees. A spanning tree of 
a graph is a spanning subgraph that is a (free) tree. 

Example 13.10: Perhaps the most talked about graph today is the Internet, which 
can be viewed as a graph whose vertices are computers and whose (undirected) edges 
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are communication connections between pairs of computers on the Internet. The 
computers and the connections between them in a single domain, like wiley.com, 
form a subgraph of the Internet. If this subgraph is connected, then two users on 
computers in this domain can send e-mail to one another without having their 
information packets ever leave their domain. Suppose the edges of this subgraph form 
a spanning tree. This implies that, if even a single connection goes down (for 
example, because someone pulls a communication cable out of the back of a 
computer in this domain), then this subgraph will no longer be connected. 

There are a number of simple properties of trees, forests, and connected graphs. 

Proposition 13.11: Let G be an undirected graph with n vertices and m edges. 

• If G is connected, then m≥n − 1. 

• If G is a tree, then m = n − 1. 

• If G is a forest, then m≤n − 1. 

We leave the justification of this proposition as an exercise (C-13.2). 

13.1.1  The Graph ADT 

As an abstract data type, a graph is a collection of elements that are stored at the 
graph's positions—its vertices and edges. Hence, we can store elements in a graph 
at either its edges or its vertices (or both). In Java, this means we can define 
Vertex and Edge interfaces that each extend the Position interface. Let us 
then introduce the following simplified graph ADT, which is suitable for vertex and 
edge positions in undirected graphs, that is, graphs whose edges are all undirected. 
Additional methods for dealing with directed edges are discussed in Section 13.4. 

vertices(): 

Return an iterable collection of all the vertices of the graph. 

edges(): 

Return an iterable collection of all the edges of the graph. 

incidentEdges(v): 

Return an iterable collection of the edges incident upon vertex v. 

opposite(v,e): 

Return the endvertex of edge e distinct from vertex v; an error occurs if e 
is not incident on v. 
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endVertices(e): 

Return an array storing the end vertices of edge e. 

areAdjacent(v,w): 

Test whether vertices v and w are adjacent. 

replace(v,x): 

Replace the element stored at vertex v with x. 

replace(e,x): 

Replace the element stored at edge e with x. 

insertVertex(x): 

Insert and return a new vertex storing element x. 

insertEdge(v, w,x): 

Insert and return a new undirected edge with end vertices v and w and 
storing element x. 

removeVertex(v): 

Remove vertex v and all its incident edges and return the element stored at 
v. 

removeEdge(e): 

Remove edge e and return the element stored at e. 

There are several ways to realize the graph ADT. We explore three such ways in the 
next section. 

13.2  Data Structures for Graphs 

In this section, we discuss three popular ways of representing graphs, which are 
usually referred to as the edge list structure, the adjacency list structure, and the 
adjacency matrix. In all three representations, we use a collection to store the vertices 
of the graph. Regarding the edges, there is a fundamental difference between the first 
two structures and the latter. The edge list structure and the adjacency list structure 
only store the edges actually present in the graph, while the adjacency matrix stores a 
placeholder for every pair of vertices (whether there is an edge between them or not). 
As we will explain in this section, this difference implies that, for a graph G with n 

 798



vertices and m edges, an edge list or adjacency list representation uses O(n + m) 
space, whereas an adjacency matrix representation uses O(n2) space. 

13.2.1  The Edge List Structure 

The edge list structure is possibly the simplest, though not the most efficient, 
representation of a graph G. In this representation, a vertex v of G storing an 
element o is explicitly represented by a vertex object. All such vertex objects are 
stored in a collection V, such as an array list or node list. If V is an array list, for 
example, then we naturally think of the vertices as being numbered. 

Vertex Objects 

The vertex object for a vertex v storing element o has instance variables for:  

• A reference to o. 

• A reference to the position (or entry) of the vertex-object in collection V. 

The distinguishing feature of the edge list structure is not how it represents 
vertices, however, but the way in which it represents edges. In this structure, an 
edge e of G storing an element o is explicitly represented by an edge object. The 
edge objects are stored in a collection E, which would typically be an array list or 
node list. 

Edge Objects 

The edge object for an edge e storing element o has instance variables for:  

• A reference to o. 

• References to the vertex objects associated with the endpoint vertices of e. 

• A reference to the position (or entry) of the edge-object in collection E. 

Visualizing the Edge List Structure 

We illustrate an example of the edge list structure for a graph G in Figure 13.3. 

Figure 13.3:  (a) A graph G; (b) schematic 
representation of the edge list structure for G. We 
visualize the elements stored in the vertex and edge 
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objects with the element names, instead of with actual 
references to the element objects. 

 

The reason this structure is called the edge list structure is that the simplest and 
most common implementation of the edge collection E is with a list. Even so, in 
order to be able to conveniently search for specific objects associated with edges, 
we may wish to implement E with a dictionary (whose entries store the element as 
the key and the edge as the value) in spite of our calling this the "edge list." We 
may also wish to implement the collection V as a dictionary for the same reason. 
Still, in keeping with tradition, we call this structure the edge list structure. 
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The main feature of the edge list structure is that it provides direct access from 
edges to the vertices they are incident upon. This allows us to define simple 
algorithms for methods endVertices(e) and opposite(v, e). 

Performance of the Edge List Structure 

One method that is inefficient for the edge list structure, however, is that of 
accessing the edges that are incident upon a vertex. Determining this set of 
vertices requires an exhaustive inspection of all the edge objects in the collection 
E. That is, in order to determine which edges are incident to a vertex v, we must 
examine all the edges in the edge list and check, for each one, if it happens to be 
incident to v. Thus, method incidentEdges(v) runs in time proportional to the 
number of edges in the graph, not in time proportional to the degree of vertex v. 
In fact, even to check if two vertices v and w are adjacent by the 
areAdjacent(v,w) method, requires that we search the entire edge collection 
looking for an edge with end vertices v and w. Moreover, since removing a vertex 
involves removing all of its incident edges, method removeVertex also 
requires a complete search of the edge collection E. 

Table 13.1 summarizes the performance of the edge list structure implementation 
of a graph under the assumption that collections V and E are realized with doubly 
linked lists (Section 6.4.2). 

Table 13.1:  Running times of the methods of a 
graph implemented with the edge list structure. The 
space used is O(n + m), where n is the number of 
vertices and m is the number of edges. 

Operation 

Time 

vertices 

O(n) 

edges 

O(m) 

endVertices, opposite 

O(1) 

incidentEdges, areAdjacent 
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O(m) 

replace 

O(1) 

insertVertex, insert Edge, removeEdge, 

O(1) 

removeVertex 

O(m) 

Details for selected methods of the graph ADT are as follows:  

• Methods vertices() and edges() are implemented by calling 
V.iterator() and E.iterator(), respectively. 

• Methods incidentEdges and areAdjacent all take O(m) time, 
since to determine which edges are incident upon a vertex v we must inspect all 
edges. 

• Since the collections V and E are lists implemented with a doubly linked 
list, we can insert vertices, and insert and remove edges, in O(1) time. 

• The update method removeVertex(v) takes O(m) time, since it requires 
that we inspect all the edges to find and remove those incident upon v. 

Thus, the edge list representation is simple but has significant limitations. 

13.2.2  The Adjacency List Structure 

The adjacency list structure for a graph G adds extra information to the edge list 
structure that supports direct access to the incident edges (and thus to the adjacent 
vertices) of each vertex. This approach allows us to use the adjacency list structure 
to implement several methods of the graph ADT much faster than what is possible 
with the edge list structure, even though both of these two representations use an 
amount of space proportional to the number of vertices and edges in the graph. The 
adjacency list structure includes all the structural components of the edge list 
structure plus the following:  

• A vertex object v holds a reference to a collection I(v), called the 
incidence collection of v, whose elements store references to the edges incident 
on v. 
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• The edge object for an edge e with end vertices v and w holds references 
to the positions (or entries) associated with edge e in the incidence collections 
I(v)and I(w). 

Traditionally, the incidence collection I(v) for a vertex v is a list, which is why we 
call this way of representing a graph the adjacency list structure. The adjacency list 
structure provides direct access both from the edges to the vertices and from the 
vertices to their incident edges. We illustrate the adjacency list structure of a graph 
in Figure 13.4. 

Figure 13.4:  (a) A graph G; (b) schematic 
representation of the adjacency list structure of G. As in 
Figure 13.3, we visualize the elements of collections 
with names. 

 

Performance of the Adjacency List Structure 
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All of the methods of the graph ADT that can be implemented with the edge list 
structure in O(1) time can also be implemented in O(1) time with the adjacency 
list structure, using essentially the same algorithms. In addition, being able to 
provide access between vertices and edges in both directions allows us to speed 
up the performance of a number of the graph methods by using an adjacency list 
structure instead of an edge list structure. Table 13.2 summarizes the performance 
of the adjacency list structure implementation of a graph, assuming that 
collections V and E and the incidence collections of the vertices are all 
implemented with doubly linked lists. For a vertex v, the space used by the 
incidence collection of v is proportional to the degree of v, that is, it is O(deg(v)). 
Thus, by Proposition 13.6, the space requirement of the adjacency list structure is 
O(n + m). 

Table 13.2:  Running times of the methods of a 
graph implemented with the adjacency list structure. 
The space used is O(n + m), where n is the number of 
vertices and m is the number of edges. 

Operation 

Time 

vertices 

O(n) 

edges 

O(m) 

endVertices, opposite 

O(1) 

incidentEdges(v) 

O(deg(v)) 

areAdjacent(v,w) 

O(min(deg(v),deg(w)) 

replace 

O(1) 
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insertVertex, insertEdge, removeEdge, 

O(1) 

removeVertex 

O(deg(v)) 

In contrast to the edge-list way of doing things, the adjacency list structure 
provides improved running times for the following methods:  

• Method incidentEdges(v) takes time proportional to the number of 
incident vertices of v, that is, O(deg(v)) time. 

• Method areAdjacent(u,v) can be performed by inspecting either the 
incidence collection of u or that of v. By choosing the smaller of the two, we get 
O(min(deg(u),deg(v))) running time. 

• Method removeVertex(v) takes O(deg(v)) time. 

13.2.3  The Adjacency Matrix Structure 

Like the adjacency list structure, the adjacency matrix structure of a graph also 
extends the edge list structure with an additional component. In this case, we 
augment the edge list with a matrix (a two-dimensional array) A that allows us to 
determine adjacencies between pairs of vertices in constant time. In the adjacency 
matrix representation, we think of the vertices as being the integers in the set 
{0,1,..., n − 1} and the edges as being pairs of such integers. This allows us to store 
references to edges in the cells of a two-dimensional n × n array A. Specifically, the 
adjacency matrix representation extends the edge list structure as follows (see 
Figure 13.5):  

• A vertex object v stores a distinct integer i in the range 0,1,..., n − 1, called 
the index of v. 

• We keep a two-dimensional n × n array A such that the cell A[i,j] holds a 
reference to the edge (v, w), if it exists, where v is the vertex with index i and w is 
the vertex with index j. If there is no such edge, then A[i,j] = null. 

Figure 13.5:  (a) A graph G without parallel edges; (b) 
schematic representation of the simplified adjacency 
matrix structure for G. 
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Performance of the Adjacency Matrix Structure 

For graphs with parallel edges, the adjacency matrix representation must be 
extended so that, instead of having A [i, j] storing a pointer to an associated edge 
(v, w), it must store a pointer to an incidence collection I(v, w), which stores all 
the edges from v to w. Since most of the graphs we consider are simple, will not 
consider this complication here. 

The (simple) adjacency matrix A allows us to perform method areAdjacent(v, 
w) in O(1) time. We achieve this running time by accessing vertices v and w to 
determine their respective indices i and j, and then testing if A[i, j] is null or 
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not. The optimal performance of method areAdjacent is counteracted by an 
increase in space usage, however, which is now O(n2), and in the running time of 
other methods. For example, method incidentEdges(v) now requires that we 
examine an entire row or column of array A and thus runs in O(n) time. 
Moreover, any vertex insertions or deletions now require creating a whole new 
array A, of larger or smaller size, respectively, which takes O(n2) time. 

Table 13.3 summarizes the performance of the adjacency matrix structure 
implementation of a graph. From this table, we observe that the adjacency list 
structure is superior to the adjacency matrix in space, and is superior in time for 
all methods except for the areAdjacent method. 

Table 13.3:  Running times for a graph implemented 
with an adjacency matrix. 

Operation 

Time 

vertices 

O(n) 

edges 

O(m) 

endVertices, opposite, areAdjacent 

O(1) 

incidentEdges(v) 

O(n + deg(v)) 

replace, insertEdge, removeEdge, 

O(1) 

insert Vertex, remove Vertex 

O(n2) 

Historically, Boolean adjacency matrices were the first representations used for 
graphs (so that A[i, j] = true if and only if (i, j) is an edge). We should not find 
this fact surprising, however, for the adjacency matrix has a natural appeal as a 
mathematical structure (for example, an undirected graph has a symmetric 
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adjacency matrix). The adjacency list structure came later, with its natural appeal 
in computing due to its faster methods for most algorithms (many algorithms do 
not use method areAdjacent) and its space efficiency. 

Most of the graph algorithms we examine will run efficiently when acting upon a 
graph stored using the adjacency list representation. In some cases, however, a 
trade-off occurs, where graphs with few edges are most efficiently processed with 
an adjacency list structure and graphs with many edges are most efficiently 
processed with an adjacency matrix structure. 

13.3  Graph Traversals 

Greek mythology tells of an elaborate labyrinth that was built to house the monstrous 
Minotaur, which was part bull and part man. This labyrinth was so complex that 
neither beast nor human could escape it. No human, that is, until the Greek hero, 
Theseus, with the help of the king's daughter, Ariadne, decided to implement a graph 
traversal algorithm. Theseus fastened a ball of thread to the door of the labyrinth and 
unwound it as he traversed the twisting passages in search of the monster. Theseus 
obviously knew about good algorithm design, for, after finding and defeating the 
beast, Theseus easily followed the string back out of the labyrinth to the loving arms 
of Ariadne. Formally, a traversal is a systematic procedure for exploring a graph by 
examining all of its vertices and edges. 

13.3.1  Depth-First Search 

The first traversal algorithm we consider in this section is depth-first search (DFS) 
in an undirected graph. Depth-first search is useful for testing a number of 
properties of graphs, including whether there is a path from one vertex to another 
and whether or not a graph is connected. 

Depth-first search in an undirected graph G is analogous to wandering in a labyrinth 
with a string and a can of paint without getting lost. We begin at a specific starting 
vertex s in G, which we initialize by fixing one end of our string to s and painting s 
as "visited." The vertex s is now our "current" vertex—call our current vertex u. We 
then traverse G by considering an (arbitrary) edge (u,v) incident to the current 
vertex u. If the edge (u,v) leads us to an already visited (that is, painted) vertex v, 
we immediately return to vertex u. If, on the other hand, (u, v) leads to an unvisited 
vertex v, then we unroll our string, and go to v. We then paint v as "visited," and 
make it the current vertex, repeating the computation aboce. Eventually, we will get 
to a "dead-end," that is, a current vertex u such that all the edges incident on u lead 
to vertices already visited. Thus, taking any edge incident on u will cause us to 
return to u. To get out of this impasse, we roll our string back up, backtracking 
along the edge that brought us to u, going back to a previously visited vertex v. We 
then make v our current vertex and repeat the computation above for any edges 
incident upon v that we have not looked at before. If all of v's incident edges lead to 
visited vertices, then we again roll up our string and backtrack to the vertex we 

 808



came from to get to v, and repeat the procedure at that vertex. Thus, we continue to 
backtrack along the path that we have traced so far until we find a vertex that has 
yet unexplored edges, take one such edge, and continue the traversal. The process 
terminates when our backtracking leads us back to the start vertex s, and there are 
no more unexplored edges incident on s. 

This simple process traverses all the edges of G. (See Figure 13.6.) 

Figure 13.6:  Example of depth-first search traversal 
on a graph starting at vertex A. Discovery edges are 
shown with solid lines and back edges are shown with 
dashed lines: (a) input graph; (b) path of discovery 
edges traced from A until back edge (B,A) is hit; (c) 
reaching F, which is a dead end; (d) after backtracking 
to C, resuming with edge (C,G), and hitting another 
dead end, J; (e) after backtracking to G; (f) after 
backtracking to N. 
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Discovery Edges and Back Edges 
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We can visualize a DFS traversal by orienting the edges along the direction in 
which they are explored during the traversal, distinguishing the edges used to 
discover new vertices, called discovery edges, or tree edges, from those that lead 
to already visited vertices, called back edges. (See Figure 13.6f). In the analogy 
above, discovery edges are the edges where we unroll our string when we traverse 
them, and back edges are the edges where we immediately return without 
unrolling any string. As we will see, the discovery edges form a spanning tree of 
the connected component of the starting vertex s. We call the edges not in this tree 
"back edges" because, assuming that the tree is rooted at the start vertex, each 
such edge leads back from a vertex in this tree to one of its ancestors in the tree. 

The pseudo-code for a DFS traversal starting at a vertex v follows our analogy 
with string and paint. We use recursion to implement the string analogy, and we 
assume that we have a mechanism (the paint analogy) to determine if a vertex or 
edge has been explored or not, and to label the edges as discovery edges or back 
edges. This mechanism will require additional space and may affect the running 
time of the algorithm. A pseudo-code description of the recursive DFS algorithm 
is given in Code Fragment 13.1. 

Code Fragment 13.1:  The DFS algorithm. 

 

There are a number of observations that we can make about the depth-first search 
algorithm, many of which derive from the way the DFS algorithm partitions the 
edges of the undirected graph G into two groups, the discovery edges and the 
back edges. For example, since back edges always connect a vertex v to a 
previously visited vertex u, each back edge implies a cycle in G, consisting of the 
discovery edges from u to v plus the back edge (u, v). 

Proposition 13.12: Let G be an undirected graph on which a DFS 
traversal starting at a vertex s has been performed. Then the traversal visits all 
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vertices in the connected component of s, and the discovery edges form a 
spanning tree of the connected component of s. 

Justification: Suppose there is at least one vertex v in s's connected 
component not visited, and let w be the first unvisited vertex on some path from s 
to v (we may have v = w). Since w is the first unvisited vertex on this path, it has 
a neighbor u that was visited. But when we visited u, we must have considered the 
edge (u,w); hence, it cannot be correct that w is unvisited. Therefore, there are no 
unvisited vertices in s's connected component. 

Since we only mark edges when we go to unvisited vertices, we will never form a 
cycle with discovery edges, that is, discovery edges form a tree. Moreover, this is 
a spanning tree because, as we have just seen, the depth-first search visits each 
vertex in the connected component of s 

 

In terms of its running time, depth-first search is an efficient method for 
traversing a graph. Note that DFS is called exactly once on each vertex, and that 
every edge is examined exactly twice, once from each of its end vertices. Thus, if 
ns vertices and ms edges are in the connected component of vertex s, a DFS 
starting at s runs in O(ns + ms) time, provided the following conditions are 
satisfied:  

• The graph is represented by a data structure such that creating and 
iterating through the incidentEdges(v) iterable collection takes 
O(degree(v)) time, and the opposite(v,e) method takes O(1) time. The 
adjacency list structure is one such structure, but the adjacency matrix structure 
is not. 

• We have a way to "mark" a vertex or edge as explored, and to test if a 
vertex or edge has been explored in O(1) time. We discuss ways of 
implementing DFS to achieve this goal in the next section. 

Given the assumptions above, we can solve a number of interesting problems. 

Proposition 13.13: Let G be a graph with n vertices and m edges 
represented with an adjacency list. A DFS traversal of G can be performed in O(n 
+ m) time, and can be used to solve the following problems in O(n + m) time:  

• Testing whether G is connected. 

• Computing a spanning tree of G, if G is connected. 

• Computing the connected components of G. 

• Computing a path between two given vertices of G, if it exists. 
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• Computing a cycle in G, or reporting that G has no cycles. 

The justification of Proposition 13.13 is based on algorithms that use slightly 
modified versions of the DFS algorithm as subroutines. 

13.3.2  Implementing Depth-First Search 

As we have mentioned above, the data structure we use to represent a graph impacts 
the performance of the DFS algorithm. For example, an adjacency list can be used 
to yield a running time of O(n + m) for traversing a graph with n vertices and m 
edges. Using an adjacency matrix, on the other hand, would result in a running time 
of O(n2), since each of the n calls to the incidentEdges method would take 
O(n) time. If the graph is dense, that is, it has close to O(n2) edges, then the 
difference between these two choices is minor, as they both would run in O(n2) 
time. But if the graph is sparse, that is, it has close to O(n) edges, then the 
adjacency matrix approach would be much slower than the adjacency list approach. 

Another important implementation detail deals with the way vertices and edges are 
represented. In particular, we need to have a way of marking vertices and edges as 
visited or not. There are two simple solutions, but each has drawbacks:  

• We can build our vertex and edge objects to contain an explored field, 
which can be used by the DFS algorithm for marking. This approach is quite 
simple, and supports constant-time marking and unmarking, but it assumes that 
we are designing our graph with DFS in mind, which will not always be valid. 
Furthermore, this approach needlessly restricts DFS to graphs with vertices 
having an explored field. Thus, if we want a generic DFS algorithm that can 
take any graph as input, this approach has limitations. 

• We can use an auxiliary hash table to store all the explored vertices and 
edges during the DFS algorithm. This scheme is general, in that it does not require 
any special fields in the positions of the graph. But this approach does not achieve 
worst-case constant time for marking and unmarking of vertices edges. Instead, 
such a hash table only supports the mark (insert) and test (find) operations in 
constant expected time (see Section 9.2). 

Fortunately, there is a middle ground between these two extremes. 

The Decorator Pattern 

Marking the explored vertices in a DFS traversal is an example of the decorator 
software engineering design pattern. This pattern is used to add decorations (also 
called attributes) to existing objects. Each decoration is identified by a key 
identifying this decoration and by a value associated with the key. The use of 
decorations is motivated by the need of some algorithms and data structures to 
add extra variables, or temporary scratch data, to objects that do not normally 
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have such variables. Hence, a decoration is a key-value pair that can be 
dynamically attached to an object. In our DFS example, we would like to have 
"decorable" vertices and edges with an explored decoration and a Boolean value. 

Making Graph Vertices Decorable 

We can realize the decorator pattern for any position by allowing it to be 
decorated. This allows us to add labels to vertices and edges, for example, without 
requiring that we know in advance the kinds of labels that we will need. We can 
simply require that our vertices and edges implement a decorable position ADT, 
which inherits from both the position ADT and the map ADT (Section 9.1). 
Namely, the methods of the decorable position ADT are the union of the methods 
of the position ADT and of the map ADT, that is, in addition to the size() and 
isEmpty() methods, a decorable position would support the following: 

element(): 

Return the element stored at this position. 

put(k,x): 

Map the decoration value x to the key k, returning the old value for k, or 
null if this is a new value for k. 

get(k): 

Get the decoration value x assigned to k, or null if there is no mapping 
for k. 

remove(k): 

Remove the decoration mapping for k, returning the old value, or null 
if there is none. 

entries(): 

Return all the key-decoration pairs for this position. 

The map methods of a decorable position p provide a simple mechanism for 
accessing and setting the decorations of p. For example, we use p.get(k) to 
obtain the value of the decoration with key k and we use p.put(k,x) to set the 
value of the decoration with key k to x. Moreover, the key k can be any object, 
including a special explored object our DFS algorithm might create. We show 
a Java interface defining such an ADT in Code Fragment 13.2. 

We can implement a decorable position with an object that stores an element and 
a map. In principle, the running times of the methods of a decorable position 
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depend on the implementation of the underlying map. However, most algorithms 
use a small constant number of decorations. Thus, the decorable position methods 
will run in O(1) worst-case time no matter how we implement the embedded map. 

Code Fragment 13.2:  An interface defining an ADT 
for decorable positions. Note that we don't use 
generic parameterized types for the inherited Map 
methods, since we don't know in advance the types of 
the decorations and we want to allow for objects of 
many different types as decorations. 

 

Using decorable positions, the complete DFS traversal algorithm can be described 
in more detail, as shown in Code Fragment 13.3. 

Code Fragment 13.3:  DFS on a graph with 
decorable edges and vertices. 

 

A Generic DFS Implementation in Java 
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In Code Fragments 13.4 and 13.5, we show a Java implementation of a generic 
depth-first search traversal using a general class, DFS, which has a method, 
execute, which takes as input the graph, a start vertex, and any auxiliary 
information needed, and then initializes the graph and calls the recursive method, 
dfsTraversal, which activates the DFS traversal. Our implementation 
assumes that the vertices and edges are decorable positions, and it uses 
decorations to tell if vertices and edges have been visited or not. The DFS class 
contains the following methods to allow it to do special tasks during a DFS 
traversal:  

• setup(): called prior to doing the DFS traversal call to 
dfsTraversal(). 

• initResult(): called at the beginning of the execution of 
dfsTraversal(). 

• startVisit(v): called at the start of the visit of v. 

• traverseDiscovery(e,v): called when a discovery edge e out of v is 
traversed. 

• traverseBack(e,v): called when a back edge e out of v is traversed. 

• isDone(): called to determine whether to end the traversal early. 

• finishVisit(v): called when we are finished exploring from v. 

• result(): called to return the output of dfsTraversal. 

• finalResult(r): called to return the output of the execute method, 
given the output, r, from dfsTraversal. 

Code Fragment 13.4:  Instance variables and support 
methods of class DFS, which performs a generic DFS 
traversal. The methods visit, unVisit, and 
isVisited are implemented using decorable 
positions that are parameterized using the wildcard 
symbol, "?", which can match either the V or the E 
parameter used for decorable positions. (Continues in 
Code Fragment 13.5.) 
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Code Fragment 13.5:  The main template method 
dfsTraversal of class DFS, which performs a 
generic DFS traversal of a graph. (Continued from 
Code Fragment 13.4.) 

 817



 

 818



Using the Template Method Pattern for DFS 

The DFS class is based on the template method pattern (see Section 7.3.7), which 
describes a generic computation mechanism that can be specialized by redefining 
certain steps. The way we identify vertices and edges that have already been 
visited during the traversal is in calls to methods isVisited, visit, and 
unVisit. For us to do anything interesting, we must extend DFS and redefine 
some of its auxiliary methods. This approach conforms to the template method 
pattern. In Code Fragments 13.6 through 13.9, we illustrate some applications of 
DFS traversal. 

Class ConnectivityDFS (Code Fragment 13.6) tests whether the graph is 
connected. It counts the vertices reachable by a DFS traversal starting at a vertex 
and compares this number with the total number of vertices of the graph. 

Code Fragment 13.6:  Specialization of class DFS to 
test if a graph is connected. 

 

Class ComponentsDFS (Code Fragment 13.7) finds the connected components 
of a graph. It labels each vertex with its connected component number, using the 
decorator pattern, and returns the number of connected components found. 

Code Fragment 13.7:  Specialization of DFS to 
compute connected components. 
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Class FindPathDFS (Code Fragment 13.8) finds a path between a pair of given 
start and target vertices. It performs a depth-first search traversal beginning at the 
start vertex. We maintain the path of discovery edges from the start vertex to the 
current vertex. When we encounter an unexplored vertex, we add it to the end of 
the path, and when we finish processing a vertex, we remove it from the path. The 
traversal is terminated when the target vertex is encountered, and the path is 
returned as an iterable collection of vertices and edges (both kinds of positions in 
a graph). Note that the path found by this class consists of discovery edges. 

Code Fragment 13.8:  Specialization of class DFS to 
find a path between start and target vertices. 
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Class FindCycleDFS (Code Fragment 13.9) finds a cycle in the connected 
component of a given vertex v, by performing a depth-first search traversal from v 
that terminates when a back edge is found. It returns a (possibly empty) iterable 
collection of the vertices and edges in the cycle formed by the found back edge. 

Code Fragment 13.9:  Specialization of class DFS to 
find a cycle in the connected component of the start 
vertex. 
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13.3.3  Breadth-First Search 

In this section, we consider the breadth-first search (BFS) traversal algorithm. Like 
DFS, BFS traverses a connected component of a graph, and in so doing defines a 
useful spanning tree. BFS is less "adventurous" than DFS, however. Instead of 
wandering the graph, BFS proceeds in rounds and subdivides the vertices into 
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levels. BFS can also be thought of as a traversal using a string and paint, with BFS 
unrolling the string in a more conservative manner. 

BFS starts at vertex s, which is at level 0 and defines the "anchor" for our string. In 
the first round, we let out the string the length of one edge and we visit all the 
vertices we can reach without unrolling the string any farther. In this case, we visit, 
and paint as "visited," the vertices adjacent to the start vertex s—these vertices are 
placed into level 1. In the second round, we unroll the string the length of two edges 
and we visit all the new vertices we can reach without unrolling our string any 
farther. These new vertices, which are adjacent to level 1 vertices and not 
previously assigned to a level, are placed into level 2, and so on. The BFS traversal 
terminates when every vertex has been visited. 

Pseudo-code for a BFS starting at a vertex s is shown in Code Fragment 13.10. We 
use auxiliary space to label edges, mark visited vertices, and store collections 
associated with levels. That is, the collections L0, L1, L2, and so on, store the 
vertices that are in level 0, level 1, level 2, and so on. These collections could, for 
example, be implemented as queues. They also allow BFS to be nonrecursive. 

Code Fragment 13.10:  The BFS algorithm. 

 

We illustrate a BFS traversal in Figure 13.7. 
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Figure 13.7:  Example of breadth-first search traversal, 
where the edges incident on a vertex are explored by 
the alphabetical order of the adjacent vertices. The 
discovery edges are shown with solid lines and the 
cross edges are shown with dashed lines: (a) graph 
before the traversal; (b) discovery of level 1; (c) 
discovery of level 2; (d) discovery of level 3; (e) 
discovery of level 4; (f) discovery of level 5. 

 824



 

 825



One of the nice properties of the BFS approach is that, in performing the BFS 
traversal, we can label each vertex by the length of a shortest path (in terms of the 
number of edges) from the start vertex s. In particular, if vertex v is placed into 
level i by a BFS starting at vertex s, then the length of a shortest path from s to v is 
i. 

As with DFS, we can visualize the BFS traversal by orienting the edges along the 
direction in which they are explored during the traversal, and by distinguishing the 
edges used to discover new vertices, called discovery edges, from those that lead to 
already visited vertices, called cross edges. (See Figure 13.7f.) As with the DFS, the 
discovery edges form a spanning tree, which in this case we call the BFS tree. We 
do not call the nontree edges "back edges" in this case, however, for none of them 
connects a vertex to one of its ancestors. Every nontree edge connects a vertex v to 
another vertex that is neither v's ancestor nor its descendent. 

The BFS traversal algorithm has a number of interesting properties, some of which 
we explore in the proposition that follows. 

Proposition 13.14: Let G be an undirected graph on which a BFS traversal 
starting at vertex s has been performed. Then 

• The traversal visits all vertices in the connected component of s. 

• The discovery-edges form a spanning tree T, which we call the BFS tree, 
of the connected component of s. 

• For each vertex v at level i, the path of the BFS tree T between s and v has 
i edges, and any other path of G between s and v has at least i edges. 

• If (u, v) is an edge that is not in the BFS tree, then the level numbers of u 
and v differ by at most 1. 

We leave the justification of this proposition as an exercise (C-13.14). The analysis 
of the running time of BFS is similar to the one of DFS, which implies the 
following. 

Proposition 13.15: Let G be a graph with n vertices and m edges 
represented with the adjacency list structure. A BFS traversal of G takes O(n + m) 
time. Also, there exist O(n + m)-time algorithms based on BFS for the following 
problems:  

• Testing whether G is connected. 

• Computing a spanning tree of G, if G is connected. 

• Computing the connected components of G. 
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• Given a start vertex s of G, computing, for every vertex v of G,a path with 
the minimum number of edges between s and v, or reporting that no such path 
exists. 

• Computing a cycle in G, or reporting that G has no cycles. 

13.4  Directed Graphs 

In this section, we consider issues that are specific to directed graphs. Recall that a 
directed graph (digraph), is a graph whose edges are all directed. 

Methods Dealing with Directed Edges 

When we allow for some or all the edges in a graph to be directed, we should add 
the following two methods to the graph ADT in order to deal with edge directions. 

               isDirected(e): Test whether edge e is directed. 

insertDirectedEdge(v, w, o): Insert and return a new directed edge 
with origin v and destination w and storing element o. 

Also, if an edge e is directed, the method endVertices(e) should return an array 
A such that A[0] is the origin of e and A[1] is the destination of e. The running time 
for the method isDirected(e) should be O(1), and the running time of the 
method insertDirectedEdge(v, w, o) should match that of undirected edge 
insertion. 

Reachability 

One of the most fundamental issues with directed graphs is the notion of 
reachability, which deals with determining where we can get to in a directed graph. 
A traversal in a directed graph always goes along directed paths, that is, paths 
where all the edges are traversed according to their respective directions. Given 

vertices u and v of a digraph , we say that u reaches v (and v is reachable from 

u) if  has a directed path from u to v. We also say that a vertex v reaches an edge 
(w,z) if v reaches the origin vertex w of the edge. 

A digraph  is strongly connected if for any two vertices u and v of , u reaches 

v and v reaches u. A directed cycle of  is a cycle where all the edges are 

traversed according to their respective directions. (Note that  may have a cycle 
consisting of two edges with opposite direction between the same pair of vertices.) 
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A digraph  is acyclic if it has no directed cycles. (See Figure 13.8 for some 
examples.) 

The transitive closure of a digraph  is the digraph  such that the vertices of 

 are the same as the vertices of , and  has an edge (u, v), whenever  

has a directed path from u to v. That is, we define  by starting with the digraph 

 and adding in an extra edge (u, v) for each u and v such that v is reachable from 

u (and there isn't already an edge (u, v) in ). 

Figure 13.8:  Examples of reachability in a digraph: (a) 
a directed path from BOS to LAX is drawn in blue; (b) a 
directed cycle (ORD, MIA, DFW, LAX, ORD) is shown in 
blue; its vertices induce a strongly connected subgraph; 
(c) the subgraph of the vertices and edges reachable 
from ORD is shown in blue; (d) removing the dashed 
blue edges gives an acyclic digraph. 
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Interesting problems that deal with reachability in a digraph  include the 
following:  

• Given vertices u and v, determine whether u reaches v. 

• Find all the vertices of  that are reachable from a given vertex s. 

• Determine whether  is strongly connected. 

• Determine whether  is acyclic. 

• Compute the transitive closure  of  

In the remainder of this section, we explore some efficient algorithms for solving 
these problems. 

13.4.1  Traversing a Digraph 
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As with undirected graphs, we can explore a digraph in a systematic way with 
methods akin to the depth-first search (DFS) and breadth-first search (BFS) 
algorithms defined previously for undirected graphs (Sections 13.3.1 and 13.3.3). 
Such explorations can be used, for example, to answer reachability questions. The 
directed depth-first search and breadth-first search methods we develop in this 
section for performing such explorations are very similar to their undirected 
counterparts. In fact, the only real difference is that the directed depth-first search 
and breadth-first search methods only traverse edges according to their respective 
directions. 

The directed version of DFS starting at a vertex v can be described by the recursive 
algorithm in Code Fragment 13.11. (See Figure 13.9.) 

Code Fragment 13.11:  The Directed DFS 
algorithm. 

 
Figure 13.9:  An example of a DFS in a digraph: (a) 
intermediate step, where, for the first time, an already 
visited vertex (DFW) is reached; (b) the completed DFS. 
The tree edges are shown with solid blue lines, the back 
edges are shown with dashed blue lines, and the 
forward and cross edges are shown with dashed black 
lines. The order in which the vertices are visited is 
indicated by a label next to each vertex. The edge 
(ORD,DFW) is a back edge, but (DFW,ORD) is a forward 
edge. Edge (BOS,SFO) is a forward edge, and (SFO,LAX) 
is a cross edge. 
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A DFS on a digraph  partitions the edges of  reachable from the starting 
vertex into tree edges or discovery edges, which lead us to discover a new vertex, 
and nontree edges, which take us to a previously visited vertex. The tree edges 
form a tree rooted at the starting vertex, called the depth-first search tree, and there 
are three kinds of nontree edges:  

• back edges, which connect a vertex to an ancestor in the DFS tree 

• forward edges, which connect a vertex to a descendent in the DFS tree 

• cross edges, which connect a vertex to a vertex that is neither its ancestor 
nor its descendent. 

Refer back to Figure 13.9b to see an example of each type of nontree edge. 

Proposition 13.16: Let  be a digraph. Depth-first search on  starting at 

a vertex s visits all the vertices of  that are reachable from s. Also, the DFS tree 
contains directed paths from s to every vertex reachable from s. 

Justification: Let Vs be the subset of vertices of  visited by DFS starting 
at vertex s. We want to show that Vs contains s and every vertex reachable from s 
belongs to Vs. Suppose now, for the sake of a contradiction, that there is a vertex w 
reachable from s that is not in Vs. Consider a directed path from s to w, and let (u, v) 
be the first edge on such a path taking us out of Vs, that is, u is in Vs but v is not in 
Vs. When DFS reaches u, it explores all the outgoing edges of u, and thus must 
reach also vertex v via edge (u,v). Hence, v should be in Vs, and we have obtained a 
contradiction. Therefore, Vs must contain every vertex reachable from s 

 

Analyzing the running time of the directed DFS method is analogous to that for its 
undirected counterpart. In particular, a recursive call is made for each vertex exactly 

 831



once, and each edge is traversed exactly once (from its origin). Hence, if ns vertices 
and ms edges are reachable from vertex s, a directed DFS starting at s runs in O(ns 
+ ms) time, provided the digraph is represented with a data structure that supports 
constant-time vertex and edge methods. The adjacency list structure satisfies this 
requirement, for example. 

By Proposition 13.16, we can use DFS to find all the vertices reachable from a 

given vertex, and hence to find the transitive closure of . That is, we can perform 

a DFS, starting from each vertex v of , to see which vertices w are reachable 
from v, adding an edge (v, w) to the transitive closure for each such w. Likewise, by 

repeatedly traversing digraph with a DFS, starting in turn at each vertex, we can 

easily test whether  is strongly connected. Namely,  is strongly connected if 

each DFS visits all the vertices of  

Thus, we may immediately derive the proposition that follows. 

Proposition 13.17: Let  be a digraph with n vertices and m edges. The 

following problems can be solved by an algorithm that traverses  n times using 
DFS, runs in O (n(n+m)) time, and uses O(n) auxiliary space:  

• Computing, for each vertex v of , the subgraph reachable from v 

• Testing whether  is strongly connected 

• Computing the transitive closure  of . 

Testing for Strong Connectivity 

Actually, we can determine if a directed graph  is strongly connected much 
faster than this, just using two depth-first searches. We begin by performing a 

DFS of our directed graph  starting at an arbitrary vertex s. If there is any 

vertex of  that is not visited by this DFS, and is not reachable from s, then the 

graph is not strongly connected. So, if this first DFS visits each vertex of , then 

we reverse all the edges of  (using the reverse Direction method) and perform 

another DFS starting at s in this "reverse" graph. If every vertex of  is visited 
by this second DFS, then the graph is strongly connected, for each of the vertices 
visited in this DFS can reach s. Since this algorithm makes just two DFS 

traversals of , it runs in O(n + m) time. 
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Directed Breadth-First Search 

As with DFS, we can extend breadth-first search (BFS) to work for directed 
graphs. The algorithm still visits vertices level by level and partitions the set of 
edges into tree edges (or discovery edges), which together form a directed 
breadth-first search tree rooted at the start vertex, and nontree edges. Unlike the 
directed DFS method, however, the directed BFS method only leaves two kinds of 
nontree edges: back edges, which connect a vertex to one of its ancestors, and 
cross edges, which connect a vertex to another vertex that is neither its ancestor 
nor its descendent. There are no forward edges, which is a fact we explore in an 
Exercise (C-13.10). 

13.4.2 Transitive Closure 

In this section, we explore an alternative technique for computing the transitive 

closure of a digraph. Let  be a digraph with n vertices and m edges. We compute 

the transitive closure of  in a series of rounds. We initialize = . We also 

arbitrarily number the vertices of  as v1, v2,…, vn. We then begin the 
computation of the rounds, beginning with round 1. In a generic round k, we 

truct digraph cons  starting with =  and adding to  the direct

edge (v

ed 

vj) if di, igraph  contains both the edges (vi,vK) and (vk ,vj). In thi
way, we will enforce a simple rule embodied in the proposition t

s 
hat follows. 

Proposition 13.18: For i=1,…,n, digraph  has an edge (vi, vj) if and 

only if digraph  has a directed path from vi to vj , whose intermediate vertices (if 

any) are in the set{v1,…,vk}. In particular,  is equal to , the transitive 

closure of . 

Proposition 13.18 suggests a simple algorithm for computing the transitive closure 

of  that is based on the series of rounds we described above. This algorithm is 
known as the Floyd-Warshall algorithm, and its pseudo-code is given in Code 
Fragment 13.12. From this pseudo-code, we can easily analyze the running time of 
the Floyd-Warshall algorithm assuming that the data structure representing G 
supports methods areAdjacent and insertDirectedEdge in O(1) time. The main loop 
is executed n times and the inner loop considers each of O(n2) pairs of vertices, 
performing a constant-time computation for each one. Thus, the total running time 
of the Floyd-Warshall algorithm is O(n3). 

Code Fragment 13.12:  Pseudo-code for the Floyd-
Warshall algorithm. This algorithm computes the 
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transitive closure  of G by incrementally computing a 

series of digraphs , ,..., , where for k = 1,..., n. 

 

This description is actually an example of an algorithmic design pattern known as 
dynamic programming, which is discussed in more detail in Section 12.5.2. From 
the description and analysis above we may immediately derive the following 
proposition. 

Proposition 13.19: Let  be a digraph with n vertices, and let  be 
represented by a data structure that supports lookup and update of adjacency 
information in O(1) time. Then the Floyd-Warshall algorithm computes the 

transitive closure  of  in O(n3) time. 

We illustrate an example run of the Floyd-Warshall algorithm in Figure 13.10. 

Figure 13.10:  Sequence of digraphs computed by the 
Floyd-Warshall algorithm: (a) initial digraph  =  
and numbering of the vertices; (b) digraph  ; (c)  , 
(d) ; (e) ; (f) . Note that  =  =  . If 
digraph  has the edges (vi,vk) and (vk, vj), but not 
the edge (vi, vj), in the drawing of digraph  we show 
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edges (vi,vk) and (vk,vj) with dashed blue lines, and 
edge (vi, vj) with a thick blue line. 

 

Performance of the Floyd-Warshall Algorithm 
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The running time of the Floyd-Warshall algorithm might appear to be slower than 
performing a DFS of a directed graph from each of its vertices, but this depends 
upon the representation of the graph. If a graph is represented using an adjacency 

matrix, then running the DFS method once on a directed graph takes O(n2) time 
(we explore the reason for this in Exercise R-13.10). Thus, running DFS n times 
takes O(n3) time, which is no better than a single execution of the Floyd-Warshall 
algorithm, but the Floyd-Warshall algorithm would be much simpler to 
implement. Nevertheless, if the graph is represented using an adjacency list 
structure, then running the DFS algorithm n times would take O(n(n+m)) time to 
compute the transitive closure. Even so, if the graph is dense, that is, if it has 
&(n2) edges, then this approach still runs in O(n3) time and is more complicated 
than a single instance of the Floyd-Warshall algorithm. The only case where 
repeatedly calling the DFS method is better is when the graph is not dense and is 
represented using an adjacency list structure. 

13.4.3  Directed Acyclic Graphs 

Directed graphs without directed cycles are encountered in many applications. Such 
a digraph is often referred to as a directed acyclic graph, or DAG, for short. 
Applications of such graphs include the following:  

• Inheritance between classes of a Java program. 

• Prerequisites between courses of a degree program. 

• Scheduling constraints between the tasks of a project. 

Example 13.20: In order to manage a large project, it is convenient to break it 
up into a collection of smaller tasks. The tasks, however, are rarely independent, 
because scheduling constraints exist between them. (For example, in a house 
building project, the task of ordering nails obviously precedes the task of nailing 
shingles to the roof deck.) Clearly, scheduling constraints cannot have circularities, 
because they would make the project impossible. (For example, in order to get a job 
you need to have work experience, but in order to get work experience you need to 
have a job.) The scheduling constraints impose restrictions on the order in which 
the tasks can be executed. Namely, if a constraint says that task a must be 
completed before task b is started, then a must precede b in the order of execution 
of the tasks. Thus, if we model a feasible set of tasks as vertices of a directed graph, 
and we place a directed edge from v tow whenever the task for v must be executed 
before the task for w, then we define a directed acyclic graph. 

The example above motivates the following definition. Let be a digraph with n 

vertices. A topological ordering of  is an ordering v1,...,vn of the vertices of  

such that for every edge (vi, vj) of , i < j. That is, a topological ordering is an 
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ordering such that any directed path in G traverses vertices in increasing order. (See 
Figure 13.11.) Note that a digraph may have more than one topological ordering. 

Figure 13.11:  Two topological orderings of the same 
acyclic digraph. 

 

Proposition 13.21: has a topological ordering if and only if it is acyclic. 

Justification: The necessity (the "only if" part of the statement) is easy to 

demonstrate. Suppose is topologically ordered. Assume, for the sake of a 

contradiction, that  has a cycle consisting of edges (vi0, vi1), (vi1, vi2),…, (vik− 
1, vi0). Because of the topological ordering, we must have i0 < i1 ... < ik−1 < i0, 

which is clearly impossible. Thus, must be acyclic. 

We now argue the sufficiency of the condition (the "if" part). Suppose  is 
acyclic. We will give an algorithmic description of how to build a topological 

ordering for . Since is acyclic,  must have a vertex with no incoming edges 
(that is, with in-degree 0). Let v1 be such a vertex. Indeed, if v1 did not exist, then 
in tracing a directed path from an arbitrary start vertex we would eventually 

encounter a previously visited vertex, thus contradicting the acyclicity of . If we 

remove v1 from , together with its outgoing edges, the resulting digraph is sti
acyclic. Hence, the resulting digraph also has a vertex with no incoming edges, and 
we let v

ll 

2 be such a vertex. By repeating this process until the digraph becomes 
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empty, we obtain an ordering v1,... ,vn of the vertices of . Because of the 

construction above, if ( ,vj) is an edge of vi , then vi must be deleted before vj can 
be deleted, and thus i<j. Thus, v1,..., vn is a topological ordering. 

 

Proposition 13.21 's justification suggests an algorithm (Code Fragment 13.13), 
called topological sorting, for computing a topological ordering of a digraph. 

Code Fragment 13.13:  Pseudo-code for the 
topological sorting algorithm. (We show an example 
application of this algorithm in Figure 13.12). 

 

Proposition 13.22: Let  be a digraph with n vertices andm edges. The 
topological sorting algorithm runs in O(n + m) time using O(n) auxiliary space, and 

either computes a topological ordering of  or fails to number some vertices, 

which indicates that  has a directed cycle. 
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Justification: The initial computation of in-degrees and setup of the 
incounter variables can be done with a simple traversal of the graph, which takes 
O(n + m) time. We use the decorator pattern to associate counter attributes with the 
vertices. Say that a vertex u is visited by the topological sorting algorithm when u is 
removed from the stack S. A vertex u can be visited only when incounter (u) = 0, 
which implies that all its predecessors (vertices with outgoing edges into u) were 
previously visited. As a consequence, any vertex that is on a directed cycle will 
never be visited, and any other vertex will be visited exactly once. The algorithm 
traverses all the outgoing edges of each visited vertex once, so its running time is 
proportional to the number of outgoing edges of the visited vertices. Therefore, the 
algorithm runs in O(n + m) time. Regarding the space usage, observe that the stack 
S and the incounter variables attached to the vertices use O(n) space. 

 

As a side effect, the topological sorting algorithm of Code Fragment 13.13 also tests 

whether the input digraph  is acyclic. Indeed, if the algorithm terminates without 
ordering all the vertices, then the subgraph of the vertices that have not been 
ordered must contain a directed cycle. 

Figure 13.12:  Example of a run of algorithm 
TopologicalSort (Code Fragment 13.13): (a) initial 
configuration; (b-i) after each while-loop iteration. The 
vertex labels show the vertex number and the current 
incounter value. The edges traversed are shown with 
dashed blue arrows. Thick lines denote the vertex and 
edges examined in the current iteration. 
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13.5  Weighted Graphs 

As we saw in Section 13.3.3, the breadth-first search strategy can be used to find a 
shortest path from some starting vertex to every other vertex in a connected graph. 
This approach makes sense in cases where each edge is as good as any other, but 
there are many situations where this approach is not appropriate. For example, we 
might be using a graph to represent a computer network (such as the Internet), and we 
might be interested in finding the fastest way to route a data packet between two 
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computers. In this case, it is probably not appropriate for all the edges to be equal to 
each other, for some connections in a computer network are typically much faster 
than others (for example, some edges might represent slow phone-line connections 
while others might represent high-speed, fiber-optic connections). Likewise, we 
might want to use a graph to represent the roads between cities, and we might be 
interested in finding the fastest way to travel cross-country. In this case, it is again 
probably not appropriate for all the edges to be equal to each other, for some intercity 
distances will likely be much larger than others. Thus, it is natural to consider graphs 
whose edges are not weighted equally. 

A weighted graph is a graph that has a numeric (for example, integer) label w(e) 
associated with each edge e, called the weight of edge e. We show an example of a 
weighted graph in Figure 13.13. 

Figure 13.13:  A weighted graph whose vertices 
represent major U.S. airports and whose edge weights 
represent distances in miles. This graph has a path from 
JFK to LAX of total weight 2,777 (going through ORD and 
DFW). This is the minimum weight path in the graph 
from JFK to LAX. 

 

In the remaining sections of this chapter, we study weighted graphs. 

13.6  Shortest Paths 

Let G be a weighted graph. The length (or weight) of a path is the sum of the weights 
of the edges of P. That is, if P = ((v0,v1),(v1,v2), ..., (vk−1,vk)), then the length of P,
denoted w(P), is defined as 
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The distance from a vertex v to a vertex U in G, denoted d(v, U), is the length of a 
minimum length path (also called shortest path) from v to u, if such a path exists. 

People often use the convention that d(v, u) = +∞ if there is no path at all from v to u 
in G. Even if there is a path from v to u in G, the distance from v to U may not be 
defined, however, if there is a cycle in G whose total weight is negative. For example, 
suppose vertices in G represent cities, and the weights of edges in G represent how 
much money it costs to go from one city to another. If someone were willing to 
actually pay us to go from say JFK to ORD, then the "cost" of the edge (JFK,ORD) 
would be negative. If someone else were willing to pay us to go from ORD to JFK, 
then there would be a negative-weight cycle in G and distances would no longer be 
defined. That is, anyone could now build a path (with cycles) in G from any city A to 
another city B that first goes to JFK and then cycles as many times as he or she likes 
from JFK to ORD and back, before going on to B. The existence of such paths would 
allow us to build arbitrarily low negative-cost paths (and, in this case, make a fortune 
in the process). But distances cannot be arbitrarily low negative numbers. Thus, any 
time we use edge weights to represent distances, we must be careful not to introduce 
any negative-weight cycles. 

Suppose we are given a weighted graph G, and we are asked to find a shortest path 
from some vertex v to each other vertex in G, viewing the weights on the edges as 
distances. In this section, we explore efficient ways of finding all such shortest paths, 
if they exist. The first algorithm we discuss is for the simple, yet common, case when 
all the edge weights in G are nonnegative (that is, w(e) ≥ 0 for each edge e of G); 
hence, we know in advance that there are no negative-weight cycles in G. Recall that 
the special case of computing a shortest path when all weights are equal to one was 
solved with the BFS traversal algorithm presented in Section 13.3.3. 

There is an interesting approach for solving this single-source problem based on the 
greedy method design pattern (Section 12.4.2). Recall that in this pattern we solve the 
problem at hand by repeatedly selecting the best choice from among those available 
in each iteration. This paradigm can often be used in situations where we are trying to 
optimize some cost function over a collection of objects. We can add objects to our 
collection, one at a time, always picking the next one that optimizes the function from 
among those yet to be chosen. 

13.6.1  Dijkstra's Algorithm 

The main idea in applying the greedy method pattern to the single-source shortest-
path problem is to perform a "weighted" breadth-first search starting at v. In 
particular, we can use the greedy method to develop an algorithm that iteratively 
grows a "cloud" of vertices out of v, with the vertices entering the cloud in order of 
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their distances from v. Thus, in each iteration, the next vertex chosen is the vertex 
outside the cloud that is closest to v. The algorithm terminates when no more 
vertices are outside the cloud, at which point we have a shortest path from v to 
every other vertex of G. This approach is a simple, but nevertheless powerful, 
example of the greedy method design pattern. 

A Greedy Method for Finding Shortest Paths 

Applying the greedy method to the single-source, shortest-path problem, results in 
an algorithm known as Dijkstra's algorithm. When applied to other graph 
problems, however, the greedy method may not necessarily find the best solution 
(such as in the so-called traveling salesman problem, in which we wish to find 
the shortest path that visits all the vertices in a graph exactly once). Nevertheless, 
there are a number of situations in which the greedy method allows us to compute 
the best solution. In this chapter, we discuss two such situations: computing 
shortest paths and constructing a minimum spanning tree. 

In order to simplify the description of Dijkstra's algorithm, we assume, in the 
following, that the input graph G is undirected (that is, all its edges are 
undirected) and simple (that is, it has no self-loops and no parallel edges). Hence, 
we denote the edges of G as unordered vertex pairs (u,z). 

In Dijkstra's algorithm for finding shortest paths, the cost function we are trying 
to optimize in our application of the greedy method is also the function that we 
are trying to compute—the shortest path distance. This may at first seem like 
circular reasoning until we realize that we can actually implement this approach 
by using a "bootstrapping" trick, consisting of using an approximation to the 
distance function we are trying to compute, which in the end will be equal to the 
true distance. 

Edge Relaxation 

Let us define a label D[u] for each vertex u in V, which we use to approximate the 
distance in G from v to u. The meaning of these labels is that D[u] will always 
store the length of the best path we have found so far from v to U. Initially, D[v] 
= 0 and D[u] = +∞ for each u, ≠≠ v, and we define the set C, which is our 
"cloud" of vertices, to initially be the empty set t. At each iteration of the 
algorithm, we select a vertex u not in C with smallest D[u] label, and we pull u 
into C. In the very first  iteration we will, of course, pull v into C. Once a new 
vertex u is pulled into C, we then update the label D[z] of each vertex z that is 
adjacent to u and is outside of C, to reflect the fact that there may be a new and 
better way to get to z via u. This update operation is known as a relaxation 
procedure, for it takes an old estimate and checks if it can be improved to get 
closer to its true value. (A metaphor for why we call this a relaxation comes from 
a spring that is stretched out and then "relaxed" back to its true resting shape.) In 
the case of Dijkstra's algorithm, the relaxation is performed for an edge (u,z) such 
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that we have computed a new value of D[u] and wish to see if there is a better 
value for D[z] using the edge (u,z). The specific edge relaxation operation is as 
follows: 

                    Edge Relaxation: 

if D[u] +w((u,z)) D[z] then 

D[z]←D[u]+w((u,z)) 

We give the pseudo-code for Dijkstra's algorithm in Code Fragment 13.14. Note 
that we use a priority queue Q to store the vertices outside of the cloud C. 

Code Fragment 13.14:  Dijkstra's algorithm for the 
single-source shortest path problem. 

 

We illustrate several iterations of Dijkstra's algorithm in Figures 13.14 and 13.15. 

Figure 13.14:  An execution of Dijkstra's algorithm on a 
weighted graph. The start vertex is BWI. A box next to 
each vertex v stores the label D[v]. The symbol • is 
used instead of +∞. The edges of the shortest-path 
tree are drawn as thick blue arrows, and for each 
vertex u outside the "cloud" we show the current best 
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edge for pulling in u with a solid blue line. (Continues 
in Figure 13.15). 

 
Figure 13.15:  An example execution of Dijkstra's 
algorithm. (Continued from Figure 13.14.) 
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Why It Works 

The interesting, and possibly even a little surprising, aspect of the Dijkstra 
algorithm is that, at the moment a vertex u is pulled into C, its label D[u] stores 
the correct length of a shortest path from v to u. Thus, when the algorithm 
terminates, it will have computed the shortest-path distance from v to every vertex 
of G. That is, it will have solved the single-source shortest path problem. 

It is probably not immediately clear why Dijkstra's algorithm correctly finds the 
shortest path from the start vertex v to each other vertex u in the graph. Why is it 
that the distance from v to u is equal to the value of the label D[u] at the time 
vertex u is pulled into the cloud C (which is also the time u is removed from the 
priority queue Q)? The answer to this question depends on there being no 
negative-weight edges in the graph, for it allows the greedy method to work 
correctly, as we show in the proposition that follows. 
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Proposition 13.23: In Dijkstra's algorithm, whenever a vertex u is pulled 
into the cloud, the label D[u] is equal to d(v, u), the length of a shortest path from 
v to u. 

Justification: Suppose that D[t]>d(v,t) for some vertex t in V, and let u be 
the first vertex the algorithm pulled into the cloud C (that is, removed from Q) 
such that D[u]>d(v,u). There is a shortest path P from v to u (for otherwise d(v, 
u)=+∞ = D[u]). Let us therefore consider the moment when u is pulled into C, and 
let z be the first vertex of P (when going from v to u) that is not in C at this 
moment. Let y be the predecessor of z in path P (note that we could have y = v). 
(See Figure 13.16). We know, by our choice of z, that y is already in C at this 
point. Moreover, D[y] = d(v,y), since u is the first incorrect vertex. When y was 
pulled into C, we tested (and possibly updated) D[z] so that we had at that point 

D[z]≤D[y]+w((y,z))=d(v,y)+w((y,z)). 

But since z is the next vertex on the shortest path from v to u, this implies that 

D[z] = d(v,z). 

But we are now at the moment when we are picking u, not z, to join C; hence, 

D[u] ≤D[z]. 

It should be clear that a subpath of a shortest path is itself a shortest path. Hence, 
since z is on the shortest path from v to u, 

d(v,z)+d(z,u)=d(v,u) 

Moreover, d(z, u) ≥ 0 because there are no negative-weight edges. Therefore, 

D[u] ≤ D[z] = d(v,z) ≤ d(v,z) + d(z,u) = d(v,u). 

But this contradicts the definition of u; hence, there can be no such vertex u. 

 
Figure 13.16:  A schematic illustration for the 
justification of Proposition 13.23. 
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The Running Time of Dijkstra's Algorithm 

In this section, we analyze the time complexity of Dijkstra's algorithm. We denote 
with n and m, the number of vertices and edges of the input graph G, respectively. 
We assume that the edge weights can be added and compared in constant time. 
Because of the high level of the description we gave for Dijkstra's algorithm in 
Code Fragment 13.14, analyzing its running time requires that we give more 
details on its implementation. Specifically, we should indicate the data structures 
used and how they are implemented. 

Let us first assume that we are representing the graph G using an adjacency list 
structure. This data structure allows us to step through the vertices adjacent to u 
during the relaxation step in time proportional to their number. It still does not 
settle all the details for the algorithm, however, for we must say more about how 
to implement the other principle data structure in the algorithm—the priority 
queue Q. 

An efficient implementation of the priority queue Q uses a heap (Section 8.3). 
This allows us to extract the vertex u with smallest D label (call to the removeMin 
method) in O(logn) time. As noted in the pseudo-code, each time we update a 
D[z] label we need to update the key of z in the priority queue. Thus, we actually 
need a heap implementation of an adaptable priority queue (Section 8.4). If Q is 
an adaptable priority queue implemented as a heap, then this key update can, for 
example, be done using the replaceKey(e, k), where e is the entry storing the key 
for the vertex z. If e is location-aware, then we can easily implement such key 
updates in O(logn) time, since a location-aware entry for vertex z would allow Q 
to have immediate access to the entry e storing z in the heap (see Section 8.4.2). 
Assuming this implementation of Q, Dijkstra's algorithm runs in O((n + m) logn) 
time. 

 848



Referring back to Code Fragment 13.14, the details of the running-time analysis 
are as follows:  

• Inserting all the vertices in Q with their initial key value can be done in 
O(n logn) time by repeated insertions, or in O(n) time using bottom-up heap 
construction (see Section 8.3.6). 

• At each iteration of the while loop, we spend O(logn) time to remove 
vertex u from Q, and O(degree(v)log n) time to perform the relaxation 
procedure on the edges incident on u. 

• The overall running time of the while loop is 

 

which is O((n +m) log n) by Proposition 13.6. 

Note that if we wish to express the running time as a function of n only, then it is 
O(n2 log n) in the worst case. 

An Alternative Implementation for Dijkstra's Algorithm 

Let us now consider an alternative implementation for the adaptable priority 
queue Q using an unsorted sequence. This, of course, requires that we spend O(n) 
time to extract the minimum element, but it allows for very fast key updates, 
provided Q supports location-aware entries (Section 8.4.2). Specifically, we can 
implement each key update done in a relaxation step in O(1) time—we simply 
change the key value once we locate the entry in Q to update. Hence, this 
implementation results in a running time that is O(n2 + m), which can be 
simplified to O(n2) since G is simple. 

Comparing the Two Implementations 

We have two choices for implementing the adaptable priority queue with 
location-aware entries in Dijkstra's algorithm: a heap implementation, which 
yields a running time of O((n + m)log n), and an unsorted sequence 
implementation, which yields a running time of O(n2). Since both 
implementations would be fairly simple to code up, they are about equal in terms 
of the programming sophistication needed. These two implementations are also 
about equal in terms of the constant factors in their worst-case running times. 
Looking only at these worst-case times, we prefer the heap implementation when 
the number of edges in the graph is small (that is, when m < n2/log n), and we 
prefer the sequence implementation when the number of edges is large (that is, 
when m > n2/log n). 
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Proposition 13.24: Given a simple undirected weighted graph G with n 
vertices and m edges, such that the weight of each edge is nonnegative, and a 
vertex v of G, Dijkstra's algorithm computes the distance from v to all other 
vertices of G in O((n +m) log n) worst-case time, or, alternatively, in O(n2) worst-
case time. 

In Exercise R-13.17, we explore how to modify Dijkstra's algorithm to output a 
tree T rooted at v, such that the path in T from v to a vertex u is a shortest path in 
G from v to u. 

Programming Dijkstra's Algorithm in Java 

Having given a pseudo-code description of Dijkstra's algorithm, let us now 
present Java code for performing Dijkstra's algorithm, assuming we are given an 
undirected graph with positive integer weights. We express the algorithm by 
means of class Dijkstra (Code Fragments 13.15–13.16), which uses a weight 
decoration for each edge e to extract e's weight. Class Dijkstra assumes that each 
edge has a weight decoration. 

Code Fragment 13.15:  Class Dijkstra implementing 
Dijkstra's algorithm. (Continues in Code Fragment 
13.16.) 
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The main computation of Dijkstra's algorithm is performed by method dijkstra 
Visit. An adaptable priority queue Q supporting location-aware entries (Section 
8.4.2) is used. We insert a vertex u into Q with method insert, which returns the 
location-aware entry of u in Q. We "attach" to u its entry in Q by means of 
method setEntry, and we retrieve the entry of u by means of method getEntry. 
Note that associating entries to the vertices is an instance of the decorator design 
pattern (Section 13.3.2). Instead of using an additional data structure for the labels 
D[u], we exploit the fact that D[u] is the key of vertex u in Q, and thus D[u] can 
be retrieved given the entry for u in Q. Changing the label of a vertex z to d in the 
relaxation procedure corresponds to calling method replaceKey(e,d), where e is 
the location-aware entry for z in Q. 
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Code Fragment 13.16:  Method dijkstraVisit of class 
Dijkstra . (Continued from Code Fragment 13.15.) 
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13.7  Minimum Spanning Trees 

Suppose we wish to connect all the computers in a new office building using the least 
amount of cable. We can model this problem using a weighted graph G whose 
vertices represent the computers, and whose edges represent all the possible pairs (u, 
v) of computers, where the weight w((v, u)) of edge (v, u) is equal to the amount of 
cable needed to connect computer v to computer u. Rather than computing a shortest 
path tree from some particular vertex v, we are interested instead in finding a (free) 
tree T that contains all the vertices of G and has the minimum total weight over all 
such trees. Methods for finding such a tree are the focus of this section. 

Problem Definition 

Given a weighted undirected graph G, we are interested in finding a tree T that 
contains all the vertices in G and minimizes the sum 

 

A tree, such as this, that contains every vertex of a connected graph G is said to be a 
spanning tree, and the problem of computing a spanning tree T with smallest total 
weight is known as the minimum spanning tree (or MST) problem. 

The development of efficient algorithms for the minimum spanning tree problem 
predates the modern notion of computer science itself. In this section, we discuss 
two classic algorithms for solving the MST problem. These algorithms are both 
applications of the greedy method, which, as was discussed briefly in the previous 
section, is based on choosing objects to join a growing collection by iteratively 
picking an object that minimizes some cost function. The first algorithm we discuss 
is Kruskal's algorithm, which "grows" the MST in clusters by considering edges in 
order of their weights. The second algorithm we discuss is the Prim-Jarník 
algorithm, which grows the MST from a single root vertex, much in the same way 
as Dijkstra's shortest-path algorithm. 

As in Section 13.6.1, in order to simplify the description of the algorithms, we 
assume, in the following, that the input graph G is undirected (that is, all its edges 
are undirected) and simple (that is, it has no self-loops and no parallel edges). 
Hence, we denote the edges of G as unordered vertex pairs (u,z). 

Before we discuss the details of these algorithms, however, let us give a crucial fact 
about minimum spanning trees that forms the basis of the algorithms. 

A Crucial Fact about Minimum Spanning Trees 
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The two MST algorithms we discuss are based on the greedy method, which in this 
case depends crucially on the following fact. (See Figure 13.17.) 

Figure 13.17:  An illustration of the crucial fact about 
minimum spanning trees. 

 

Proposition 13.25: Let G be a weighted connected graph, and let V1 and V2 
be a partition of the vertices of G into two disjoint nonempty sets. Furthermore, lete 
be an edge in G with minimum weight from among those with one endpoint in V1 
and the other in V2. There is a minimum spanning tree T that has e as one of its 
edges. 

Justification: Let T be a minimum spanning tree of G. If T does not contain 
edge e, the addition of e to T must create a cycle. Therefore, there is some edge f of 
this cycle that has one endpoint in V1 and the other in V2. Moreover, by the choice 
of e, w(e) ≤ w(f). If we remove f from T { e}, we obtain a spanning tree whose total 
weight is no more than before. Since T was a minimum spanning tree, this new tree 
must also be a minimum spanning tree. 

 

In fact, if the weights in G are distinct, then the minimum spanning tree is unique; 
we leave the justification of this less crucial fact as an exercise (C-13.18). In 
addition, note that Proposition 13.25 remains valid even if the graph G contains 
negative-weight edges or negative-weight cycles, unlike the algorithms we 
presented for shortest paths. 
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13.7.1  Kruskal's Algorithm 

The reason Proposition 13.25 is so important is that it can be used as the basis for 
building a minimum spanning tree. In Kruskal's algorithm, it is used to build the 
minimum spanning tree in clusters. Initially, each vertex is in its own cluster all by 
itself. The algorithm then considers each edge in turn, ordered by increasing weight. 
If an edge e connects two different clusters, then e is added to the set of edges of the 
minimum spanning tree, and the two clusters connected by e are merged into a 
single cluster. If, on the other hand, e connects two vertices that are already in the 
same cluster, then e is discarded. Once the algorithm has added enough edges to 
form a spanning tree, it terminates and outputs this tree as the minimum spanning 
tree. 

We give pseudo-code for Kruskal's MST algorithm in Code Fragment 13.17 and we 
show the working of this algorithm in Figures 13.18, 13.19, and 13.20. 

Code Fragment 13.17:  Kruskal's algorithm for the 
MST problem. 

 

As mentioned before, the correctness of Kruskal's algorithm follows from the 
crucial fact about minimum spanning trees, Proposition 13.25. Each time Kruskal's 
algorithm adds an edge (v,u) to the minimum spanning tree T, we can define a 
partitioning of the set of vertices V (as in the proposition) by letting V1 be the 
cluster containing v and letting V2 contain the rest of the vertices in V. This clearly 
defines a disjoint partitioning of the vertices of V and, more importantly, since we 
are extracting edges from Q in order by their weights, e must be a minimum-weight 
edge with one vertex in V1 and the other in V2. Thus, Kruskal's algorithm always 
adds a valid minimum spanning tree edge. 
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Figure 13.18:  Example of an execution of Kruskal's 
MST algorithm on a graph with integer weights. We 
show the clusters as shaded regions and we highlight 
the edge being considered in each iteration. (Continues 
in Figure 13.19). 
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Figure 13.19:  An example of an execution of Kruskal's 
MST algorithm. Rejected edges are shown dashed. 
(Continues in Figure 13.20.) 
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Figure 13.20:  Example of an execution of Kruskal's 
MST algorithm (continued). The edge considered in (n) 
merges the last two clusters, which concludes this 
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execution of Kruskal's algorithm. (Continued from 
Figure 13.19). 

 

The Running Time of Kruskal's Algorithm 

We denote the number of vertices and edges of the input graph G with n and m, 
respectively. Because of the high level of the description we gave for Kruskal's 
algorithm in Code Fragment 13.17, analyzing its running time requires that we 
give more details on its implementation. Specifically, we should indicate the data 
structures used and how they are implemented. 

We can implement the priority queue Q using a heap. Thus, we can initialize Q in 
O(m log m) time by repeated insertions, or in O(m) time using bottom-up heap 
construction (see Section 8.3.6). In addition, at each iteration of the while loop, 
we can remove a minimum-weight edge in O(log m) time, which actually is O(log 
n), since G is simple. Thus, the total time spent performing priority queue 
operations is no more than O(m log n). 

We can represent each cluster C using one of the union-find partition data 
structures discussed in Section 11.6.2. Recall that the sequence-based union-find 
structure allows us to perform a series of N union and find operations in O(N log 
N) time, and the tree-based version can implement such a series of operations in 
O(N log* N) time. Thus, since we perform n − 1 calls to method union and at 
most m calls to find, the total time spent on merging clusters and determining the 
clusters that vertices belong to is no more than O(mlogn) using the sequence-
based approach or O(mlog* n) using the tree-based approach. 

Therefore, using arguments similar to those used for Dijkstra's algorithm, we 
conclude that the running time of Kruskal's algorithm is O((n+ m) log n), which 
can be simplified as O(mlog n), since G is simple and connected. 
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13.7.2  The Prim-Jarník Algorithm 

In the Prim-Jarník algorithm, we grow a minimum spanning tree from a single 
cluster starting from some "root" vertex v. The main idea is similar to that of 
Dijkstra's algorithm. We begin with some vertex v, defining the initial "cloud" of 
vertices C. Then, in each iteration, we choose a minimum-weight edge e = (v,u), 
connecting a vertex v in the cloud C to a vertex u outside of C. The vertex u is then 
brought into the cloud C and the process is repeated until a spanning tree is formed. 
Again, the crucial fact about minimum spanning trees comes to play, for by always 
choosing the smallest-weight edge joining a vertex inside C to one outside C, we 
are assured of always adding a valid edge to the MST. 

To efficiently implement this approach, we can take another cue from Dijkstra's 
algorithm. We maintain a label D[u] for each vertex u outside the cloud C, so that 
D[u] stores the weight of the best current edge for joining u to the cloud C. These 
labels allow us to reduce the number of edges that we must consider in deciding 
which vertex is next to join the cloud. We give the pseudo-code in Code Fragment 
13.18. 

Code Fragment 13.18:  The Prim-Jarník algorithm for 
the MST problem. 
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Analyzing the Prim-Jarn ık Algorithm 

Let n and m denote the number of vertices and edges of the input graph G, 
respectively. The implementation issues for the Prim-Jarník algorithm are similar 
to those for Dijkstra's algorithm. If we implement the adaptable priority queue Q 
as a heap that supports location-aware entries (Section 8.4.2), then we can extract 
the vertex u in each iteration in O(log n) time. In addition, we can update each 
D[z] value in O(log n) time, as well, which is a computation considered at most 
once for each edge (u,z). The other steps in each iteration can be implemented in 
constant time. Thus, the total running time is O((n +m) log n), which is O(m log 
n). 

Illustrating the Prim-Jarn ık Algorithm 

We illustrate the Prim-Jarn ık algorithm in Figures 13.21 through 13.22. 

Figure 13.21:  An illustration of the Prim-Jarník MST 
algorithm. (Continues in Figure 13.22.) 
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Figure 13.22:  An illustration of the Prim-Jarník MST 
algorithm. (Continued from Figure 13.21.) 
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13.8  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 
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Reinforcement 

R-13.1 

Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3 
connected components. Why would it be impossible to draw G with 3 connected 
components if G had 66 edges? 

R-13.2 

Let G be a simple connected graph with n vertices and m edges. Explain why 
O(log m) is O(log n). 

R-13.3 

Draw an adjacency list and adjacency matrix representation of the undirected 
graph shown in Figure 13.1. 

R-13.4 

Draw a simple connected directed graph with 8 vertices and 16 edges such that 
the in-degree and out-degree of each vertex is 2. Show that there is a single 
(nonsimple) cycle that includes all the edges of your graph, that is, you can trace 
all the edges in their respective directions without ever lifting your pencil. (Such 
a cycle is called an Euler tour.) 

R-13.5 

Repeat the previous problem and then remove one edge from the graph. Show 
that now there is a single (nonsimple) path that includes all the edges of your 
graph. (Such a path is called an Euler path.) 

R-13.6 

Bob loves foreign languages and wants to plan his course schedule for the 
following years. He is interested in the following nine language courses: LA15, 
LA16, LA22, LA31, LA32, LA126, LA127, LA141, and LA169. The course 
prerequisites are:  

• 

LA 15: (none) 

• 

LA16: LA15 

• 
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LA22: (none) 

• 

LA31: LA15 

• 

LA32:LA16,LA31 

• 

LA126: LA22, LA32 

• 

LA127: LA16 

• 

LA141:LA22,LA16 

• 

LA169: LA32. 

Find the sequence of courses that allows Bob to satisfy all the prerequisites. 

R-13.7 

Suppose we represent a graph G having n vertices and m edges with the edge 
list structure. Why, in this case, does the insert Vertex method run in O(1) time 
while the remove Vertex method runs in O(m) time? 

R-13.8 

Let G be a graph whose vertices are the integers 1 through 8, and let the 
adjacent vertices of each vertex be given by the table below: 

vertex 

adjacent vertices 

   1    

   (2, 3, 4)    

   2    
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   (1,3,4)    

   3    

   (1, 2, 4)    

   4    

   (1, 2, 3, 6)    

   5    

   (6, 7, 8)    

   6    

   (4, 5, 7)    

   7    

   (5, 6, 8)    

   8    

   (5,7)    

Assume that, in a traversal of G, the adjacent vertices of a given vertex are 
returned in the same order as they are listed in the table above. 

a. 

Draw G. 

b. 

Give the sequence of vertices of G visited using a DFS traversal starting at 
vertex 1. 

c. 

Give the sequence of vertices visited using a BFS traversal starting at vertex 
1. 

R-13.9 

Would you use the adjacency list structure or the adjacency matrix structure in 
each of the following cases? Justify your choice. 

a. 
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The graph has 10,000 vertices and 20,000 edges, and it is important to use as 
little space as possible. 

b. 

The graph has 10,000 vertices and 20,000,000 edges, and it is important to 
use as little space as possible. 

c. 

You need to answer the query areAdjacent as fast as possible, no matter how 
much space you use. 

R-13.10 

Explain why the DFS traversal runs in O(n2) time on an n-vertex simple graph 
that is represented with the adjacency matrix structure. 

R-13.11 

Draw the transitive closure of the directed graph shown in Figure 13.2. 

R-13.12 

Compute a topological ordering for the directed graph drawn with solid edges in 
Figure 13.8d. 

R-13.13 

Can we use a queue instead of a stack as an auxiliary data structure in the 
topological sorting algorithm shown in Code Fragment 13.13? Why or why not? 

R-13.14 

Draw a simple, connected, weighted graph with 8 vertices and 16 edges, each 
with unique edge weights. Identify one vertex as a "start" vertex and illustrate a 
running of Dijkstra's algorithm on this graph. 

R-13.15 

Show how to modify the pseudo-code for Dijkstra's algorithm for the case when 
the graph may contain parallel edges and self-loops. 

R-13.16 

Show how to modify the pseudo-code for Dijkstra's algorithm for the case when 
the graph is directed and we we want to compute shortest directed paths from 
the source vertex to all the other vertices. 
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R-13.17 

Show how to modify Dijkstra's algorithm to not only output the distance from v 
to each vertex in G, but also to output a tree T rooted at v such that the path in T 
from v to a vertex u is a shortest path in G from v to u. 

R-13.18 

There are eight small islands in a lake, and the state wants to build seven 
bridges to connect them so that each island can be reached from any other one 
via one or more bridges. The cost of constructing a bridge is proportional to its 
length. The distances between pairs of islands are given in the following table. 

1    

2    

3    

4    

5    

6    

7    

8    

   1- -    

   240    

   210    

   340    

   280    

   200    

   345    

   120    

   2- -    

   -    
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   265    

   175    

   215    

   180    

   185    

   155    

   3- -    

   -    

   -    

   260    

   115    

   350    

   435    

   195    

   4- -    

   _    

   _    

   _    

   160    

   330    

   295    

   230    

   5- -    

   -    

   -    
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   -    

   -    

   360    

   400    

   170    

   6- -    

   -    

   -    

   -    

   -    

   -    

   175    

   205    

   7- -    

   -    

   -    

   -    

   -    

   -    

   -    

   305    

   8- -    

   _    

   _    

   _    
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   _    

   _    

   _    

   _    

Find which bridges to build to minimize the total construction cost. 

R-13.19 

Draw a simple, connected, undirected, weighted graph with 8 vertices and 16 
edges, each with unique edge weights. Illustrate the execution of Kruskal's 
algorithm on this graph. (Note that there is only one minimum spanning tree for 
this graph.) 

R-13.20 

Repeat the previous problem for the Prim-Jarník algorithm. 

R-13.21 

Consider the unsorted sequence implementation of the priority queue Q used in 
Dijkstra's algorithm. In this case, why is this the best-case running time of 
Dijkstra's algorithm O(n2) on an n-vertex graph? 

R-13.22 

Describe the meaning of the graphical conventions used in Figure 13.6 
illustrating a DFS traversal. What do the colors blue and black refer to? What do 
the arrows signify? How about thick lines and dashed lines? 

R-13.23 

Repeat Exercise R-13.22 for Figure 13.7 illustrating a BFS traversal. 

R-13.24 

Repeat Exercise R-13.22 for Figure 13.9 illustrating a directed DFS traversal. 

R-13.25 

Repeat Exercise R-13.22 for Figure 13.10 illustrating the Floyd-Warshall 
algorithm. 

R-13.26 
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Repeat Exercise R-13.22 for Figure 13.12 illustrating the topological sorting 
algorithm. 

R-13.27 

Repeat Exercise R-13.22 for Figures 13.14 and 13.15 illustrating Dijkstra's 
algorithm. 

R-13.28 

Repeat Exercise R-13.22 for Figures 13.18 and 13.20 illustrating Kruskal's 
algorithm. 

R-13.29 

Repeat Exercise R-13.22 for Figures 13.21 and 13.22 illustrating the Prim-
Jarník algorithm. 

R-13.30 

How many edges are in the transitive closure of a graph that consists of a simple 
directed path of n vertices? 

R-13.31 

Given a complete binary tree T with n nodes, consider a directed graph 

having the nodes of T as its vertices. For each parent-child pair in T, create a 

directed edge in from the parent to the child. Show that the transitive closure 

of has O(n log n) edges. 

R-13.32 

A simple undirected graph is complete if it contains an edge between every pair 
of distinct vertices. What does a depth-first search tree of a complete graph look 
like? 

R-13.33 

Recalling the definition of a complete graph from Exercise R-13.32, what does 
a breadth-first search tree of a complete graph look like? 

R-13.34 

Say that a maze is constructed correctly if there is one path from the start to the 
finish, the entire maze is reachable from the start, and there are no loops around 
any portions of the maze. Given a maze drawn in an n × n grid, how can we 
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determine if it is constructed correctly? What is the running time of this 
algorithm? 

Creativity 

C-13.1 

Say that an n-vertex directed acyclic graph is compact if there is some way 

of numbering the vertices of with the integers from 0 to n − 1 such that  
contains the edge (i, j) if and only if i < j, for all i, j in [0, n − 1]. Give an O(n2)-

time algorithm for detecting if  is compact. 

C-13.2 

Justify Proposition 13.11. 

C-13.3 

Describe, in pseudo-code, an O(n + m)-time algorithm for computing all the 
connected components of an undirected graph G with n vertices and m edges. 

C-13.4 

Let T be the spanning tree rooted at the start vertex produced by the depth-first 
search of a connected, undirected graph G. Argue why every edge of G not in T 
goes from a vertex in T to one of its ancestors, that is, it is a back edge. 

C-13.5 

Suppose we wish to represent an n-vertex graph G using the edge list structure, 
assuming that we identify the vertices with the integers in the set {0,1,..., n − 1}. 
Describe how to implement the collection E to support O(log n)-time 
performance for the areAdjacent method. How are you implementing the 
method in this case? 

C-13.6 

Tamarindo University and many other schools worldwide are doing a joint 
project on multimedia. A computer network is built to connect these schools 
using communication links that form a free tree. The schools decide to install a 
file server at one of the schools to share data among all the schools. Since the 
transmission time on a link is dominated by the link setup and synchronization, 
the cost of a data transfer is proportional to the number of links used. Hence, it 
is desirable to choose a "central" location for the file server. Given a free tree T 
and a node v of T, the eccentricity of v is the length of a longest path from v to 
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any other node of T. A node of T with minimum eccentricity is called a center 
of T. 

a. 

Design an efficient algorithm that, given an n-node free tree T, computes a 
center of T. 

b. 

Is the center unique? If not, how many distinct centers can a free tree have? 

C-13.7 

Show that, if T is a BFS tree produced for a connected graph G, then, for each 
vertex v at level i, the path of T between s and v has i edges, and any other path 
of G between s and v has at least i edges. 

C-13.8 

The time delay of a long-distance call can be determined by multiplying a small 
fixed constant by the number of communication links on the telephone network 
between the caller and callee. Suppose the telephone network of a company 
named RT&T is a free tree. The engineers of RT&T want to compute the 
maximum possible time delay that may be experienced in a long-distance call. 
Given a free tree T, the diameter of T is the length of a longest path between 
two nodes of T. Give an efficient algorithm for computing the diameter of T. 

C-13.9 

A company named RT&T has a network of n switching stations connected by m 
high-speed communication links. Each customer's phone is directly connected 
to one station in his or her area. The engineers of RT&T have developed a 
prototype video-phone system that allows two customers to see each other 
during a phone call. In order to have acceptable image quality, however, the 
number of links used to transmit video signals between the two parties cannot 
exceed 4. Suppose that RT&T's network is represented by a graph. Design an 
efficient algorithm that computes, for each station, the set of stations it can 
reach using no more than 4 links. 

C-13.10 

Explain why there are no forward nontree edges with respect to a BFS tree 
constructed for a directed graph. 

C-13.11 
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An Euler tour of a directed graph with n vertices and m edges is a cycle that 

traverses each edge of exactly once according to its direction. Such a tour 

always exists if is connected and the in-degree equals the out-degree of each 

vertex in . Describe an O(n + m)-time algorithm for finding an Euler tour of 

such a digraph . 

C-13.12 

An independent set of an undirected graph G = (V,E) is a subset I of V such that 
no two vertices in I are adjacent. That is, if u and v are in I, then (u,v) is not in 
E. A maximal independent set M is an independent set such that, if we were to 
add any additional vertex to M, then it would not be independent any more. 
Every graph has a maximal independent set. (Can you see this? This question is 
not part of the exercise, but it is worth thinking about.) Give an efficient 
algorithm that computes a maximal independent set for a graph G. What is this 
method's running time? 

C-13.13 

Let G be an undirected graph G with n vertices and m edges. Describe an O(n + 
m)-time algorithm for traversing each edge of G exactly once in each direction. 

C-13.14 

Justify Proposition 13.14. 

C-13.15 

Give an example of an n-vertex simple graph G that causes Dijkstra's algorithm 
to run in (n2 log n) time when its implemented with a heap. 

C-13.16 

Give an example of a weighted directed graph  with negative-weight edges, 
but no negative-weight cycle, such that Dijkstra's algorithm incorrectly 
computes the shortest-path distances from some start vertex v. 

C-13.17 

Consider the following greedy strategy for finding a shortest path from vertex 
start to vertex goal in a given connected graph. 

1: 

Initialize path to start. 
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2: 

Initialize VisitedVertices to {start}. 

3: 

If start=goal, return path and exit. Otherwise, continue. 

4: 

Find the edge (start,v) of minimum weight such that v is adjacent to start 
and v is not in VisitedVertices. 

5: 

Add v to path. 

6: 

Add v to VisitedVertices. 

7: 

Set start equal to v and go to step 3. 

Does this greedy strategy always find a shortest path from start to goal? Either 
explain intuitively why it works, or give a counter example. 

C-13.18 

Show that if all the weights in a connected weighted graph G are distinct, then 
there is exactly one minimum spanning tree for G. 

C-13.19 

Design an efficient algorithm for finding a longest directed path from a vertex s 

to a vertex t of an acyclic weighted digraph . Specify the graph 
representation used and any auxiliary data structures used. Also, analyze the 
time complexity of your algorithm. 

C-13.20 

Consider a diagram of a telephone network, which is a graph G whose vertices 
represent switching centers, and whose edges represent communication lines 
joining pairs of centers. Edges are marked by their bandwidth, and the 
bandwidth of a path is the bandwidth of its lowest bandwidth edge. Give an 
algorithm that, given a diagram and two switching centers a and b, outputs the 
maximum bandwidth of a path between a and b. 
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C-13.21 

Computer networks should avoid single points of failure, that is, network nodes 
that can disconnect the network if they fail. We say a connected graph G is 
biconnected if it contains no vertex whose removal would divide G into two or 
more connected components. Give an O(n + m)-time algorithm for adding at 
most n edges to a connected graph G, with n ≥ 3 vertices and m ≥ n − 1 edges, 
to guarantee that G is biconnected. 

C-13.22 

NASA wants to link n stations spread over the country using communication 
channels. Each pair of stations has a different bandwidth available, which is 
known a priori. NASA wants to select n − 1 channels (the minimum possible) in 
such a way that all the stations are linked by the channels and the total 
bandwidth (defined as the sum of the individual bandwidths of the channels) is 
maximum. Give an efficient algorithm for this problem and determine its worst-
case time complexity. Consider the weighted graph G = (V,E), where V is the 
set of stations and E is the set of channels between the stations. Define the 
weight w(e) of an edge e in E as the bandwidth of the corresponding channel. 

C-13.23 

Suppose you are given a timetable, which consists of: 

• 

A set A of n airports, and for each airport a in A, a minimum connecting 
time c(a). 

• 

A set F of m flights, and the following, for each flight f in F:  

˚ 

Origin airport a1 (f) in A 

˚ 

Destination airport a2(f) in A 

˚ 

Departure time t1 (f) 

˚ 

Arrival time t2(f). 
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Describe an efficient algorithm for the flight scheduling problem. In this 
problem, we are given airports a and b, and a time t, and we wish to compute a 
sequence of flights that allows one to arrive at the earliest possible time in b 
when departing from a at or after time t. Minimum connecting times at 
intermediate airports should be observed. What is the running time of your 
algorithm as a function of n and m? 

C-13.24 

Inside the Castle of Asymptopia there is a maze, and along each corridor of the 
maze there is a bag of gold coins. The amount of gold in each bag varies. A 
noble knight, named Sir Paul, will be given the opportunity to walk through the 
maze, picking up bags of gold. He may enter the maze only through a door 
marked "ENTER" and exit through another door marked "EXIT." While in the 
maze he may not retrace his steps. Each corridor of the maze has an arrow 
painted on the wall. Sir Paul may only go down the corridor in the direction of 
the arrow. There is no way to traverse a "loop" in the maze. Given a map of the 
maze, including the amount of gold in and the direction of each corridor, 
describe an algorithm to help Sir Paul pick up the most gold. 

C-13.25 

Let be a weighted digraph with n vertices. Design a variation of Floyd-
Warshall's algorithm for computing the lengths of the shortest paths from each 
vertex to every other vertex in O(n3) time. 

C-13.26 

Suppose we are given a directed graph with n vertices, and let M be the n× n 

adjacency matrix corresponding to . 

a. 

Let the product of M with itself (M2) be defined, for 1 ≤ i, j ≤ n, as follows: 

          M2(i, j) =M(i, 1)�M(l,j)�…�M(i,n)�M(n,j), 

where "w" is the Boolean or operator and "a" is Boolean and. Given this 
definition, what does M2(i, j) = 1 imply about the vertices i and j? What if M2(i, 
j) = 0? 

b. 

Suppose M4 is the product of M2 with itself. What do the entries of M4 signify? 
How about the entries of M5 = (M4) (M) ? In general, what information is 
contained in the matrix Mp? 
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c. 

Now suppose that is weighted and assume the following: 

1: 

for 1 ≤ i ≤ n,M(i,i)=0. 

2: 

for 1 ≤ i,j ≤ n, M(i, j) = weight(i, j) if (i, j) is in E. 

3: 

for 1 ≤ i, j ≤ n, M(i, j) = ∞ if (i, j) is not in E. 

Also, let M2 be defined, for 1 ≤ i,j ≤ n, as follows: 

M2(i, j) = min{M(i, 1) +M(1,j),... ,M(i,n) +M(n,j)}. 

If M2(i, j) = k, what may we conclude about the relationship between vertices i 
and j? 

C-13.27 

A graph G is bipartite if its vertices can be partitioned into two sets X and Y 
such that every edge in G has one end vertex in X and the other in Y. Design 
and analyze an efficient algorithm for determining if an undirected graph G is 
bipartite (without knowing the sets X and Y in advance). 

C-13.28 

An old MST method, called Baruvka's algorithm, works as follows on a graph 
G having n vertices and m edges with distinct weights: 

Let Tbe a subgraph of G initially containing just the vertices in V. 

while T has fewer than n − 1 edges do 

for each connected component Q of T do 

Find the lowest-weight edge (v, u) in E with v in Ci and u not in Ci. 

Add (v, u) to T (unless it is already in T). 

return T 

Argue why this algorithm is correct and why it runs in O(mlogn) time. 
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C-13.29 

Let G be a graph with n vertices and m edges such that all the edge weights in G 
are integers in the range [1,n]. Give an algorithm for finding a minimum 
spanning tree for G in O(mlog* n) time. 

Projects 

P-13.1 

Write a class implementing a simplified graph ADT that has only methods 
relevant to undirected graphs and does not include update methods, using the 
adjacency matrix structure. Your class should include a constructor method that 
takes two collections (for example, sequences)—a collection V of vertex 
elements and a collection E of pairs of vertex elements—and produces the graph 
G that these two collections represent. 

P-13.2 

Implement the simplified graph ADT described in Project P-13.1, using the 
adjacency list structure. 

P-13.3 

Implement the simplified graph ADT described in Project P-13.1, using the 
edge list structure. 

P-13.4 

Extend the class of Project P-13.2 to support update methods. 

P-13.5 

Extend the class of Project P-13.2 to support all the methods of the graph ADT 
(including methods for directed edges). 

P-13.6 

Implement a generic BFS traversal using the template method pattern. 

P-13.7 

Implement the topological sorting algorithm. 

P-13.8 

Implement the Floyd-Warshall transitive closure algorithm. 

 880



P-13.9 

Design an experimental comparison of repeated DFS traversals versus the 
Floyd-Warshall algorithm for computing the transitive closure of a digraph. 

P-13.10 

Implement Kruskal's algorithm assuming that the edge weights are integers. 

P-13.11 

Implement the Prim-Jarník algorithm assuming that the edge weights are 
integers. 

P-13.12 

Perform an experimental comparison of two of the minimum spanning tree 
algorithms discussed in this chapter (Kruskal and Prim-Jarník). Develop an 
extensive set of experiments to test the running times of these algorithms using 
randomly generated graphs. 

P-13.13 

One way to construct a maze starts with an n×n grid such that each grid cell is 
bounded by four unit-length walls. We then remove two boundary unit-length 
walls, to represent the start and finish. For each remaining unit-length wall not 
on the boundary, we assign a random value and create a graph G, called the 
dual, such that each grid cell is a vertex in G and there is an edge joining the 
vertices for two cells if and only if the cells share a common wall. The weight of 
each edge is the weight of the corresponding wall. We construct the maze by 
finding a minimum spanning tree T for G and removing all the walls 
corresponding to edges in T. Write a program that uses this algorithm to 
generate mazes and then solves them. Minimally, your program should draw the 
maze and, ideally, it should visualize the solution as well. 

P-13.14 

Write a program that builds the routing tables for the nodes in a computer 
network, based on shortest-path routing, where path distance is measured by 
hop count, that is, the number of edges in a path. The input for this problem is 
the connectivity information for all the nodes in the network, as in the following 
example: 

     241.12.31.14: 241.12.31.15 241.12.31.18 241.12.31.19 

which indicates three network nodes that are connected to 241.12.31.14, that is, 
three nodes that are one hop away. The routing table for the node at address A is 
a set of pairs (B,C), which indicates that, to route a message from A to B, the 
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next node to send to (on the shortest path from A to B) is C. Your program 
should output the routing table for each node in the network, given an input list 
of node connectivity lists, each of which is input in the syntax as shown above, 
one per line. 

Chapter Notes 

The depth-first search method is a part of the "folklore" of computer science, but 
Hopcroft and Tarjan [50, 90] are the ones who showed how useful this algorithm is 
for solving several different graph problems. Knuth [62] discusses the topological 
sorting problem. The simple linear-time algorithm that we describe for determining if 
a directed graph is strongly connected is due to Kosaraju. The Floyd-Warshall 
algorithm appears in a paper by Floyd [35] and is based upon a theorem of Warshall 
[98]. The mark-sweep garbage collection method we describe is one of many 
different algorithms for performing garbage collection. We encourage the reader 
interested in further study of garbage collection to examine the book by Jones [55]. 
To learn about different algorithms for drawing graphs, please see the book chapter 
by Tamassia [88], the annotated bibliography of Di Battista et al. [29], or the book by 
Di Battista et al. [30]. The first known minimum spanning tree algorithm is due to 
Baruvka [9], and was published in 1926. The Prim-Jarník algorithm was first 
published in Czech by Jarník [54] in 1930 and in English in 1957 by Prim [82]. 
Kruskal published his minimum spanning tree algorithm in 1956 [65]. The reader 
interested in further study of the history of the minimum spanning tree problem is 
referred to the paper by Graham and Hell [45]. The current asymptotically fastest 
minimum spanning tree algorithm is a randomized method of Karger, Klein, and 
Tarjan [56] that runs in O(m) expected time. 

Dijkstra [31] published his single-source, shortest path algorithm in 1959. The reader 
interested in further study of graph algorithms is referred to the books by Ahuja, 
Magnanti, and Orlin [6], Cormen, Leiserson, and Rivest [25], Even [33], Gibbons 
[39], Mehlhorn [75], and Tarjan [91], and the book chapter by van Leeuwen [94]. 
Incidentally, the running time for the Prim-Jarník algorithm, and also that of 
Dijkstra's algorithm, can actually be improved to be O(n log n + m) by implementing 
the queue Q with either of two more sophisticated data structures, the "Fibonacci 
Heap" [37] or the "Relaxed Heap" [32]. 
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14.1  Memory Management 

In order to implement any data structure on an actual computer, we need to use 
computer memory.Computer memory is simply a sequence of memory words, each of 
which usually consists of 4, 8, or 16 bytes (depending on the computer). These 
memory words are numbered from 0 to N − 1, where N is the number of memory 
words available to the computer. The number associated with each memory word is 
known as its address. Thus, the memory in a computer can be viewed as basically one 
giant array of memory words. Using this memory to construct data structures (and run 
programs) requires that we manage the computer's memory to provide the space 
needed for data—including variables, nodes, pointers, arrays, and character strings—
and the programs the computer is to run. We discuss the basics of memory 
management in this section. 

14.1.1  Stacks in the Java Virtual Machine 

A Java program is typically compiled into a sequence of byte codes that are defined 
as "machine" instructions for a well-defined model—the Java Virtual Machine 
(JVM). The definition of the JVM is at the heart of the definition of the Java 
language itself. By compiling Java code into the JVM byte codes, rather than the 
machine language of a specific CPU, a Java program can be run on any computer, 
such as a personal computer or a server, that has a program that can emulate the 
JVM. Interestingly, the stack data structure plays a central role in the definition of 
the JVM. 

The Java Method Stack 

Stacks have an important application to the run-time environment of Java 
programs. A running Java program (more precisely, a running Java thread) has a 
private stack, called the Java method stack or just Java stack for short, which is 
used to keep track of local variables and other important information on methods 
as they are invoked during execution. (See Figure 14.1.) 
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More specifically, during the execution of a Java program, the Java Virtual 
Machine (JVM) maintains a stack whose elements are descriptors of the currently 
active (that is, nonterminated) invocations of methods. These descriptors are 
called frames. A frame for some invocation of method "fool" stores the current 
values of the local variables and parameters of method fool, as well as 
information on method "cool" that called fool and on what needs to be 
returned to method "cool". 

Figure 14.1:  An example of a Java method stack: 
method fool has just been called by method cool, 
which itself was previously called by method main. 
Note the values of the program counter, parameters, 
and local variables stored in the stack frames. When 
the invocation of method fool terminates, the 
invocation of method cool will resume its execution 
at instruction 217, which is obtained by incrementing 
the value of the program counter stored in the stack 
frame. 
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Keeping Track of the Program Counter 

The JVM keeps a special variable, called the program counter, to maintain the 
address of the statement the JVM is currently executing in the program. When a 
method "cool" invokes another method "fool", the current value of the 
program counter is recorded in the frame of the current invocation of cool (so 
the JVM will know where to return to when method fool is done). At the top of 
the Java stack is the frame of the running method, that is, the method that 
currently has control of the execution. The remaining elements of the stack are 
frames of the suspended methods, that is, methods that have invoked another 
method and are currently waiting for it to return control to them upon its 
termination. The order of the elements in the stack corresponds to the chain of 
invocations of the currently active methods. When a new method is invoked, a 
frame for this method is pushed onto the stack. When it terminates, its frame is 
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popped from the stack and the JVM resumes the processing of the previously 
suspended method. 

Understanding Call-by-Value Parameter Passing 

The JVM uses the Java stack to perform parameter passing to methods. 
Specifically, Java uses the call-by-value parameter passing protocol. This means 
that the current value of a variable (or expression) is what is passed as an 
argument to a called method. 

In the case of a variable x of a primitive type, such as an int or float, the 
current value of x is simply the number that is associated with x. When such a 
value is passed to the called method, it is assigned to a local variable in the called 
method's frame. (This simple assignment is also illustrated in Figure 14.1.) Note 
that if the called method changes the value of this local variable, it will not 
change the value of the variable in the calling method. 

In the case of a variable x that refers to an object, however, the current value of x 
is the memory address of object x. (We will say more about where this address 
actually is in Section 14.1.2.) Thus, when object x is passed as a parameter to 
some method, the address of x is actually passed. When this address is assigned to 
some local variable y in the called method, y will refer to the same object that x 
refers to. 

Therefore, if the called method changes the internal state of the object that y refers 
to, it will simultaneously be changing the internal state of the object that x refers 
to (which is the same object). Nevertheless, if the called program changes y to 
refer to some other object, x will remain unchanged—it will still refer to the same 
object it was referencing before. 

Thus, the Java method stack is used by the JVM to implement method calls and 
parameter passing. Incidentally, method stacks are not a specific feature of Java. 
They are used in the run-time environment of most modern programming 
languages, including C and C++. 

The Operand Stack 

Interestingly, there is actually another place where the JVM uses a stack. 
Arithmetic expressions, such as ((a + b) * (c + d))/e, are evaluated by the JVM 
using an operand stack. A simple binary operation, such as a + b, is computed by 
pushing a on the stack, pushing b on the stack, and then calling an instruction that 
pops the top two items from the stack, performs the binary operation on them, and 
pushes the result back onto the stack. Likewise, instructions for writing and 
reading elements to and from memory involve the use of pop and push methods 
for the operand stack. Thus, the JVM uses a stack to evaluate arithmetic 
expressions in Java. 
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In Section 7.3.6 we described how to evaluate an arithmetic expression using a 
postorder traversal, which is exactly the algorithm the JVM uses. We described 
that algorithm in a recursive way, however, not in a way that explicitly uses an 
operand stack. Nevertheless, this recursive description is equivalent to a 
nonrecursive version based on using an operand stack. 

Implementing Recursion 

One of the benefits of using a stack to implement method invocation is that it 
allows programs to use recursion. That is, it allows a method to call itself, as 
discussed in Section 3.5. Interestingly, early programming languages, such as 
Cobol and Fortran, did not originally use run-time stacks to implement method 
and procedure calls. But because of the elegance and efficiency that recursion 
allows, all modern programming languages, including the modern versions of 
classic languages like Cobol and Fortran, utilize a run-time stack for method and 
procedure calls. 

In the execution of a recursive method, each box of the recursion trace 
corresponds to a frame of the Java method stack. Also, the content of the Java 
method stack corresponds to the chain of boxes from the initial method invocation 
to the current one. 

To better illustrate how a run-time stack allows for recursive methods, let us 
consider a Java implementation of the classic recursive definition of the factorial 
function, 

n! = n(n − 1)(n − 2)���1, 

as shown in Code Fragment 14.1. 

Code Fragment 14.1:  Recursive method 
factorial. 

 

The first time we call method factorial, its stack frame includes a local 
variable storing the value n. Method factorial() recursively calls itself to 
compute (n − 1)!, which pushes a new frame on the Java run-time stack. In turn, 
this recursive invocation calls itself to compute (n − 2)!, etc. The chain of 
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recursive invocations, and thus the run-time stack, only grows up to size n, 
because calling factorial(1) returns 1 immediately without invoking itself 
recursively. The run-time stack allows for method factorial() to exist 
simultaneously in several active frames (as many as n at some point). Each frame 
stores the value of its parameter n as well as the value to be returned. Eventually, 
when the first recursive call terminates, it returns (n − 1)!, which is then 
multiplied by n to compute n! for the original call of the factorial method. 

14.1.2  Allocating Space in the Memory Heap 

We have already discussed (in Section 14.1.1) how the Java Virtual Machine 
allocates a method's local variables in that method's frame on the Java run-time 
stack. The Java stack is not the only kind of memory available for program data in 
Java, however. 

Dynamic Memory Allocation 

Memory for an object can also be allocated dynamically during a method's 
execution, by having that method utilize the special new operator built into Java. 
For example, the following Java statement creates an array of integers whose size 
is given by the value of variable k: 

          int[] items = new int[k]; 

The size of the array above is known only at runtime. Moreover, the array may 
continue to exist even after the method that created it terminates. Thus, the 
memory for this array cannot be allocated on the Java stack. 

The Memory Heap 

Instead of using the Java stack for this object's memory, Java uses memory from 
another area of storage—the memory heap (which should not be confused with 
the "heap" data structure presented in Chapter 8). We illustrate this memory area, 
together with the other memory areas, in a Java Virtual Machine in Figure 14.2. 
The storage available in the memory heap is divided into blocks, which are 
contiguous array-like "chunks" of memory that may be of variable or fixed sizes. 

To simplify the discussion, let us assume that blocks in the memory heap are of a 
fixed size, say, 1,024 bytes, and that one block is big enough for any object we 
might want to create. (Efficiently handling the more general case is actually an 
interesting research problem.) 

Figure 14.2:  A schematic view of the layout of 
memory addresses in the Java Virtual Machine. 
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Memory Allocation Algorithms 

The Java Virtual Machine definition requires that the memory heap be able to 
quickly allocate memory for new objects, but it does not specify the data structure 
that we should use to do this. One popular method is to keep contiguous "holes" 
of available free memory in a doubly linked list, called the free list. The links 
joining these holes are stored inside the holes themselves, since their memory is 
not being used. As memory is allocated and deallocated, the collection of holes in 
the free lists changes, with the unused memory being separated into disjoint holes 
divided by blocks of used memory. This separation of unused memory into 
separate holes is known as fragmentation. Of course, we would like to minimize 
fragmentation as much as possible. 

There are two kinds of fragmentation that can occur. Internal fragmentation 
occurs when a portion of an allocated memory block is not actually used. For 
example, a program may request an array of size 1000, but only use the first 100 
cells of this array. There isn't much that a run-time environment can do to reduce 
internal fragmentation. External fragmentation, on the other hand, occurs when 
the there is a significant amount of unused memory between several contiguous 
blocks of allocated memory. Since the run-time environment has control over 
where to allocate memory when it is requested (for example, when the new 
keyword is used in Java), the run-time environment should allocate memory in a 
way that tries to reduce external fragmentation as much as reasonably possible. 

Several heuristics have been suggested for allocating memory from the heap so as 
to minimize external fragmentation. The best-fit algorithm searches the entire 
free list to find the hole whose size is closest to the amount of memory being 
requested. The first-fit algorithm searches from the beginning of the free list for 
the first hole that is large enough. The next-fit algorithm is similar, in that it also 
searches the free list for the first hole that is large enough, but it begins its search 
from where it left off previously, viewing the free list as a circularly linked list 
(Section 3.4.1). The worst-fit algorithm searches the free list to find the largest 
hole of available memory, which might be done faster than a search of the entire 
free list if this list were maintained as a priority queue (Chapter 8). In each 
algorithm, the requested amount of memory is subtracted from the chosen 
memory hole and the leftover part of that hole is returned to the free list. 

Although it might sound good at first, the best-fit algorithm tends to produce the 
worst external fragmentation, since the leftover parts of the chosen holes tend to 
be small. The first-fit algorithm is fast, but it tends to produce a lot of external 
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fragmentation at the front of the free list, which slows down future searches. The 
next-fit algorithm spreads fragmentation more evenly throughout the memory 
heap, thus keeping search times low. This spreading also makes it more difficult 
to allocate large blocks, however. The worst-fit algorithm attempts to avoid this 
problem by keeping contiguous sections of free memory as large as possible. 

14.1.3  Garbage Collection 

In some languages, like C and C++, the memory space for objects must be 
explicitly deallocated by the programmer, which is a duty often overlooked by 
beginning programmers and is the source of frustrating programming errors even 
for experienced programmers. Instead, the designers of Java placed the burden of 
memory management entirely on the run-time environment. 

As mentioned above, memory for objects is allocated from the memory heap and 
the space for the instance variables of a running Java program are placed in its 
method stacks, one for each running thread (for the simple programs discussed in 
this book there is typically just one running thread). Since instance variables in a 
method stack can refer to objects in the memory heap, all the variables and objects 
in the method stacks of running threads are called root objects. All those objects 
that can be reached by following object references that start from a root object are 
called live objects. The live objects are the active objects currently being used by 
the running program; these objects should not be deallocated. For example, a 
running Java program may store, in a variable, a reference to a sequence S that is 
implemented using a doubly linked list. The reference variable to S is a root object, 
while the object for S is a live object, as are all the node objects that are referenced 
from this object and all the elements that are referenced from these node objects. 

From time to time, the Java virtual machine (JVM) may notice that available space 
in the memory heap is becoming scarce. At such times, the JVM can elect to 
reclaim the space that is being used for objects that are no longer live, and return the 
reclaimed memory to the free list. This reclamation process is known as garbage 
collection. There are several different algorithms for garbage collection, but one of 
the most used is the mark-sweep algorithm. 

In the mark-sweep garbage collection algorithm, we associate a "mark" bit with 
each object that identifies if that object is live or not. When we determine at some 
point that garbage collection is needed, we suspend all other running threads and 
clear the mark bits of all the objects currently allocated in the memory heap. We 
then trace through the Java stacks of the currently running threads and we mark all 
the (root) objects in these stacks as "live." We must then determine all the other live 
objects—the ones that are reachable from the root objects. To do this efficiently, we 
can use the directed-graph version of the depth-first search traversal (Section 
13.3.1). In this case, each object in the memory heap is viewed as a vertex in a 
directed graph, and the reference from one object to another is viewed as a directed 
edge. By performing a directed DFS from each root object, we can correctly 
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identify and mark each live object. This process is known as the "mark" phase. 
Once this process has completed, we then scan through the memory heap and 
reclaim any space that is being used for an object that has not been marked. At this 
time, we can also optionally coalesce all the allocated space in the memory heap  
into a single block, thereby eliminating external fragmentation for the time being. 
This scanning and reclamation process is known as the "sweep" phase, and when it 
completes, we resume running the suspended threads. Thus, the mark-sweep 
garbage collection algorithm will reclaim unused space in time proportional to the 
number of live objects and their references plus the size of the memory heap. 

Performing DFS In-place 

The mark-sweep algorithm correctly reclaims unused space in the memory heap, 
but there is an important issue we must face during the mark phase. Since we are 
reclaiming memory space at a time when available memory is scarce, we must 
take care not to use extra space during the garbage collection itself. The trouble is 
that the DFS algorithm, in the recursive way we have described it in Section 
13.3.1, can use space proportional to the number of vertices in the graph. In the 
case of garbage collection, the vertices in our graph are the objects in the memory 
heap; hence, we probably don't have this much memory to use. So our only 
alternative is to find a way to perform DFS in-place rather than recursively, that 
is, we must perform DFS using only a constant amount of additional storage. 

The main idea for performing DFS in-place is to simulate the recursion stack 
using the edges of the graph (which in the case of garbage collection correspond 
to object references). When we traverse an edge from a visited vertex v to a new 
vertex w, we change the edge (v, w) stored in v's adjacency list to point back to v's 
parent in the DFS tree. When we return back to v (simulating the return from the 
"recursive" call at w), we can now switch the edge we modified to point back to 
w. Of course, we need to have some way of identifying which edge we need to 
change back. One possibility is to number the references going out of v as 1, 2, 
and so on, and store, in addition to the mark bit (which we are using for the 
"visited" tag in our DFS), a count identifier that tells us which edges we have 
modified. 

Using a count identifier requires an extra word of storage per object. This extra 
word can be avoided in some implementations, however. For example, many 
implementations of the Java virtual machine represent an object as a composition 
of a reference with a type identifier (which indicates if this object is an Integer or 
some other type) and as a reference to the other objects or data fields for this 
object. Since the type reference is always supposed to be the first element of the 
composition in such implementations, we can use this reference to "mark" the 
edge we changed when leaving an object v and going to some object w. We 
simply swap the reference at v that refers to the type of v with the reference at v 
that refers to w. When we return to v, we can quickly identify the edge (v, w) we 
changed, because it will be the first reference in the composition for v, and the 

 893



position of the reference to v's type will tell us the place where this edge belongs 
in v's adjacency list. Thus, whether we use this edge-swapping trick or a count 
identifier, we can implement DFS in-place without affecting its asymptotic 
running time. 

14.2  External Memory and Caching 

There are several computer applications that must deal with a large amount of data. 
Examples include the analysis of scientific data sets, the processing of financial 
transactions, and the organization and maintenance of databases (such as telephone 
directories). In fact, the amount of data that must be dealt with is often too large to fit 
entirely in the internal memory of a computer. 

14.2.1  The Memory Hierarchy 

In order to accommodate large data sets, computers have a hierarchy of different 
kinds of memories, which vary in terms of their size and distance from the CPU. 
Closest to the CPU are the internal registers that the CPU itself uses. Access to such 
locations is very fast, but there are relatively few such locations. At the second level 
in the hierarchy is the cache memory. This memory is considerably larger than the 
register set of a CPU, but accessing it takes longer (and there may even be multiple 
caches with progressively slower access times). At the third level in the hierarchy is 
the internal memory, which is also known as main memory or core memory. The 
internal memory is considerably larger than the cache memory, but also requires 
more time to access. Finally, at the highest level in the hierarchy is the external 
memory, which usually consists of disks, CD drives, DVD drives, and/or tapes. 
This memory is very large, but it is also very slow. Thus, the memory hierarchy for 
computers can be viewed as consisting of four levels, each of which is larger and 
slower than the previous level. (See Figure 14.3.) 

In most applications, however, only two levels really matter—the one that can hold 
all data items and the level just below that one. Bringing data items in and out of the 
higher memory that can hold all items will typically be the computational 
bottleneck in this case. 

Figure 14.3:  The memory hierarchy. 
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Caches and Disks 

Specifically, the two levels that matter most depend on the size of the problem we 
are trying to solve. For a problem that can fit entirely in main memory, the two 
most important levels are the cache memory and the internal memory. Access 
times for internal memory can be as much as 10 to 100 times longer than those for 
cache memory. It is desirable, therefore, to be able to perform most memory 
accesses in cache memory. For a problem that does not fit entirely in main 
memory, on the other hand, the two most important levels are the internal 
memory and the external memory. Here the differences are even more dramatic, 
for access times for disks, the usual general-purpose external-memory device, are 
typically as much as 100000 to 1000000 times longer than those for internal 
memory. 

To put this latter figure into perspective, imagine there is a student in Baltimore 
who wants to send a request-for-money message to his parents in Chicago. If the 
student sends his parents an e-mail message, it can arrive at their home computer 
in about five seconds. Think of this mode of communication as corresponding to 
an internal-memory access by a CPU. A mode of communication corresponding 
to an external-memory access that is 500000 times slower would be for the 
student to walk to Chicago and deliver his message in person, which would take 
about a month if he can average 20 miles per day. Thus, we should make as few 
accesses to external memory as possible. 

14.2.2  Caching Strategies 

Most algorithms are not designed with the memory hierarchy in mind, in spite of the 
great variance between access times for the different levels. Indeed, all of the 
algorithm analyses described in this book so far have assumed that all memory 
accesses are equal. This assumption might seem, at first, to be a great oversight—and 
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one we are only addressing now in the final chapter—but there are good reasons why 
it is actually a reasonable assumption to make. 

One justification for this assumption is that it is often necessary to assume that all 
memory accesses take the same amount of time, since specific device-dependent 
information about memory sizes is often hard to come by. In fact, information about 
memory size may be impossible to get. For example, a Java program that is designed 
to run on many different computer platforms cannot be defined in terms of a specific 
computer architecture configuration. We can certainly use architecture-specific 
information, if we have it (and we will show how to exploit such information later in 
this chapter). But once we have optimized our software for a certain architecture 
configuration, our software will no longer be device-independent. Fortunately, such 
optimizations are not always necessary, primarily because of the second justification 
for the equal-time memory-access assumption. 

Caching and Blocking 

Another justification for the memory-access equality assumption is that operating 
system designers have developed general mechanisms that allow for most memory 
accesses to be fast. These mechanisms are based on two important locality-of-
reference properties that most software possesses:  

• Temporal locality: If a program accesses a certain memory location, then 
it is likely to access this location again in the near future. For example, it is quite 
common to use the value of a counter variable in several different expressions, 
including one to increment the counter's value. In fact, a common adage among 
computer architects is that "a program spends ninety percent of its time in ten 
percent of its code." 

• Spatial locality: If a program accesses a certain memory location, then it 
is likely to access other locations that are near this one. For example, a program 
using an array is likely to access the locations of this array in a sequential or near-
sequential manner. 

Computer scientists and engineers have performed extensive software profiling 
experiments to justify the claim that most software possesses both of these kinds of 
locality-of-reference. For example, a for-loop used to scan through an array will 
exhibit both kinds of locality. 

Temporal and spatial localities have, in turn, given rise to two fundamental design 
choices for two-level computer memory systems (which are present in the interface 
between cache memory and internal memory, and also in the interface between 
internal memory and external memory). 

The first design choice is called virtual memory. This concept consists of providing 
an address space as large as the capacity of the secondary-level memory, and of 
transferring data located in the secondary level, into the primary level, when they 
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are addressed. Virtual memory does not limit the programmer to the constraint of 
the internal memory size. The concept of bringing data into primary memory is 
called caching, and it is motivated by temporal locality. For, by bringing data into 
primary memory, we are hoping that it will be accessed again soon, and we will be 
able to respond quickly to all the requests for this data that come in the near future. 

The second design choice is motivated by spatial locality. Specifically, if data 
stored at a secondary+level memory location l is accessed, then we bring into 
primary+level memory, a large block of contiguous locations that include the 
location l. (See Figure 14.4.) This concept is known as blocking, and it is motivated 
by the expectation that other secondary+level memory locations close to l will soon 
be accessed. In the interface between cache memory and internal memory, such 
blocks are often called cache lines, and in the interface between internal memory 
and external memory, such blocks are often called pages. 

Figure 14.4:  Blocks in external memory. 

 

When implemented with caching and blocking, virtual memory often allows us to 
perceive secondary-level memory as being faster than it really is. There is still a 
problem, however. Primary+level memory is much smaller than secondarylevel 
memory. Moreover, because memory systems use blocking, any program of 
substance will likely reach a point where it requests data from secondary+level 
memory, but the primary memory is already full of blocks. In order to fulfill the 
request and maintain our use of caching and blocking, we must remove some block 
from primary memory to make room for a new block from secondary memory in 
this case. Deciding how to do this eviction brings up a number of interesting data 
structure and algorithm design issues. 

Caching Algorithms 

There are several web applications that must deal with revisiting information 
presented in web pages. These revisits have been shown to exhibit localities of 
reference, both in time and in space. To exploit these localities of reference, it is 
often advantageous to store copies of web pages in a cache memory, so these pages 
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can be quickly retrieved when requested again. In particular, suppose we have a 
cache memory that has m "slots" that can contain web pages. We assume that a web 
page can be placed in any slot of the cache. This is known as a fully associative 
cache. 

As a browser executes, it requests different web pages. Each time the browser 
requests such a web page l, the browser determines (using a quick test) if l is 
unchanged and currently contained in the cache. If l is contained in the cache, then 
the browser satisfies the request using the cached copy. If l is not in the cache, 
however, the page for l is requested over the Internet and transferred into the cache. 
If one of the m slots in the cache is available, then the browser assigns l to one of 
the empty slots. But if all the m cells of the cache are occupied, then the computer 
must determine which previously viewed web page to evict before bringing in l to 
take its place. There are, of course, many different policies that can be used to 
determine the page to evict. 

Page Replacement Algorithms 

Some of the better+known page replacement policies include the following (see 
Figure 14.5):  

• First+in, first+out (FIFO): Evict the page that has been in the cache the 
longest, that is, the page that was transferred to the cache furthest in the past. 

• Least recently used (LRU): Evict the page whose last request occurred 
furthest in the past. 

In addition, we can consider a simple and purely random strategy:  

• Random: Choose a page at random to evict from the cache. 

Figure 14.5: The Random, FIFO, and LRU page 
replacement policies. 

 898



 

The Random strategy is one of the easiest policies to implement, for it only requires 
a random or pseudo+random number generator. The overhead involved in 
implementing this policy is an O(1) additional amount of work per page 
replacement. Moreover, there is no additional overhead for each page request, other 
than to determine whether a page request is in the cache or not. Still, this policy 
makes no attempt to take advantage of any temporal or spatial localities that a user's 
browsing exhibits. 

The FIFO strategy is quite simple to implement, as it only requires a queue Q to 
store references to the pages in the cache. Pages are enqueued in Q when they are 
referenced by a browser, and then are brought into the cache. When a page needs to 
be evicted, the computer simply performs a dequeue operation on Q to determine 
which page to evict. Thus, this policy also requires O(1) additional work per page 
replacement. Also, the FIFO policy incurs no additional overhead for page requests. 
Moreover, it tries to take some advantage of temporal locality. 

The LRU strategy goes a step further than the FIFO strategy, for the LRU strategy 
explicitly takes advantage of temporal locality as much as possible, by always 
evicting the page that was least+recently used. From a policy point of view, this is 
an excellent approach, but it is costly from an implementation point of view. That 
is, its way of optimizing temporal and spatial locality is fairly costly. Implementing 
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the LRU strategy requires the use of a priority queue Q that supports searching for 
existing pages, for example, using special pointers or "locators." If Q is 
implemented with a sorted sequence based on a linked list, then the overhead for 
each page request and page replacement is O(1). When we insert a page in Q or 
update its key, the page is assigned the highest key in Q and is placed at the end of 
the list, which can also be done in O(1) time. Even though the LRU strategy has 
constanttime overhead, using the implementation above, the constant factors 
involved, in terms of the additional time overhead and the extra space for the 
priority queue Q, make this policy less attractive from a practical point of view. 

Since these different page replacement policies have different trade6offs between 
implementation difficulty and the degree to which they seem to take advantage of 
localities, it is natural for us to ask for some kind of comparative analysis of these 
methods to see which one, if any, is the best. 

From a worst-case point of view, the FIFO and LRU strategies have fairly 
unattractive competitive behavior. For example, suppose we have a cache 
containing m pages, and consider the FIFO and LRU methods for performing page 
replacement for a program that has a loop that repeatedly requests m + 1 pages in a 
cyclic order. Both the FIFO and LRU policies perform badly on such a sequence of 
page requests, because they perform a page replacement on every page request. 
Thus, from a worst-case point of view, these policies are almost the worst we can 
imagine—they require a page replacement on every page request. 

This worst-case analysis is a little too pessimistic, however, for it focuses on each 
protocol's behavior for one bad sequence of page requests. An ideal analysis would 
be to compare these methods over all possible page-request sequences. Of course, 
this is impossible to do exhaustively, but there have been a great number of 
experimental simulations done on page-request sequences derived from real 
programs. Based on these experimental comparisons, the LRU strategy has been 
shown to be usually superior to the FIFO strategy, which is usually better than the 
Random strategy. 

14.3  External Searching and B-Trees 

Consider the problem of implementing a dictionary for a large collection of items that 
do not fit in main memory. Since one of the main uses of large dictionaries is in 
databases, we refer to the secondary-memory blocks as disk blocks. Likewise, we 
refer to the transfer of a block between secondary memory and primary memory as a 
disk transfer. Recalling the great time difference that exists between main memory 
accesses and disk accesses, the main goal of maintaining a dictionary in external 
memory is to minimize the number of disk transfers needed to perform a query or 
update. In fact, the difference in speed between disk and internal memory is so great 
that we should be willing to perform a considerable number of internalmemory 
accesses if they allow us to avoid a few disk transfers. Let us, therefore, analyze the 
performance of dictionary implementations by counting the number of disk transfers 
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each would require to perform the standard dictionary search and update operations. 
We refer to this count as the I/O complexity of the algorithms involved. 

Some Inefficient External-Memory Dictionaries 

Let us first consider the simple dictionary implementations that us a list to store n 
entries. If the list is implemented as an unsorted, doubly linked list, then insert and 
remove can be performed with O(1) transfers each, but removals and searching 
require n transfers in the worst case, since each link hop we perform could access a 
different block. This search time can be improved to O(n/B) transfers (see Exercise 
C-14.1), where B denotes the number of nodes of the list that can fit into a block, 
but this is still poor performance. We could alternately implement the sequence 
using a sorted array. In this case, a search performs O(log2n) transfers, via binary 
search, which is a nice improvement. But this solution requires <cr>(n/B) transfers 
to implement an insert or remove operation in the worst case, for we may have to 
access all blocks to move elements up or down. Thus, list-based dictionary 
implementations are not efficient in external memory. 

Since these simple implementations are I/O inefficient, we should consider the 
logarithmic-time internal-memory strategies that use balanced binary trees (for 
example, AVL trees or red-black trees) or other search structures with logarithmic 
average-case query and update times (for example, skip lists or splay trees). These 
methods store the dictionary items at the nodes of a binary tree or of a graph. 
Typically, each node accessed for a query or update in one of these structures will 
be in a different block. Thus, these methods all require O(log2n) transfers in the 
worst case to perform a query or update operation. This performance is good, but 
we can do better. In particular, we can perform dictionary queries and updates using 
only O(logBn) = O(logn/logB) transfers. 

14.3.1  (a,b) Trees 

To reduce the importance of the performance difference between internal-memory 
accesses and external-memory accesses for searching, we can represent our 
dictionary using a multi-way search tree (Section 10.4.1). This approach gives rise 
to a generalization of the (2,4) tree data structure known as the (a,b) tree. 

An (a, b) tree is a multi-way search tree such that each node has between a and b 
children and stores between a − 1 and b − 1 entries. The algorithms for searching, 
inserting, and removing entries in an (a, b) tree are straightforward generalizations 
of the corresponding ones for (2,4) trees. The advantage of generalizing (2,4) trees 
to (a,b) trees is that a generalized class of trees provides a flexible search structure, 
where the size of the nodes and the running time of the various dictionary 
operations depends on the parameters a and b. By setting the parameters a and b 
appropriately with respect to the size of disk blocks, we can derive a data structure 
that achieves good external-memory performance. 
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Definition of an (a,b) Tree 

An (a,b) tree, where a and b are integers, such that 2 ≤ a ≤ (b + 1)/2, is a 
multiway search tree T with the following additional restrictions: 

Size Property: Each internal node has at least a children, unless it is the root, and 
has at most b children. 

Depth Property: All the external nodes have the same depth. 

Proposition 14.1: The height of an (a, b) tree storing n entries is (log 
n/log b) and O(log n/log a). 

Justification: Let T be an (a, b) tree storing n entries, and let h be the 
height of T. We justify the proposition by establishing the following bounds on h: 

. 

By the size and depth properties, the number n ′′ of external nodes of T is at least 
2ah− 1 and at most bh. By Proposition 10.7, n ′′ = n + 1. Thus 

2ah − 1 ≤ n + 1 ≤ bh. 

Taking the logarithm in base 2 of each term, we get 

(h − 1)loga + 1 ≤ log(n + 1) ≤ hlogb. 

 

Search and Update Operations 

We recall that in a multi-way search tree T, each node v of T holds a secondary 
structure D(v), which is itself a dictionary (Section 10.4.1). If T is an (a, b) tree, 
then D(v) stores at most b entries. Let f(b) denote the time for performing a search 
in a D(v) dictionary. The search algorithm in an (a, b) tree is exactly like the one 
for multi-way search trees given in Section 10.4.1. Hence, searching in an (a, b) 
tree T with n entries takes O(f(b)/logalogn) time. Note that if b is a constant (and 
thus a is also), then the search time is O(logn). 

The main application of (a, b) trees is for dictionaries stored in external memory. 
Namely, to minimize disk accesses, we select the parameters a and b so that each 
tree node occupies a single disk block (so that f(b) = 1 if we wish to simply count 
block transfers). Providing the right a and b values in this context gives rise to a 
data structure known as the B-tree, which we will describe shortly. Before we 
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describe this structure, however, let us discuss how insertions and removals are 
handled in (a,b) trees. 

The insertion algorithm for an (a, b) tree is similar to that for a (2,4) tree. An 
overflow occurs when an entry is inserted into a b-node v, which becomes an 
illegal (b + 1)-node. (Recall that a node in a multi-way tree is a d-node if it has d 
children.) To remedy an overflow, we split node v by moving the median entry of 
v into the parent of v and replacing v with a �(b + l)/2� -node v ′ and a �(b + 
1)/2� node v ′. We can now see the reason for requiring a ≤ (b + 1)/2 in the 
definition of an (a,b) tree. Note that as a consequence of the split, we need to 
build the secondary structures D(v ′) and D(v ′′). 

Removing an entry from an (a, b) tree is similar to what was done for (2,4) trees. 
An underflow occurs when a key is removed from an a-node v, distinct from the 
root, which causes v to become an illegal (a − 1)-node. To remedy an underflow, 
we perform a transfer with a sibling of v that is not an a-node or we perform a 
fusion of v with a sibling that is an a-node. The new node w resulting from the 
fusion is a (2a − 1)-node, which is another reason for requiring a≤(b + 1)/2. 

Table 14.1 shows the performance of a dictionary realized with an (a, b) tree. 

Table 14.1:  Time bounds for an n-entry dictionary 
realized by an (a,b) tree T. We assume the secondary 
structure of the nodes of T support search in f(b) time, 
and split and fusion operations in g(b) time, for some 
functions f(b) and g(b), which can be made to be O(1) 
when we are only counting disk transfers. 

 

14.3.2  B-Trees 

A version of the (a, b) tree data structure, which is the best known method for 
maintaining a dictionary in external memory, is called the "B-tree." (See Figure 
14.6.) A B-tree of order d is an (a, b) tree with a = �d/2� and b = d. Since we 
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discussed the standard dictionary query and update methods for (a,b) trees above, 
we restrict our discussion here to the I/O complexity of B-trees. 

Figure 14.6: A B-tree of order 6. 

 

An important property of B-trees is that we can choose d so that the d children 
references and the d − 1 keys stored at a node can all fit into a single disk block, 
implying that d is proportional to B. This choice allows us to assume that a and b 
are also proportional to B in the analysis of the search and update operations on (a, 
b) trees. Thus, f(b) and g(b) are both O(1), for each time we access a node to 
perform a search or an update operation, we need only perform a single disk 
transfer. 

As we have already observed above, each search or update requires that we 
examine at most O(1) nodes for each level of the tree. Therefore, any dictionary 
search or update operation on a B-tree requires only O(log�d/2�n), that is, 
O(logn/logB), disk transfers. For example, an insert operation proceeds down the B-
tree to locate the node in which to insert the new entry. If the node would overflow 
(to have d + 1 children) because of this addition, then this node is split into two 
nodes that have �(d+ 1)/2� and �(d + l)/2� children, respectively. This process is 
then repeated at the next level up, and will continue for at most O(logBn) levels. 

Likewise, if a remove operation results in a node underflow (to have �d/2� — 1 
children), then we move references from a sibling node with at least �d/2� + 1 
children or we need to perform afusion operation of this node with its sibling (and 
repeat this computation at the parent). As with the insert operation, this will 
continue up the B-tree for at most O(logBn) levels. The requirement that each 
internal node have at least <en>d/2<bn> children implies that each disk block used 
to support a B-tree is at least half full. Thus, we have the following: 

Proposition 14.2: A B-tree with n entries has I/O complexity O(logB n) for 
search or update operation, and uses O(n/B) blocks, where B is the size of a block. 

14.4  External-Memory Sorting 

In addition to data structures, such as dictionaries, that need to be implemented in 
external memory, there are many algorithms that must also operate on input sets that 
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are too large to fit entirely into internal memory. In this case, the objective is to solve 
the algorithmic problem using as few block transfers as possible. The most classic 
domain for such external-memory algorithms is the sorting problem. 

Multi-way Merge-Sort 

An efficient way to sort a set S of n objects in external memory amounts to a simple 
external-memory variation on the familiar merge-sort algorithm. The main idea 
behind this variation is to merge many recursively sorted lists at a time, thereby 
reducing the number of levels of recursion. Specifically, a high-level description of 
this multi-way merge-sort method is to divide S into d subsets S1, S2, …, Sd of 
roughly equal size, recursively sort each subset Si, and then simultaneously merge 
all d sorted lists into a sorted representation of S. If we can perform the merge 
process using only O(n/B) disk transfers, then, for large enough values of n, the 
total number of transfers performed by this algorithm satisfies the following 
recurrence: 

t(n) = d · t(n/d) + cn/B, 

for some constant c ≥ 1. We can stop the recursion when n ≤ B, since we can 
perform a single block transfer at this point, getting all of the objects into internal 
memory, and then sort the set with an efficient internal-memory algorithm. Thus, 
the stopping criterion for t(n) is 

t(n) = 1 if n/B≤1. 

This implies a closed-form solution that t(n) is O((n/B)logd(n/B)), which is 

O((n/B)log(n/B)/logd). 

Thus, if we can choose d to be <cr>(M/B), then the worst-case number of block 
transfers performed by this multi-way merge-sort algorithm will be quite low. We 
choose 

d = (1/2)M/B. 

The only aspect of this algorithm left to specify, then, is how to perform the d-way 
merge using only O(n/B) block transfers. 

14.4.1  Multi-way Merging 

We perform the d-way merge by running a "tournament." We let Tbe a complete 
binary tree with d external nodes, and we keep T entirely in internal memory. We 
associate each external node i of T with a different sorted list Si We initialize T by 
reading into each external node i, the first object in Si. This has the effect of reading 
into internal memory the first block of each sorted list Si. For each internal-node 
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parent v of two external nodes, we then compare the objects stored at v's children 
and we associate the smaller of the two with v. We repeat this comparison test at the 
next level up in T, and the next, and so on. When we reach the root r of T, we will 
associate the smallest object from among all the lists with r. This completes the 
initialization for the d-way merge. (See Figure 14.7.) 

Figure 14.7:  A d-way merge. We show a five-way 
merge with B = 4. 

 

In a general step of the d-way merge, we move the object o associated with the root 
r of T into an array we are building for the merged list S ′. We then trace down T, 
following the path to the external node i that o came from. We then read into i the 
next object in the list Si. If o was not the last element in its block, then this next 
object is already in internal memory. Otherwise, we read in the next block of Si to 
access this new object (if Si is now empty, associate the node i with a pseudo-object 
with key +∞). We then repeat the minimum computations for each of the internal 
nodes from i to the root of T. This again gives us the complete tree T. We then 
repeat this process of moving the object from the root of T to the merged list S ′, and 
rebuilding T, until T is empty of objects. Each step in the merge takes O(log d) 
time; hence, the internal time for the d-way merge is O(nlogd). The number of 
transfers performed in a merge is O(n/B), since we scan each list Si in order once, 
and we write out the merged list S ′ once. Thus, we have: 

Proposition 14.3: Given an array-based sequence S of n elements stored in 
external memory, we can sort S using O((n/B)log(n/B)/log(M/B)) transfers and O(n 
log n) internal CPU time, where M is the size of the internal memory and B is the 
size of a block. 

14.5  Exercises 

For source code and help with exercises, please visit 
java.datastructures.net. 
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Reinforcement 

R-14.1 

Describe, in detail, the insertion and removal algorithms for an (a,b) tree. 

R-14.2 

Suppose T is a multi-way tree in which each internal node has at least five and 
at most eight children. For what values of a and b is T a valid (a,b) tree? 

R-14.3 

For what values of d is the tree T of the previous exercise an order-d B-tree? 

R-14.4 

Show each level of recursion in performing a four-way, external-memory 
merge-sort of the sequence given in the previous exercise 

R-14.5 

Consider an initially empty memory cache consisting of four pages. How many 
page misses does the LRU algorithm incur on the following page request 
sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)? 

R-14.6 

Consider an initially empty memory cache consisting of four pages. How many 
page misses does the FIFO algorithm incur on the following page request 
sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)? 

R-14.7 

Consider an initially empty memory cache consisting of four pages. How many 
page misses can the random algorithm incur on the following page request 
sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)? Show all of the random c hoices your 
algorithm made in this case 

R-14.8 

Draw the result of inserting, into an initially empty order-7 B-tree, entries with 
keys (4,40,23,50,11,34,62,78,66,22,90,59,25,72,64,77,39,12), in this order. 

R-14.9 

Show each level of recursion in performing a four-way merge-sort of the 
sequence given in the previous exercise. 
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Creativity 

C-14.1 

Show how to implement a dictionary in external memory, using an unordered 
sequence so that insertions require only O(1) transfers and searches require 
O(n/B) transfers in the worst case, where n is the number of elements and B is 
the number of list nodes that can fit into a disk block. 

C-14.2 

Change the rules that define red-black trees so that each red-black tree T has a 
corresponding (4,8) tree, and vice versa. 

C-14.3 

Describe a modified version of the B-tree insertion algorithm so that each time 
we create an overflow because of a split of a node v, we redistribute keys 
among all of v's siblings, so that each sibling holds roughly the same number of 
keys (possibly cascading the split up to the parent of v). What is the minimum 
fraction of each block that will always be filled using this scheme? 

C-14.4 

Another possible external-memory dictionary implementation is to use a skip 
list, but to collect consecutive groups of O(B) nodes, in individual blocks, on 
any level in the skip list. In particular, we define an order-d B-skip list to be 
such a representation of a skip-list structure, where each block contains at least 
�d/2� list nodes and at most d list nodes. Let us also choose d in this case to be 
the maximum number of list nodes from a level of a skip list that can fit into one 
block. Describe how we should modify the skip-list insertion and removal 
algorithms for a B+skip list so that the expected height of the structure is 
O(logn/logB). 

C-14.5 

Describe an external-memory data structure to implement the queue ADT so 
that the total number of disk transfers needed to process a sequence of n 
enqueue and dequeue operations is O(n/B). 

C-14.6 

Solve the previous problem for the deque ADT. 

C-14.7 
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Describe how to use a B-tree to implement the partition (union-find) ADT (from 
Section 11.6.2) so that the union and find operations each use at most 
O(logn/logB) disk transfers. 

C-14.8 

Suppose we are given a sequence S of n elements with integer keys such that 
some elements in S are colored "blue" and some elements in S are colored "red." 
In addition, say that a red element e pairs with a blue element f if they have the 
same key value. Describe an efficient externalmemory algorithm for finding all 
the red-blue pairs in S. How many disk transfers does your algorithm perform? 

C-14.9 

Consider the page caching problem where the memory cache can hold m pages, 
and we are given a sequence P of n requests taken from a pool of m + 1 possible 
pages. Describe the optimal strategy for the offline algorithm and show that it 
causes at most m + n/m page misses in total, starting from an empty cache. 

C-14.10 

Consider the page caching strategy based on the least frequently used (LFU) 
rule, where the page in the cache that has been accessed the least often is the 
one that is evicted when a new page is requested. If there are ties, LFU evicts 
the least frequently used page that has been in the cache the longest. Show that 
there is a sequence P of n requests that causes LFU to miss (n) times for a cache 
of m pages, whereas the optimal algorithm will miss only O(m) times. 

C-14.11 

Suppose that instead of having the node+search function f(d) = 1 in an order-d 
B-tree T, we have f(d) = logd. What does the asymptotic running time of 
performing a search in T now become? 

C-14.12 

Describe an external-memory algorithm that determines (using O(n/B) transfers) 
whether a list of n integers contains a value occurring more than n/2 times. 

Projects 

P-14.1 

Write a Java class that implements all the methods of the ordered dictionary 
ADT by means of an (a, b) tree, where a and b are integer constants passed as 
parameters to a constructor. 
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P-14.2 

Implement the B-tree data structure, assuming a block size of 1,024 and integer 
keys. Test the number of "disk transfers" needed to process a sequence of 
dictionary operations. 

P-14.3 

Implement an external-memory sorting algorithm and compare it 
experimentally to any of the internal-memory sorting algorithms described in 
this book. 

Chapter Notes 

Knuth [60] has very nice discussions about external-memory sorting and searching, 
and Ullman [93] discusses external memory structures for database systems. The 
reader interested in the study of the architecture of hierarchical memory systems is 
referred to the book chapter by Burger et al. [18] or the book by Hennessy and 
Patterson [48]. The handbook by Gonnet and Baeza-Yates [41] compares the 
performance of a number of different sorting algorithms, many of which are external-
memory algorithms. B-trees were invented by Bayer and McCreight [11] and Comer 
[24] provides a very nice overview of this data structure. The books by Mehlhorn [74] 
and Samet [84] also have nice discussions about B+trees and their variants. Aggarwal 
and Vitter [2] study the I/O complexity of sorting and related problems, establishing 
upper and lower bounds, including the lower bound for sorting given in this chapter. 
Goodrich et al. [44] study the I/O complexity of several computational geometry 
problems. The reader interested in further study of I/O+efficient algorithms is 
encouraged to examine the survey paper of Vitter [95]. 
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Appendix A  Useful Mathematical Facts 

In this appendix we give several useful mathematical facts. We begin with some 
combinatorial definitions and facts. 

Logarithms and Exponents 

The logarithm function is defined as 

logba = c     if     a = bc. 

The following identities hold for logarithms and exponents:  

1 logbac = logba + logbc 

2 logba/c = logba − logbc 

3 logbac = clogba 

4 logba = (logca)/logcb 

5 blog
c

a = alog
c

b 

6 (ba)c = bac 

7 babc = ba+c 

8 ba/bc = ba−c 

In addition, we have the following: 

Proposition A.1: If a > 0, b > 0, and c > a + b, then 

loga + logb ≤ 2logc − 2. 
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Justification: It is enough to show that ab < c2/4. We can write 

ab = a2 + 2ab + b2 − a2 + 2ab − b2/4 

       = (a + b)2 − (a − b)2/4 ≤ (a + b)2/4 < c2/4. 

 

The natural logarithm function lnx = logex, where e = 2.71828…, is the value of the 
following progression: 

e = 1 + 1/1! + 1/2! + 1/3! + ···. 

In addition, 

ex = 1 + x/1! = x2/2! + x3/3! + ··· 

ln(1 + x) = x − x2/2! + x3/3! + x4/4! + ···. 

There are a number of useful inequalities relating to these functions (which derive 
from these definitions). 

Proposition A.2: If x > − 1, 

x/1 + x ≤ ln(1 + x) ≤ x. 

Proposition A.3: For0≤x > 1, 

1 + x ≤ ex ≤ 1/1 − x. 

Proposition A.4: For any two positive real numbers x and n, 

. 

Integer Functions and Relations 

The "floor" and "ceiling" functions are defined respectively as follows:  

1. �x� = the largest integer less than or equal to x. 

2. �x� = the smallest integer greater than or equal to x. 

The modulo operator is defined for integers a ≥ 0 and b > 0 as 
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The factorial function is defined as 

n! = 1 � 2 � 3 ·····(n − 1)n. 

The binomial coefficient is 

 

which is equal to the number of different combinations one can define by choosing k 
different items from a collection of n items (where the order does not matter). The 
name "binomial coefficient" derives from the binomial expansion: 

. 

We also have the following relationships. 

Proposition A.5: If 0 ≤k≤ n, then 

 

Proposition A.6 (Stirling's Approximation): 

 

where ε(n) is O(1/n2). 

The Fibonacci progression is a numeric progression such that F0 = 0, F1 = 1, 

and Fn = Fn−1 + Fn − 2 for n≥ 2. 

Proposition A.7: If Fn is defined by the Fibonacci progression, then Fn is Θ(gn), 

where g = (1 + )/2 is the so-called golden ratio. 

 913



Summations 

There are a number of useful facts about summations. 

Proposition A.8: Factoring summations: 

 

provided a does not depend upon i. 

Proposition A.9: Reversing the order: 

 

One special form of summation is a telescoping sum: 

 

which arises often in the amortized analysis of a data structure or algorithm. 

The following are some other facts about summations that arise often in the analysis 
of data structures and algorithms. 

Proposition A.10: . 

Proposition A.11: . 

Proposition A.12: If k≥ 1 is an integer constant, then 

. 

Another common summation is the geometric sum, , for any fixed real number 
0 < a ≠ 1. 

Proposition A.13: 

. 
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for any real number 0 < a ≠ 1. 

Proposition A.14: 

 

for any real number 0 < a < 1. 

There is also a combination of the two common forms, called the linear exponential 
summation, which has the following expansion: 

Proposition A.15: For 0 < a ≠ 1, and n ≥ 2, 

. 

The nth Harmonic number Hn is defined as 

. 

Proposition A.16: If Hn is the nth harmonic number, then Hn is ln n + Θ(1). 

Basic Probability 

We review some basic facts from probability theory. The most basic is that any 
statement about a probability is defined upon a sample space S, which is defined as 
the set of all possible outcomes from some experiment. We leave the terms 
"outcomes" and "experiment" undefined in any formal sense. 

Example A.17: Consider an experiment that consists of the outcome from flipping a 
coin five times. This sample space has 25 different outcomes, one for each different 
ordering of possible flips that can occur. 

Sample spaces can also be infinite, as the following example illustrates. 

Example A.18: Consider an experiment that consists of flipping a coin until it comes 
up heads. This sample space is infinite, with each outcome being a sequence of i tails 
followed by a single flip that comes up heads, for i = 1,2,3,…. 

A probability space is a sample space S together with a probability function Pr that 
maps subsets of S to real numbers in the interval [0,1]. It captures mathematically the 
notion of the probability of certain "events" occurring. Formally, each subset A of S is 
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called an event, and the probability function Pr is assumed to possess the following 
basic properties with respect to events defined from S:  

1. Pr(ø) = 0. 

2. Pr(S) = 1. 

3. 0 ≤ Pr(A) ≤ 1, for any A�S. 

4. If A,B �S and A∩B = ø, then Pr(AυB) = Pr(A) +Pr(B). 

Two events A and B are independent if 

Pr(A∩B) = Pr(A)·Pr(B). 

A collection of events {A1, A2,…, An} is mutually independent if 

Pr(Ai1 ∩ A i2 ∩…∩Aik) = Pr(Ai1) Pr(Ai2) ···Pr(Aik). 

for any subset {Ai1,Ai2,…,Aik}. 

The conditional probability that an event A occurs, given an event B, is denoted as 
Pr(A|B), and is defined as the ratio 

Pr(A∩B)/Pr(B), 

assuming that Pr(B) > 0. 

An elegant way for dealing with events is in terms of random variables. Intuitively, 
random variables are variables whose values depend upon the outcome of some 
experiment. Formally, a random variable is a function X that maps outcomes from 
some sample space S to real numbers. An indicator random variable is a random 
variable that maps outcomes to the set {0,1}. Often in data structure and algorithm 
analysis we use a random variable X to characterize the running time of a randomized 
algorithm. In this case, the sample space S is defined by all possible outcomes of the 
random sources used in the algorithm. 

We are most interested in the typical, average, or "expected" value of such a random 
variable. The expected value of a random variable X is defined as 

 

where the summation is defined over the range of X (which in this case is assumed to 
be discrete). 

Proposition A.19 (The Linearity of Expectation): Let X and Y be two random 
variables and let c be a number. Then 
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E(X + Y) = E(X) + E(Y)     and     E(cX) = cE(X). 

Example A.20: Let X be a random variable that assigns the outcome of the roll of 
two fair dice to the sum of the number of dots showing. Then E(X) = 7. 

Justification: To justify this claim, let X1 and X2 be random variables 
corresponding to the number of dots on each die. Thus, X1 = X2 (i.e., they are two 
instances of the same function) and E(X) = E(X1 + X2) = E(X1) + E(X2). Each
outcome of the roll of a fair die occurs with probability 1/6. Thus 

 

E(xi) = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 7/2, 

for i = 1,2. Therefore, E(X) = 7. 

 

Two random variables X and Y are independent if 

Pr(X = x|Y = y)= Pr(X = x), 

for all real numbers x and y. 

Proposition A.21: If two random variables X and Y are independent, then 

E(XY) = E(X)E(Y). 

Example A.22: Let X be a random variable that assigns the outcome of a roll of two 
fair dice to the product of the number of dots showing. Then E(X) = 49/4. 

Justification: Let X1 and X2 be random variables denoting the number of dots 
on each die. The variables X1 and X2 are clearly independent; hence 

E(X) = E(X1X2) = E(X1)E(X2) = (7/2)2 = 49/4. 

 

The following bound and corollaries that follow from it are known as Chernoff 
bounds. 

Proposition A.23: Let X be the sum of a finite number of independent 0/1 random 
variables and let μ > 0 be the expected value of X. Then, for δ > 0, 

. 

Useful Mathematical Techniques 
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To compare the growth rates of different functions, it is sometimes helpful to apply 
the following rule. 

Proposition A.24 (L'Hôpital's Rule): If we have limn→∞f(n) = +∞ and we have 
limn→∞g(n) = +∞, then limn→∞f(n)/g(n) = limn→∞ f′(n)/g′(n), where f′(n) and g′(n) 
respectively denote the derivatives of f(n) and g (n). 

In deriving an upper or lower bound for a summation, it is often useful to split a 
summation as follows: 

. 

Another useful technique is to bound a sum by an integral. If f is a nonde-creasing 
function, then, assuming the following terms are defined, 

. 

There is a general form of recurrence relation that arises in the analysis of divide-and-
conquer algorithms: 

T(n) = aT(n/b) + f(n), 

for constants a ≥ 1 and b>1. 

Proposition A.25: Let T(n) be defined as above. Then 

1. If f(n) is O(nlog
b

a −ε, for some constant � > 0, then T(n) is Θ(nlog
b

a). 

2. If f(n) is Θ(nlog
b

alogkn), for a fixed nonnegative integer k≥ 0, then T(n) is 
Θ(nlog

b
a logk+1n). 

3. If f(n) is Ω(nlog
b

a+�), for some constant � > 0, and if a f (n/b) ≤ cf(n), then 
T(n) isΘ(f(n)). 

This proposition is known as the master method for characterizing divide-and-
conquer recurrence relations asymptotically. 
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