Data Structures and Algorithms in Java
Michael T. Goodrich

Department of Computer Science University of California, Irvine

Roberto Tamassia
Department of Computer Science Brown University
0-471-73884-0

Fourth Edition

John Wiley & Sons, Inc.

ASSOCIATE PUBLISHER Dan Sayre
MARKETING DIRECTOR Frank Lyman
EDITORIAL ASSISTANT Bridget Morrisey
SENIOR PRODUCTION EDITOR Ken Santor
COVER DESIGNER Hope Miller
COVER PHOTO RESEARCHER Lisa Gee
COVER PHOTO Ralph A.

Clevenger/Corbis

This book was set in A TEA by the authors and printed and bound by R.R. Donnelley
- Crawfordsville. The cover was printed by Phoenix Color, Inc.

Front Matter
To Karen, Paul, Anna, and Jack

-Michael T. Goodrich

To Isabel

-Roberto Tamassia

Preface to the Fourth Edition

This fourth edition is designed to provide an introduction to data structures and
algorithms, including their design, analysis, and implementation. In terms of curricula
based on the IEEE/ACM 2001 Computing Curriculum, this book is appropriate for
use in the courses CS102 (1/0/B versions), CS103 (I1/0/B versions), CS111 (A
version), and CS112 (A/I/O/F/H versions). We discuss its use for such courses in
more detail later in this preface.

The major changes, with respect to the third edition, are the following:
» Added new chapter on arrays, linked lists, and recursion.
» Added new chapter on memory management.
* Full integration with Java 5.0.
* Better integration with the Java Collections Framework.
* Better coverage of iterators.

* Increased coverage of array lists, including the replacement of uses of the class
java.util.Vector with java.util. ArrayList.

 Update of all Java APlIs to use generic types.
 Simplified list, binary tree, and priority queue ADTS.
* Further streamlining of mathematics to the seven most used functions.

» Expanded and revised exercises, bringing the total number of reinforcement,
creativity, and project exercises to 670. Added exercises include new projects on
maintaining a game's high-score list, evaluating postfix and infix expressions,
minimax game-tree evaluation, processing stock buy and sell orders, scheduling
CPU jobs, n-body simulation, computing DNA-strand edit distance, and creating
and solving mazes.

This book is related to the following books:

* M.T. Goodrich, R. Tamassia, and D.M. Mount, Data Structures and Algorithms
in C++, John Wiley & Sons, Inc., 2004. This book has a similar overall structure to
the present book, but uses C++ as the underlying language (with some modest, but
necessary pedagogical differences required by this approach). Thus, it could make

for a handy companion book in a curriculum that allows for either a Java or C++
track in the introductory courses.

* M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis, and
Internet Examples, John Wiley & Sons, Inc., 2002. This is a textbook for a more
advanced algorithms and data structures course, such as CS210 (T/W/C/S versions)
in the IEEE/ACM 2001 curriculum.

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as a
vital subject in computing, for the study of data structures is part of the core of
every collegiate computer science and computer engineering major program we are
familiar with. Typically, the introductory courses are presented as a two- or three-
course sequence. Elementary data structures are often briefly introduced in the first
programming or introduction to computer science course and this is followed by a
more in-depth introduction to data structures in the following course(s).
Furthermore, this course sequence is typically followed at a later point in the
curriculum by a more in-depth study of data structures and algorithms. We feel that
the central role of data structure design and analysis in the curriculum is fully
justified, given the importance of efficient data structures in most software systems,
including the Web, operating systems, databases, compilers, and scientific
simulation systems.

With the emergence of the object-oriented paradigm as the framework of choice for
building robust and reusable software, we have tried to take a consistent
objectoriented viewpoint throughout this text. One of the main ideas of the object-
oriented approach is that data should be presented as being encapsulated with the
methods that access and modify them. That is, rather than simply viewing data as a
collection of bytes and addresses, we think of data as instances of an abstract data
type (ADT) that include a repertory of methods for performing operations on the
data. Likewise, object-oriented solutions are often organized utilizing common
design patterns, which facilitate software reuse and robustness. Thus, we present
each data structure using ADTs and their respective implementations and we
introduce important design patterns as means to organize those implementations
into classes, methods, and objects.

For each ADT presented in this book, we provide an associated Java interface.
Also, concrete data structures realizing the ADTs are provided as Java classes
implementing the interfaces above. We also give Java implementations of
fundamental algorithms (such as sorting and graph traversals) and of sample
applications of data structures (such as HTML tag matching and a photo album).
Due to space limitations, we sometimes show only code fragments in the book and
make additional source code available on the companion Web site,
http://java.datastructures.net.

The Java code implementing fundamental data structures in this book is organized
in a single Java package, net.datastructures. This package forms a coherent library
of data structures and algorithms in Java specifically designed for educational
purposes in a way that is complementary with the Java Collections Framework.

Web Added-Value Education

This book is accompanied by an extensive Web site:

http://java.datastructures.net.

Students are encouraged to use this site along with the book, to help with exercises
and increase understanding of the subject. Instructors are likewise welcome to use
the site to help plan, organize, and present their course materials.

For the Student

for all readers, and specifically for students, we include:
. All the Java source code presented in this book.
. The student version of the net.datastructures package.
. Slide handouts (four-per-page) in PDF format.
. A database of hints to all exercises, indexed by problem number.
. Java animations and interactive applets for data structures and algorithms.
. Hyperlinks to other data structures and algorithms resources.

We feel that the Java animations and interactive applets should be of particular
interest, since they allow readers to interactively "play" with different data
structures, which leads to better understanding of the different ADTSs. In addition,
the hints should be of considerable use to anyone needing a little help getting
started on certain exercises.

For the Instructor

For instructors using this book, we include the following additional teaching aids:
. Solutions to over two hundred of the book's exercises.
. A keyword-searchable database of additional exercises.

. The complete net.datastructures package.

. Additional Java source code.
. Slides in Powerpoint and PDF (one-per-page) format.

. Self-contained special-topic supplements, including discussions on convex
hulls, range trees, and orthogonal segment intersection.

The slides are fully editable, so as to allow an instructor using this book full
freedom in customizing his or her presentations.

A Resource for Teaching Data Structures and Algorithms

This book contains many Java-code and pseudo-code fragments, and over 670
exercises, which are divided into roughly 40% reinforcement exercises, 40%
creativity exercises, and 20% programming projects.

This book can be used for courses CS102 (1/0/B versions), CS103 (1/0/B versions),
CS111 (A version), and/or CS112 (A/l/O/F/H versions) in the IEEE/ACM 2001
Computing Curriculum, with instructional units as outlined in Table 0.1.

Table 0.1: Material for Units in the IEEE/ACM 2001
Computing Curriculum.

Instructional Unit

Relevant Material

PL1. Overview of Programming Languages
Chapters 1 & 2

PL2. Virtual Machines

Sections 14.1.1,14.1.2, & 14.1.3

PL3. Introduction to Language Translation
Section 1.9

PL4. Declarations and Types

Sections 1.1, 2.4, & 2.5

PL5. Abstraction Mechanisms

&13.1

PL6. Object-Oriented Programming
Chapters 1 & 2 and Sections 6.2.2,6.3,7.3.7,8.1.2, & 13.3.1

PF1. Fundamental Programming Constructs

Chapters 1 & 2

PF2. Algorithms and Problem-Solving

Sections 1.9 & 4.2

PF3. Fundamental Data Structures

Sections 3.1, 5.1-3.2,5.3,,6.1-6.4,7.1,7.3,8.1, 8.3,9.1-9.4, 10.1, & 13.1
PF4. Recursion

Section 3.5

SE1. Software Design

Chapter 2 and Sections 6.2.2, 6.3, 7.3.7,8.1.2, & 13.3.1

SE2. Using APIs

&13.1

ALL. Basic Algorithmic Analysis
Chapter 4

AL2. Algorithmic Strategies

Sections 11.1.1,11.7.1,12.2.1,12.4.2, & 12.5.2

AL3. Fundamental Computing Algorithms

Sections 8.1.4, 8.2.3, 8.3.5, 9.2, & 9.3.3, and Chapters 11, 12, & 13

DS1. Functions, Relations, and Sets
Sections 4.1, 8.1, & 11.6
DS3. Proof Techniques

Sections 4.3, 6.1.4,7.3.3, 8.3, 10.2, 10.3, 10.4, 10.5,11.2.1,11.3, 11.6.2,
13.1,13.3.1, 134, & 135

DS4. Basics of Counting

Sections 2.2.3 & 11.1.5

DS5. Graphs and Trees
Chapters 7, 8, 10, & 13
DS6. Discrete Probability

Appendix A and Sections 9.2.2,9.4.2,11.2.1, & 11.7

Chapter Listing

The chapters for this course are organized to provide a pedagogical path that starts
with the basics of Java programming and object-oriented design, moves to concrete
structures like arrays and linked lists, adds foundational techniques like recursion and
algorithm analysis, and then presents the fundamental data structures and algorithms,
concluding with a discussion of memory management (that is, the architectural
underpinnings of data structures). Specifically, the chapters for this book are
organized as follows:

1.

2.

10.
11.
12.

13.

Java Programming Basics
Object-Oriented Design
Arrays, Linked Lists, and Recursion
Analysis Tools

Stacks and Queues

Lists and Iterators

Trees

Priority Queues

Maps and Dictionaries
Search Trees

Sorting, Sets, and Selection
Text Processing

Graphs

14. Memory

A. Useful Mathematical Facts

Prerequisites

We have written this book assuming that the reader comes to it with certain
knowledge.That is, we assume that the reader is at least vaguely familiar with a
high-level programming language, such as C, C++, or Java, and that he or she
understands the main constructs from such a high-level language, including:

. Variables and expressions.

. Methods (also known as functions or procedures).

. Decision structures (such as if-statements and switch-statements).
. Iteration structures (for-loops and while-loops).

For readers who are familiar with these concepts, but not with how they are
expressed in Java, we provide a primer on the Java language in Chapter 1. Still, this
book is primarily a data structures book, not a Java book; hence, it does not provide
a comprehensive treatment of Java. Nevertheless, we do not assume that the reader
is necessarily familiar with object-oriented design or with linked structures, such as
linked lists, for these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat familiar
with topics from high-school mathematics. Even so, in Chapter 4, we discuss the
seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix A.

About the Authors

Professors Goodrich and Tamassia are well-recognized researchers in algorithms
and data structures, having published many papers in this field, with applications to
Internet computing, information visualization, computer security, and geometric
computing. They have served as principal investigators in several joint projects
sponsored by the National Science Foundation, the Army Research Office, and the

Defense Advanced Research Projects Agency. They are also active in educational
technology research, with special emphasis on algorithm visualization systems.

Michael Goodrich received his Ph.D. in Computer Science from Purdue University
in 1987. He is currently a professor in the Department of Computer Science at
University of California, Irvine. Previously, he was a professor at Johns Hopkins
University. He is an editor for the International Journal of Computational
Geometry & Applications and Journal of Graph Algorithms and Applications.

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering from
the University of Illinois at Urbana-Champaign in 1988. He is currently a professor
in the Department of Computer Science at Brown University. He is editor-in-chief
for the Journal of Graph Algorithms and Applications and an editor for
Computational Geometry: Theory and Applications. He previously served on the
editorial board of IEEE Transactions on Computers.

In addition to their research accomplishments, the authors also have extensive
experience in the classroom. For example, Dr. Goodrich has taught data structures
and algorithms courses, including Data Structures as a freshman-sophomore level
course and Introduction to Algorithms as an upper level course. He has earned
several teaching awards in this capacity. His teaching style is to involve the students
in lively interactive classroom sessions that bring out the intuition and insights
behind data structuring and algorithmic techniques. Dr. Tamassia has taught Data
Structures and Algorithms as an introductory freshman-level course since 1988.
One thing that has set his teaching style apart is his effective use of interactive
hypermedia presentations integrated with the Web.

The instructional Web sites, datastructures.net and
algorithmdesign.net, supported by Drs. Goodrich and Tamassia, are used as
reference material by students, teachers, and professionals worldwide.

Acknowledgments

There are a number of individuals who have made contributions to this book.

We are grateful to all our research collaborators and teaching assistants, who
provided feedback on early drafts of chapters and have helped us in developing
exercises, programming assignments, and algorithm animation systems.In
particular, we would like to thank Jeff Achter, Vesselin Arnaudov, James Baker,
Ryan Baker,Benjamin Boer, Mike Boilen, Devin Borland, Lubomir Bourdev, Stina
Bridgeman, Bryan Cantrill, Yi-Jen Chiang, Robert Cohen, David Ellis, David
Emory, Jody Fanto, Ben Finkel, Ashim Garg, Natasha Gelfand, Mark Handy,
Michael Horn, Beno”it Hudson, Jovanna Ignatowicz, Seth Padowitz, James
Piechota, Dan Polivy, Seth Proctor, Susannah Raub, Haru Sakai, Andy Schwerin,
Michael Shapiro, MikeShim, Michael Shin, Galina Shubina, Christian Straub, Ye

10

Sun, Nikos Triandopoulos, Luca Vismara, Danfeng Yao, Jason Ye, and Eric
Zamore.

Lubomir Bourdev, Mike Demmer, Mark Handy, Michael Horn, and Scott Speigler
developed a basic Java tutorial, which ultimately led to Chapter 1, Java
Programming.

Special thanks go to Eric Zamore, who contributed to the development of the Java
code examples in this book and to the initial design, implementation, and testing of
the net.datastructures library of data structures and algorithms in Java. We are also
grateful to Vesselin Arnaudov and ike Shim for testing the current version of
net.datastructures

Many students and instructors have used the two previous editions of this book and
their experiences and responses have helped shape this fourth edition.

There have been a number of friends and colleagues whose comments have lead to
improvements in the text. We are particularly thankful to Karen Goodrich, Art
Moorshead, David Mount, Scott Smith, and loannis Tollis for their insightful
comments. In addition, contributions by David Mount to Section 3.5 and to several
figures are gratefully acknowledged.

We are also truly indebted to the outside reviewers and readers for their copious
comments, emails, and constructive criticism, which were extremely useful in
writing the fourth edition. We specifically thank the following reviewers for their
comments and suggestions: Divy Agarwal, University of California, Santa Barbara;
Terry Andres, University of Manitoba; Bobby Blumofe, University of Texas,
Austin; Michael Clancy, University of California, Berkeley; Larry Davis,
University of Maryland; Scott Drysdale, Dartmouth College; Arup Guha,
University of Central Florida; Chris Ingram, University of Waterloo; Stan Kwasny,
Washington University; Calvin Lin, University of Texas at Austin; John Mark
Mercer, McGill University; Laurent Michel, University of Connecticut; Leonard
Myers, California Polytechnic State University, San Luis Obispo; David Naumann,
Stevens Institute of Technology; Robert Pastel, Michigan Technological University;
Bina Ramamurthy, SUNY Buffalo; Ken Slonneger, University of lowa; C.V.
Ravishankar, University of Michigan; Val Tannen, University of Pennsylvania;
Paul VVan Arragon, Messiah College; and Christopher Wilson, University of
Oregon.

The team at Wiley has been great. Many thanks go to Lilian Brady, Paul Crockett,
Simon Durkin, Lisa Gee, Frank Lyman, Madelyn Lesure, Hope Miller, Bridget
Morrisey, Ken Santor, Dan Sayre, Bruce Spatz, Dawn Stanley, Jeri Warner, and
Bill Zobrist.

The computing systems and excellent technical support staff in the departments of

computer science at Brown University and University of California, Irvine gave us
reliable working environments. This manuscript was prepared primarily with the

11

LATEN typesetting package for the text and Adobe FrameMaker® and Microsoft
Visio® for the figures.

Finally, we would like to warmly thank Isabel Cruz, Karen Goodrich, Giuseppe Di
Battista, Franco Preparata, loannis Tollis, and our parents for providing advice,

encouragement, and support at various stages of the preparation of this book. We
also thank them for reminding us that there are things in life beyond writing books.

Michael T. Goodrich

Roberto Tamassia

Chapter 1 Java Programming Basics

Contents

1.1

12

Getting Started: Classes, Types, and Objects...

[o o T R

15

1.3

4 o] r =11 o] 1=

20

1.3.1

20

21

1.3.3

13

Casting and Autoboxing/Unboxing in
EXpressions.o aaan-

25

1.4

Control Flow. ... e e e e e e e eeeeeans

27

1.4.1

The 1f and Switch

StatemenNtsS. oot e e e e e e e e aa e

27

1.4.3

Explicit Control-Flow

StatementsS. e eeeaaaaaaaa

32

1.5

Declaring

N = V£ T

36
1.5.2

Arrays are

(] o =T o2 o

37

1.6

Simple Input and Output.

14

39

1.7

An Example Program. oo aaaaaaann
42

1.8

Nested Classes and Packages....................
45

1.9

Writing a Java Program.

47

1.9.4

Testing and
1= o 18 T o |1 o T P

53
1.10
EXErCESES. - o i i e e e e e e e e e e e e e m—a————aa

55

jJava.datastructures.net

15

1.1 Getting Started: Classes, Types, and Objects

Building data structures and algorithms requires that we communicate detailed
instructions to a computer, and an excellent way to perform such communication is
using a high-level computer language, such as Java. In this chapter, we give a brief
overview of the Java programming language, assuming the reader is somewhat
familiar with an existing high-level language. This book does not provide a complete
description of the Java language, however. There are major aspects of the language
that are not directly relevant to data structure design, which are not included here,
such as threads and sockets. For the reader interested in learning more about Java,
please see the notes at the end of this chapter. We begin with a program that prints
"Hello Universe!" on the screen, which is shown in a dissected form in Figure 1.1.

Figure 1.1: A "Hello Universe!" program.

16

The main "actors" in a Java program are objects. Objects store data and provide
methods for accessing and modifying this data. Every object is an instance of a class,
which defines the type of the object, as well as the kinds of operations that it
performs. The critical members of a class in Java are the following (classes can also
contain inner class definitions, but let us defer discussing this concept for now):

» Data of Java objects are stored in instance variables (also called fields).
Therefore, if an object from some class is to store data, its class must specify the
instance variables for such objects. Instance variables can either come from base
types (such as integers, floating-point numbers, or Booleans) or they can refer to
objects of other classes.

» The operations that can act on data, expressing the "messages” objects respond to,
are called methods, and these consist of constructors, procedures, and functions.
They define the behavior of objects from that class.

How Classes Are Declared

In short, an object is a specific combination of data and the methods that can
process and communicate that data. Classes define the types for objects; hence,
objects are sometimes referred to as instances of their defining class, because they
take on the name of that class as their type.

An example definition of a Java class is shown in Code Fragment 1.1,
Code Fragment 1.1: A Counter class for a simple
counter, which can be accessed, incremented, and
decremented.

17

In this example, notice that the class definition is delimited by braces, that is, it
begins with a "{" and ends with a "} ". In Java, any set of statements between the
braces "{" and "}" define a program block.

As with the Universe class, the Counter class is public, which means that any other
class can create and use a Counter object. The Counter has one instance variable—
an integer called count. This variable is initialized to 0 in the constructor method,
Counter, which is called when we wish to create a new Counter object (this method
always has the same name as the class it belongs to). This class also has one
accessor method, getCount, which returns the current value of the counter. Finally,
this class has two update methods—a method, incrementCount, which increments
the counter, and a method, decrementCount, which decrements the counter.
Admittedly, this is a pretty boring class, but at least it shows us the syntax and
structure of a Java class. It also shows us that a Java class does not have to have a
main method (but such a class can do nothing by itself).

The name of a class, method, or variable in Java is called an identifier, which can be
any string of characters as long as it begins with a letter and consists of letters,
numbers, and underscore characters (where "letter” and "number" can be from any
written language defined in the Unicode character set). We list the exceptions to
this general rule for Java identifiers in Table 1.1.

Table 1.1: A listing of the reserved words in Java.
These names cannot be used as method or variable
names in Java.

Reserved Words

abstract

18

else
interface
switch
boolean
extends
long
synchronized
break
false
native
this

byte
final

new
throw
case
finally
null
throws
catch
float
package
transient
char

for

19

private
true
class
goto
protected
try
const

if

public
void
continue
implements
return
volatile
default
import
short
while

do
instanceof
static
double
int

super

Class Modifiers

20

Class modifiers are optional keywords that precede the class keyword. We have
already seen examples that use the publ 1c keyword. In general, the different class
modifiers and their meaning is as follows:

. The abstract class modifier describes a class that has abstract methods.
Abstract methods are declared with the abstract keyword and are empty (that
is, they have no block defining a body of code for this method). A class that has
nothing but abstract methods and no instance variables is more properly called an
interface (see Section 2.4), so an abstract class usually has a mixture of
abstract methods and actual methods. (We discuss abstract classes and their uses
in Section 2.4.)

. The Final class modifier describes a class that can have no subclasses.
(We will discuss this concept in the next chapter.)

. The publ 1c class modifier describes a class that can be instantiated or
extended by anything in the same package or by anything that imports the
class. (This is explained in more detail in Section 1.8.) Public classes are declared
in their own separate file called classname. java, where “classname” is the
name of the class.

. If the publ 1c class modifier is not used, the class is considered friendly.
This means that it can be used and instantiated by all classes in the same package.
This is the default class modifier.

1.1.1 Base Types

The types of objects are determined by the class they come from. For the sake of
efficiency and simplicity, Java also has the following base types (also called
primitive types), which are not objects:

boolean

Boolean value: true or false

char

16-bit Unicode character

byte

8-bit signed two's complement integer
short

16-bit signed two's complement integer

21

int

32-bit signed two's complement integer

long

64-bit signed two's complement integer
float

32-bit floating-point number (IEEE 754-1985)
double

64-bit floating-point number (IEEE 754-1985)

A variable declared to have one of these types simply stores a value of that type,
rather than a reference to some object. Integer constants, like 14 or 195, are of type
int, unless followed immediately by an 'L' or 'I', in which case they are of type long.
Floating-point constants, like 3.1415 or 2.158e5, are of type double, unless
followed immediately by an 'F' or 'f', in which case they are of type float. We show
a simple class in Code Fragment 1.2 that defines a number of base types as local
variables for the main method.

Code Fragment 1.2: A Base class showing
example uses of base types.

22

Comments

Note the use of comments in this and other examples. These comments are
annotations provided for human readers and are not processed by a Java compiler.
Java allows for two kinds of comments-block comments and inline comments-
which define text ignored by the compiler. Java uses a /* to begin a block
comment and a */ to close it. Of particular note is a comment that begins with /**,
for such comments have a special format that allows a program called Javadoc to
read these comments and automatically generate documentation for Java
programs. We discuss the syntax and interpretation of Javadoc comments in
Section 1.9.3.

In addition to block comments, Java uses a // to begin inline comments and
ignores everything else on the line. All comments shown in this book will be
colored blue, so that they are not confused with executable code. For example:

/*
* This i1s a block comment.

*/

23

// This i1s an inline comment.

Output from the Base Class

Output from an execution of the Base class (main method) is shown in Figure 1.2.
Figure 1.2: Output from the Base class.

Even though they themselves do not refer to objects, base-type variables are
useful in the context of objects, for they often make up the instance variables (or
fields) inside an object. For example, the Counter class (Code Fragment 1.1) had a
single instance variable that was of type int. Another nice feature of base types in
Java is that base-type instance variables are always given an initial value when an
object containing them is created (either zero, false, or a null character, depending
on the type).

1.1.2 Objects

In Java, a new object is created from a defined class by using the new operator. The
new operator creates a new object from a specified class and returns a reference to
that object. In order to create a new object of a certain type, we must immediately
follow our use of the new operator by a call to a constructor for that type of object.
We can use any constructor that is included in the class definition, including the
default constructor (which has no arguments between the parentheses). In Figure
1.3, we show a number of dissected example uses of the new operator, both to
simply create new objects and to assign the reference to these objects to a variable.

Figure 1.3: Example uses of the new operator.

24

Calling the new operator on a class type causes three events to occur:

. A new object is dynamically allocated in memory, and all instance
variables are initialized to standard default values. The default values are nul I
for object variables and 0 for all base types except boolean variables (which are
false by default).

. The constructor for the new object is called with the parameters specified.
The constructor fills in meaningful values for the instance variables and performs
any additional computations that must be done to create this object.

. After the constructor returns, the new operator returns a reference (that is,
a memory address) to the newly created object. If the expression is in the form of
an assignment statement, then this address is stored in the object variable, so the
object variable refers to this newly created object.

Number Objects

We sometimes want to store numbers as objects, but base type numbers are not
themselves objects, as we have noted. To get around this obstacle, Java defines a
wrapper class for each numeric base type. We call these classes number classes.
In Table 1.2, we show the numeric base types and their corresponding number
class, along with examples of how number objects are created and accessed. Since
Java 5.0, a creation operation is performed automatically any time we pass a base
number to a method expecting a corresponding object. Likewise, the

25

corresponding access method is performed automatically any time we wish to
assign the value of a corresponding Number object to a base number type.

Table 1.2: Java number classes. Each class is given
with its corresponding base type and example
expressions for creating and accessing such objects.
For each row, we assume the variable n is declared
with the corresponding class name.

Base Type

Class Name

Creation Example
Access Example

byte

Byte

n = new Byte((byte)34);
n.byteValue()

short

Short

n = new Short((short)100);

n.shortValue()

int

Integer

n = new Integer(1045);
n.intValue()

long

Long

n = new Long(10849L);

26

n.longValue()

float
Float
n = new Float(3.934F);

n.floatValue()
double

Double
n = new Double(3.934);

n.doubleValue()

String Objects

A string is a sequence of characters that comes from some alphabet (the set of all
possible characters). Each character c that makes up a string s can be referenced
by its index in the string, which is equal to the number of characters that come
before ¢ in s (so the first character is at index 0). In Java, the alphabet used to
define strings is the Unicode international character set, a 16-bit character
encoding that covers most used written languages. Other programming languages
tend to use the smaller ASCII character set (which is a proper subset of the
Unicode alphabet based on a 7-bit encoding). In addition, Java defines a special
built-in class of objects called String objects.

For example, a string P could be
""hogs and dogs",

which has length 13 and could have come from someone's Web page. In this case,
the character at index 2 is 'g' and the character at index 5 is 'a'. Alternately, P
could be the string "CGTAATAGTTAATCCG", which has length 16 and could
have come from a scientific application for DNA sequencing, where the alphabet
is{G,C,A T}

Concatenation

String processing involves dealing with strings. The primary operation for
combining strings is called concatenation, which takes a string P and a string Q
combines them into a new string, denoted P + Q, which consists of all the
characters of P followed by all the characters of Q. In Java, the "+" operation

27

works exactly like this when acting on two strings. Thus, it is legal (and even
useful) in Java to write an assignment statement like

Strings = "kilo" + "meters';

This statement defines a variable s that references objects of the String class,
and assigns it the string "k lometers". (We will discuss assignment statements
and expressions such as that above in more detail later in this chapter.) Every
object in Java is assumed to have a built-in method toString() that returns a
string associated with the object. This description of the String class should be
sufficient for most uses. We discuss the String class and its "relative” the
StringBufTfer class in more detail in Section 12.1.

Object References

As mentioned above, creating a new object involves the use of the new operator
to allocate the object's memory space and use the object’s constructor to initialize
this space. The location, or address, of this space is then typically assigned to a
reference variable. Therefore, a reference variable can be viewed as a "pointer” to
some object. It is as if the variable is a holder for a remote control that can be
used to control the newly created object (the device). That is, the variable has a
way of pointing at the object and asking it to do things or give us access to its
data. We illustrate this concept in Figure 1.4.

Figure 1.4: Illustrating the relationship between
objects and object reference variables. When we
assign an object reference (that is, memory address) to
a reference variable, it is as if we are storing that
object's remote control at that variable.

28

The Dot Operator

Every object reference variable must refer to some object, unless it is null, in
which case it points to nothing. Using the remote control analogy, a null reference
is a remote control holder that is empty. Initially, unless we assign an object
variable to point to something, it is null.

There can, in fact, be many references to the same object, and each reference to a
specific object can be used to call methods on that object. Such a situation would
correspond to our having many remote controls that all work on the same device.
Any of the remotes can be used to make a change to the device (like changing a
channel on a television). Note that if one remote control is used to change the
device, then the (single) object pointed to by all the remotes changes. Likewise, if
we use one object reference variable to change the state of the object, then its state
changes for all the references to it. This behavior comes from the fact that there
are many references, but they all point to the same object.

One of the primary uses of an object reference variable is to access the members
of the class for this object, an instance of its class. That is, an object reference
variable is useful for accessing the methods and instance variables associated with
an object. This access is performed with the dot (".") operator. We call a method
associated with an object by using the reference variable name, following that by

the dot operator and then the method name and its parameters.

This calls the method with the specified name for the object referred to by this
object reference. It can optionally be passed multiple parameters. If there are
several methods with this same name defined for this object, then the Java
runtime system uses the one that matches the number of parameters and most
closely matches their respective types. A method's name combined with the
number and types of its parameters is called a method's signature, for it takes all

29

of these parts to determine the actual method to perform for a certain method call.
Consider the following examples:

oven.cookDinner();
oven.cookDinner(food);
oven.cookDinner(food, seasoning);

Each of these method calls is actually referring to a different method with the
same name defined in the class that oven belongs to. Note, however, that the
signature of a method in Java does not include the type that the method returns, so
Java does not allow two methods with the same signature to return different types.

Instance Variables

Java classes can define instance variables, which are also called fields. These
variables represent the data associated with the objects of a class. Instance
variables must have a type, which can either be a base type (such as int,
float, double) or a reference type (as in our remote control analogy), that
is, a class, such as String an interface (see Section 2.4), or an array (see Section
1.5). A base-type instance variable stores the value of that base type, whereas an
instance variable declared with a class name stores a reference to an object of that
class.

Continuing our analogy of visualizing object references as remote controls,
instance variables are like device parameters that can be read or set from the
remote control (such as the volume and channel controls on a television remote
control). Given a reference variable v, which points to some object 0, we can
access any of the instance variables for o that the access rules allow. For example,
public instance variables are accessible by everyone. Using the dot operator we
can get the value of any such instance variable, i, just by using v.i in an arithmetic
expression. Likewise, we can set the value of any such instance variable,i, by
writing v.i on the left-hand side of the assignment operator ("="). (See Figure 1.5.)
For example, if gnome refers to a Gnome object that has public instance variables
name and age, then the following statements are allowed:

gnome.name = "Professor Smythe',;
gnome.age = 132,

Also, an object reference does not have to only be a reference variable. It can also
be any expression that returns an object reference.

Figure 1.5: Illustrating the way an object reference
can be used to get and set instance variables in an

30

object (assuming we are allowed access to those
variables).

Variable Modifiers

In some cases, we may not be allowed to directly access some of the instance
variables for an object. For example, an instance variable declared as private in
some class is only accessible by the methods defined inside that class. Such
instance variables are similar to device parameters that cannot be accessed
directly from a remote control. For example, some devices have internal
parameters that can only be read or assigned by a factory technician (and a user is
not allowed to change those parameters without violating the device's warranty).

When we declare an instance variable, we can optionally define such a variable
modifier, follow that by the variable's type and the identifier we are going to use
for that variable. Additionally, we can optionally assign an initial value to the
variable (using the assignment operator ("="). The rules for a variable name are
the same as any other Java identifier. The variable type parameter can be either a
base type, indicating that this variable stores values of this type, or a class name,
indicating that this variable is a reference to an object from this class. Finally, the
optional initial value we might assign to an instance variable must match the
variable's type. For example, we could define a Gnome class, which contains
several definitions of instance variables, shown in in Code Fragment 1.3.

31

The scope (or visibility) of instance variables can be controlled through the use of
the following variable modifiers:

. public: Anyone can access public instance variables.

. protected: Only methods of the same package or of its subclasses can
access protected instance variables.

. private: Only methods of the same class (not methods of a subclass) can
access private instance variables.

. If none of the above modifiers are used, the instance variable is considered
friendly. Friendly instance variables can be accessed by any class in the same
package. Packages are discussed in more detail in Section 1.8.

In addition to scope variable modifiers, there are also the following usage
modifiers:

. static: The static keyword is used to declare a variable that is associated
with the class, not with individual instances of that class. Static variables are
used to store "global™ information about a class (for example, a static variable
could be used to maintain the total number of Gnome objects created). Static
variables exist even if no instance of their class is created.

. final: A final instance variable is one that must be assigned an initial
value, and then can never be assigned a new value after that. If it is a base type,
then it is a constant (like the MAX_HEIGHT constant in the Gnome class). If
an object variable is final, then it will always refer to the same object (even if
that object changes its internal state).

Code Fragment 1.3: The Gnome class.

32

Note the uses of instance variables in the Gnome example. The variables age,
magical, and height are base types, the variable name is a reference to an instance
of the built-in class String, and the variable gnomeBuddy is a reference to an
object of the class we are now defining. Our declaration of the instance variable
MAX_HEIGHT in the Gnome class is taking advantage of these two modifiers to

33

define a "variable" that has a fixed constant value. Indeed, constant values
associated with a class should always be declared to be both static and final.

1.1.3 Enum Types

Since 5.0, Java supports enumerated types, called enums. These are types that are
only allowed to take on values that come from a specified set of names. They are
declared inside of a class as follows:

modifier enum name { value nameo, value name;, ..,
value _namen.1 };

where the modifier can be blank, public, protected, or private. The name of this
enum, name, can be any legal Java identifier. Each of the value identifiers,
valuenamei, is the name of a possible value that variables of this enum type can
take on. Each of these name values can also be any legal Java identifier, but the
Java convention is that these should usually be capitalized words. For example, the
following enumerated type definition might be useful in a program that must deal
with dates:

public enum Day { MON, TUE, WED, THU, FRI, SAT, SUN
}:

Once defined, we can use an enum type, such as this, to define other variables,
much like a class name. But since Java knows all the value names for an
enumerated type, if we use an enum type in a string expression, Java will
automatically use its name. Enum types also have a few built-in methods, including
a method valueOf, which returns the enum value that is the same as a given string.
We show an example use of an enum type in Code Fragment 1.4.

Code Fragment 1.4: An example use of an enum
type.

34

1.2 Methods

Methods in Java are conceptually similar to functions and procedures in other
highlevel languages. In general, they are "chunks" of code that can be called on a
particular object (from some class). Methods can accept parameters as arguments, and
their behavior depends on the object they belong to and the values of any parameters
that are passed. Every method in Java is specified in the body of some class. A
method definition has two parts: the signature, which defines the and parameters for
a method, and the body, which defines what the method does.

A method allows a programmer to send a message to an object. The method signature
specifies how such a message should look and the method body specifies what the
object will do when it receives such a message.

Declaring Methods
The syntax for defining a method is as follows:
modifiers type name(typeo parametery, ..., typen,-1 parameter,—1) {

// method body ...

35

Each of the pieces of this declaration have important uses, which we describe in
detail in this section. The modifiers part includes the same kinds of scope modifiers
that can be used for variables, such as public, protected, and static, with similar
meanings. The type part of the declaration defines the return type of the method.
The name is the name of the method, which can be any valid Java identifier. The
list of parameters and their types declares the local variables that correspond to the
values that are to be passed as arguments to this method. Each type declaration type;
can be any Java type name and each parameter; can be any Java identifier. This list
of parameters and their types can be empty, which signifies that there are no values
to be passed to this method when it is invoked. These parameter variables, as well
as the instance variables of the class, can be used inside the body of the method.
Likewise, other methods of this class can be called from inside the body of a
method.

When a method of a class is called, it is invoked on a specific instance of that class
and can change the state of that object (except for a static method, which is
associated with the class itself). For example, invoking the following method on
particular gnome changes its name.

public void renameGnome (String s) {

name = s; // Reassign the name instance variable
of this gnome.

}

Method Modifiers

As with instance variables, method modifiers can restrict the scope of a method:
. public: Anyone can call public methods.

. protected: Only methods of the same package or of subclasses can call a
protected method.

. private: Only methods of the same class (not methods of a subclass) can
call a private method.

. If none of the modifiers above are used, then the method is friendly.
Friendly methods can only be called by objects of classes in the same package.

The above modifiers may be preceded by additional modifiers:

. abstract: A method declared as abstract has no code. The signature of
such a method is followed by a semicolon with no method body. For example:

public abstract void setHeight (double newHeight);

36

Abstract methods may only appear within an abstract class. We discuss the
usefulness of this construct in Section 2.4.

. final: This is a method that cannot be overridden by a subclass.

. static: This is a method that is associated with the class itself, and not with
a particular instance of the class. Static methods can also be used to change the
state of static variables associated with a class (provided these variables are not
declared to be final).

Return Types

A method definition must specify the type of value the method will return. If the
method does not return a value, then the keyword void must be used. If the return
type is void, the method is called a procedure; otherwise, it is called a function. To
return a value in Java, a method must use the return keyword (and the type
returned must match the return type of the method). Here is an example of a method
(from inside the Gnome class) that is a function:

public booleanisMagical () {

returnmagical ;

}

As soon as a return is performed in a Java function, the method ends.

Java functions can return only one value. To return multiple values in Java, we
should instead combine all the values we wish to return in a compound object,
whose instance variables include all the values we want to return, and then return a
reference to that compound object. In addition, we can change the internal state of
an object that is passed to a method as another way of "returning™ multiple results.

Parameters

A method's parameters are defined in a comma-separated list enclosed in
parentheses after the name of the method. A parameter consists of two parts, the
parameter type and the parameter name. If a method has no parameters, then only
an empty pair of parentheses is used.

All parameters in Java are passed by value, that is, any time we pass a parameter to
a method, a copy of that parameter is made for use within the method body. So if
we pass an Int variable to a method, then that variable's integer value is copied.
The method can change the copy but not the original. If we pass an object reference
as a parameter to a method, then the reference is copied as well. Remember that we
can have many different variables that all refer to the same object. Changing the

37

internal reference inside a method will not change the reference that was passed in.
For example, if we pass a Gnome reference g to a method that calls this parameter
h, then this method can change the reference h to point to a different object, but g
will still refer to the same object as before. Of course, the method can use the
reference h to change the internal state of the object, and this will change g's object
as well (since g and h are currently referring to the same object).

Constructors

A constructor is a special kind of method that is used to initialize newly created
objects. Java has a special way to declare the constructor and a special way to
invoke the constructor. First, let's look at the syntax for declaring a constructor:

modifiers name(typeo parametery, ..., type,—1 parameter,-1) {
// constructor body ...

¥

Thus, its syntax is essentially the same as that of any other method, but there are
some important differences. The name of the constructor, name, must be the same
as the name of the class it constructs. So, if the class is called Fish, the constructor
must be called Fish as well. In addition, we don't specify a return type for a
constructor—its return type is implicitly the same as its name (which is also the
name of the class). Constructor modifiers, shown above as modifiers, follow the
same rules as normal methods, except that an abstract, static, or final
constructor is not allowed.

Here is an example:
publicFish (intw, String n){
weight = w;
name = n,;

}

Constructor Definition and Invocation

The body of a constructor is like a normal method's body, with a couple of minor
exceptions. The first difference involves a concept known as constructor chaining,
which is a topic discussed in Section 2.2.3 and is not critical at this point.

The second difference between a constructor body and that of a regular method is
that return statements are not allowed in a constructor body. A constructor's body

38

is intended to be used to initialize the data associated with objects of this class so
that they may be in a stable initial state when first created.

Constructors are invoked in a unique way: they must be called using the new
operator. So, upon invocation, a new instance of this class is automatically created
and its constructor is then called to initialize its instance variables and perform other
setup tasks. For example, consider the following constructor invocation (which is
also a declaration for the myF i sh variable):

Fish myFish = new Fish (7, "wally");

A class can have many constructors, but each must have a different signature, that
is, each must be distinguished by the type and number of the parameters it takes.

The main Method

Some Java classes are meant to be used by other classes, others are meant to be
stand-alone programs. Classes that define stand-alone programs must contain one
other special kind of method for a class—the main method. When we wish to
execute a stand-alone Java program, we reference the name of the class that defines
this program by issuing the following command (in a Windows, Linux, or UNIX
shell):

jJava Aquarium

In this case, the Java run-time system looks for a compiled version of the
Aquar ium class, and then invokes the special main method in that class. This
method must be declared as follows:

public static voidmain(String[] args){
// main method body ..

}

The arguments passed as the parameter args to the main method are the
commandline arguments given when the program is called. The args variable is an
array of String objects, that is, a collection of indexed strings, with the first string
being args]0], the second being args[1], and so on. (We say more about arrays in
Section 1.5.)

Calling a Java Program from the Command Line

Java programs can be called from the command line using the Java command,
followed by the name of the Java class whose main method we wish to run, plus

39

any optional arguments. For example, we may have defined the AQuar ium
program to take an optional argument that specifies the number of fish in the
aquarium. We could then invoke the program by typing the following in a shell
window:

Jjava Aquarium 45

to specify that we want an aquarium with 45 fish in it. In this case, args[0] would
refer to the string "45". One nice feature of the main method in a class definition is
that it allows each class to define a stand-alone program, and one of the uses for this
method is to test all the other methods in a class. Thus, thorough use of the main
method is an effective tool for debugging collections of Java classes.

Statement Blocks and Local Variables

The body of a method is a statement block, which is a sequence of statements and
declarations to be performed between the braces "{" and "}". Method bodies and
other statement blocks can themselves have statement blocks nested inside of them.
In addition to statements that perform some action, like calling the method of some
object, statement blocks can contain declarations of local variables. These variables
are declared inside the statement body, usually at the beginning (but between the
braces "{" and "}"). Local variables are similar to instance variables, but they only
exist while the statement block is being executed. As soon as control flow exits out
of that block, all local variables inside it can no longer be referenced. A local
variable can either be a base type (suchas int, float, double)ora
reference to an instance of some class. Single statements and declarations in Java
are always terminated by a semicolon, that is, a ;".

There are two ways of declaring local variables:
type name;
type name = initial_value;

The first declaration simply defines the identifier, name, to be of the specified type.
The second declaration defines the identifier, its type, and also initializes this
variable to the specified value. Here are some examples of local variable
declarations:

{

double r;

Point pl = new Point (3, 4);

Point p2 new Point (8, 2);

40

int 1 = 512;
double e = 2.71828;

}

1.3 Expressions

Variables and constants are used in expressions to define new values and to modify
variables. In this section, we discuss how expressions work in Java in more detail.
Expressions involve the use of literals, variables, and operators. Since we have
already discussed variables, let us briefly focus on literals and then discuss operators
in some detail.

1.3.1 Literals

A literal is any "constant" value that can be used in an assignment or other
expression. Java allows the following kinds of literals:

. The nul I object reference (this is the only object literal, and it is defined
to be from the general Object class).

. Boolean: true and false.

. Integer: The default for an integer like 176, or -52 is that it is of type Int,
which is a 32-bit integer. A long integer literal must end with an "L" or "1," for
example, 176L or -521, and defines a 64-bit integer.

. Floating Point: The default for floating- numbers, such as 3.1415 and
10035.23, is that they are double. To specify that a literal is a float, it must
end with an "F" or "F." Floating-point literals in exponential notation are also
allowed, such as 3.14E2 or .19e10; the base is assumed to be 10.

. Character: In Java, character constants are assumed to be taken from the
Unicode alphabet. Typically, a character is defined as an individual symbol

enclosed in single quotes. For example, 'a’ and '?" are character constants. In
addition, Java defines the following special character constants:

*\n® (newline)
"\t" (tab)
"\b*" (backspace)

*\r° (return)

41

"\f" (formfeed)
"\\" (backslash)
"\"" (single guote)
"\""" (double quote).

. String Lieral: A string literal is a sequence of characters enclosed in
double quotes, for example, the following is a string literal:

""dogs cannot climb trees"

1.3.2 Operators

Java expressions involve composing literals and variables with operators. We
survey the operators in Java in this section.

The Assignment Operator

The standard assignment operator in Java is "=". It is used to assign a value to an
instance variable or local variable. Its syntax is as follows:

variable = expression

where variable refers to a variable that is allowed to be referenced by the
statement block containing this expression. The value of an assignment operation
is the value of the expression that was assigned. Thus, if 1 and j are both
declared as type 1nt, it is correct to have an assignment statement like the
following:

i = jJ = 25;// works because "=" operators are
evaluated right-to-left

Arithmetic Operators
The following are binary arithmetic operators in Java:
+ addition
— subtraction
* multiplication

[division

42

% the modulo operator

This last operator, modulo, is also known as the "remainder" operator, because it
is the remainder left after an integer division. We often use "mod" to denote the
modulo operator, and we define it formally as

nmodm=r,

such that

n=mq+r,

for anintegerqand 0 <r <n.

Java also provides a unary minus (—), which can be placed in front of an arithm
etic expression to invert its sign. Parentheses can be used in any expression to
define the order of evaluation. Java also uses a fairly intuitive operator precedence
rule to determine the order of evaluation when parentheses are not used. Unlike
C++, Java does not allow operator overloading.

Increment and Decrement Operators

Like C and C++, Java provides increment and decrement operators. Specifically,
it provides the plus-one increment (++) and decrement (—) operators. If such an
operator is used in front of a variable reference, then 1 is added to (or subtracted
from) the variable and its value is read into the expression. If it is used after a
variable reference, then the value is first read and then the variable is incremented
or decremented by 1. So, for example, the code fragment

=
~
=}
1

9 + 1++;
assigns 8 to j, 10 to k, 10 to m, 18 to n, and leaves i with value 10.
Logical Operators

Java allows for the standard comparison operators between numbers:

< less than

43

<= less than or equal to
==equal to
I= not equal to

>= greater than or equal
to

> greater than

The operators == and != can also be used for object references. The type of the
result of a comparison is a boolean.

Operators that operate on boolean values are the following:
I not (prefix)
&& conditional and
conditional or

The Boolean operators && and will not evaluate the second operand (to the
right) in their expression if it is not needed to determine the value of the
expression. This feature is useful, for example, for constructing Boolean
expressions where we first test that a certain condition holds (such as a reference
not being nul 1), and then test a condition that could have otherwise generated an
error condition had the prior test not succeeded.

Bitwise Operators
Java also provides the following bitwise operators for integers and Booleans:

bitwise complement (prefix unary

operator)
& bitwise and
| bitwise or
A bitwise exclusive-or
< < shift bits left, filling in with zeros
’ > > shift bits right, filling in with sign
It

44

>>> shift bits right, filling in with
zeros

Operational Assignment Operators

Besides the standard assignment operator (=), Java also provides a number of

other assignment operators that have operational side effects. These other kinds of

operators are of the following form:
variable op = expression

where op is any binary operator. The above expression is equivalent to
variable = variable op expression

except that if variable contains an expression (for example, an array index),
the expression is evaluated only once. Thus, the code fragment

a [5] = 10;
i =5;
af[i++] += 2;

leaves a [5] with value 12 and i with value 6.

String Concatenation

Strings can be composed using the concatenation operator (+), so that the code

String rug "carpet'';
String dog = "'spot";
String mess = rug + dog;

String answer = mess + " will cost me ™ + 5 + "

dollars!™;
would have the effect of making answer refer to the string
"carpetspot will cost me 5 dollars!™

This example also shows how Java converts nonstring constants into strings,
when they are involved in a string concatenation operation.

45

Operator Precedence

Operators in Java are given preferences, or precedence, that determine the order in
which operations are performed when the absence of parentheses brings up
evaluation ambiguities. For example, we need a way of deciding if the expression,
"5+2*3," has value 21 or 11 (Java says it is 11).

We show the precedence of the operators in Java (which, incidentally, is the same
asin C)in Table 1.3.

Table 1.3: The Java precedence rules. Operators in
Java are evaluated according to the above ordering, if
parentheses are not used to determine the order of
evaluation. Operators on the same line are evaluated
in left-to-right order (except for assignment and prefix
operations, which are evaluated right-to-left), subject
to the conditional evaluation rule for Boolean and and
or operations. The operations are listed from highest
to lowest precedence (we use exp to denote an atomic
or parenthesized expression). Without
parenthesization, higher precedence operators are
performed before lower precedence operators.

Operator Precedence

Type

Symbols

1

postfix ops prefix ops cast

exp ++ exp —— ++exp ——exp +exp —exp ~exp lexp (type) exp
2

mult./div.

*1 %

46

3
add./subt.
,_

4

shift

<LK >> >>>
5

comparison

<<=>>= instanceof

6
equality
—— !_

.
bitwise-and
&

8
bitwise-xor
A

9
bitwise-or

|

10

and

&&

11

47

or

12
conditional

boolean_expression? value if_true:
value_if_false

13
assignment
= 4= —=*= [= U= >>= <<= >>>=&= "= | =

We have now discussed almost all of the operators listed in Table 1.3. A notable
exception is the conditional operator, which involves evaluating a Boolean
expression and then taking on the appropriate value depending on whether this
Boolean expression is true or false. (We discuss the use of the instanceof
operator in the next chapter.)

1.3.3 Casting and Autoboxing/Unboxing in Expressions

Casting is an operation that allows us to change the type of a variable. In essence,
we can take a variable of one type and cast it into an equivalent variable of another
type. Casting can be useful for doing certain numerical and input/output operations.

The syntax for casting an expression to a desired type is as follows:

(type) exp

where type is the type that we would like the expression exp to have. There are two
fundamental types of casting that can be done in Java. We can either cast with
respect to the base numerical types or we can cast with respect to objects. here, we
discuss how to perform casting of numerical and string types, and we discuss object
casting in Section 2.5.1. For instance, it might be helpful to castan inttoa
double in order to perform operations like division.

Ordinary Casting
When casting from a double to an int, we may lose precision. This means that

the resulting double value will be rounded down. But we can cast an intto a
doubl e without this worry. For example, consider the following:

48

double dl1 = 3.2;

double d2 = 3.9999;

int il = (int)dl; //'i1 has value 3
int 12 = (Int)d2; /12 has value 3

double d3 = (double)i2; //d3hasvalue 3.0

Casting with Operators

Certain binary operators, like division, will have different results depending on
the variable types they are used with. We must take care to make sure operations
perform their computations on values of the intended type. When used with
integers, division does not keep track of the fractional part, for example. When
used with doubles, division keeps this part, as is illustrated in the following
example:

int il = 3;

int 12 = 6;

dresult = (double)il / (double)i2;// dresult has
value 0.5

dresult = il /7 i2; // dresult has
value 0.0

Notice that when 11 and 12 were cast to doubles, regular division for real
numbers was performed. When 11 and 12 were not cast, the ** /" operator
performed an integer division and the result of 11 / 12 was the int 0. Then,
JavaJava then did an implicit cast to assign an 1nt value to the doubl e result.
We discuss implicit casting next.

Implicit Casting and Autoboxing/Unboxing

There are cases where Java will perform an implicit cast, according to the type of
the assignment variable, provided there is no loss of precision. For example:

int iresult, 1 = 3;
double dresult, d = 3.2;
dresult =1 / d; // dresult is 0.9375. 1 was

cast to a double

49

iresult = 1 / d; // loss of precision ->
this i1s a compilation error

iresult = (int) 1 /7 d; // iresult is 0, since the
fractional part is lost

Note that since Java will not perform implicit casts where precision is lost, the
explicit cast in the last line above is required.

Since Java 5.0, there is a new kind of implicit cast, for going between Number
objects, like Integer and Float, and their related base types, like int and
float. Any time a Number object is expected as a parameter to a method, the
corresponding base type can be passed. In this case, Java will perform an implicit
cast, called autoboxing, which will convert the base type to its corresponding
Number object. Likewise, any time a base type is expected in an expression
involving a Number reference, that Number object is changed to the
corresponding base type, in an operation called unboxing.

There are few caveats regarding autoboxing and unboxing, however. One is that if
a Number reference is nul I, then trying to unbox it will generate an error, called
Nul IPointerException. Second, the operator, "==", is used both to test the
equality of base type values as well as whether two Number references are
pointing to the same object. So when testing for equality, try to avoid the implicit
casts done by autoboxing and unboxing. Finally, implicit casts, of any kind, take
time, so we should try to minimize our reliance on them if performance is an
issue.

Incidentally, there is one situation in Java when only implicit casting is allowed,
and that is in string concatenation. Any time a string is concatenated with any
object or base type, that object or base type is automatically converted to a string.
Explicit casting of an object or base type to a string is not allowed, however.
Thus, the following assignments are incorrect:

String s = (String) 4.5;; // this is
wrong!

String t = "value = " + (String) 13;// this is
wrong!

String u = 22; // this is wrong!

To perform a conversion to a string, we must instead use the appropriate
toString method or perform an implicit cast via the concatenation operation.

Thus, the following statements are correct:

50

String s =" " + 4.5; // correct, but
poor style

String t = "Value = " + 13; // this is good

String u = Integer.toString(22); // this is
good

1.4 Control Flow

Control flow in Java is similar to that of other high-level languages. We review the
basic structure and syntax of control flow in Java in this section, including method
returns, 1f statements, switch statements, loops, and restricted forms of "jumps"
(the break and continue statements).

1.4.1 The If and Switch Statements

In Java, conditionals work similarly to the way they work in other languages. They
provide a way to make a decision and then execute one or more different statement
blocks based on the outcome of that decision.

The If Statement
The syntax of a simple 1 ¥ statement is as follows:
it (boolean_exp)
true_statement
else
false_statement

where boolean_exp is a Boolean expression and true_statement and
false_statement are each either a single statment or a block of statements enclosed
in braces ("{" and "}"). Note that, unlike some similar languages, the value tested
by an 1 statement in Java must be a Boolean expression. In particular, it is
definitely not an integer expression. Nevertheless, as in other similar languages,
the el 'se part (and its associated statement) in a Java i F statement is optional.
There is also a way to group a number of Boolean tests, as follows:

if (first_boolean_exp)

true_statement

51

else 1T (second_boolean_exp)
second_true_statement
else
false statement

If the first Boolean expression is false, the second Boolean expression will be
tested, and so on. An 1T statement can have an arbitrary number of else 1f

parts.
For example, the following is a correct if statement.
it (snowLevel < 2) {
goToClass();
comeHome() ;
by
else if (snowLevel < 5) {
goSledding();
haveSnowbal IFight();
b
else

stayAtHome();

Switch Statements

Java provides for multiple-value control flow using the switch statement, which is
especially useful with enum types. The following is an indicative example (based

on a variable d of the Day enum type of Section 1.1.3).
switch (d) {

case MON:

52

System.out.printIn(""This is tough.");
break;

case TUE:
System.out.printIn("This is getting better.");
break;

case WED:
System.out.printin("'Half way there.™);
break;

case THU:
System.out.printIn(’'l can see the light.');
break;

case FRI:
System.out.printIn("’"Now we are talking.");
break;

default:
System.out.printin(C'Day off ! ");
break;

+

The switch statement evaluates an integer or enum expression and causes
control flow to jump to the code location labeled with the value of this expression.
If there is no matching label, then control flow jumps to the location labeled
"deftault." This is the only explicit jump performed by the switch
statement, however, so flow of control "falls through™ to other cases if the code
for each case is not ended with a break statement (which causes control flow to
jump to the next line after the switch statement).

14.2 Loops

53

Another important control flow mechanism in a programming language is looping.
Java provides for three types of loops.

While Loops

The simplest kind of loop in Java is a whi le loop. Such a loop tests that a certain
condition is satisfied and will perform the body of the loop each time this
condition is evaluated to be true. The syntax for such a conditional test before a
loop body is executed is as follows:

whi le (boolean_exp)
loop_statement

At the beginning of each iteration, the loop tests the expression, boolean exp, and
then executes the loop body, loop_statement, only if this Boolean expression
evaluates to true. The loop body statement can also be a block of statements.

Consider, for example, a gnome that is trying to water all of the carrots in his
carrot patch, which he does as long as his watering can is not empty. Since his can
might be empty to begin with, we would write the code to perform this task as
follows:
public void waterCarrots () {
Carrot current = garden.findNextCarrot ();
while (MwaterCan.isEmpty Q) {

water (current, waterCan);

current = garden.findNextCarrot ();

+

Recall that "!" in Java is the "not™ operator.

For Loops

Another kind of loop is thefor loop. In their simplest form, for loops provide
for repeated code based on an integer index. In Java, we can do that and much
more. The functionality of a for loop is significantly more flexible. In particular,
the usage of a For loop is split into four sections: the initialization, the condition,
the increment, and the body.

54

Defining a For Loop
Here is the syntax for a Java for loop:
for (initialization; condition; increment)
loop_statement
where each of the sections initialization, condition, and increment can be empty.

In the initialization section, we can declare an index variable that will only exist
in the scope of the Tor loop. For example, if we want a loop that indexes on a
counter, and we have no need for the counter variable outside of the for loop,
then declaring something like the following

for (int counter = 0; condition; increment)
loop_statement
will declare a variable counter whose scope is the loop body only.

In the condition section, we specify the repeat (while) condition of the loop. This
must be a Boolean expression. The body of the for loop will be executed each
time the condition is true when evaluated at the beginning of a potential
iteration. As soon as condition evaluates to false, then the loop body is not
executed, and, instead, the program executes the next statement after the for
loop.

In the increment section, we declare the incrementing statement for the loop. The
incrementing statement can be any legal statement, allowing for significant
flexibility in coding. Thus, the syntax of a for loop is equivalent to the

following:
initialization;
whi le (condition) {
loop_statement;
increment;

+

except that, in Java, a whi e loop cannot have an empty Boolean condition,
whereas a for loop can. The following example shows a simple for loop in
Java:

55

public void eatApples (Apples apples) {
numApples = apples.getNumApples ();
for (int x = 0; x < numApples; x++) {
eatApple (apples.getApple (x));

spitOutCore ();

}

In the Java example above, the loop variable x was declared as int x =0.
Before each iteration, the loop tests the condition " x < numApples" and
executes the loop body only if this is true. Finally, at the end of each iteration the
loop uses the statement x++ to increment the loop variable x before again testing
the condition.

Incidentally, since 5.0, Java also includes a for-each loop, which we discuss in
Section 6.3.2.

Do-While Loops

Java has yet another kind of loop besides the for loop and the standard whi le
loop—the do-whi le loop. The former loops tests a condition before performing
an iteration of the loop body, the do-whi e loop tests a condition after the loop
body. The syntax for a do-whi le loop is as shown below:

do
loop_statement
whi le (boolean_exp)

Again, the loop body statement, loop_statement, can be a single statement or a
block of statements, and the conditional, boolean_exp, must be a Boolean
expression. In a do-whi le loop, we repeat the loop body for as long as the
condition is true each time it is evaluated.

Consider, for example, that we want to prompt the user for input and then do
something useful with that input. (We discuss Java input and output in more detail
in Section 1.6.) A possible condition, in this case, for exiting the loop is when the
user enters an empty string. However, even in this case, we may want to handle

56

that input and inform the user that he or she has quit. The following example
illustrates this case:

public void getUserlinput() {
String input;
do {
input = getlnputString();
handlelnput(input);
} while (input.length()>0);
}

Notice the exit condition for the above example. Specifically, it is written to be
consistent with the rule in Java that do-wh 1 I e loops exit when the condition is
not true (unlike the repeat-until construct used in other languages).

1.4.3 Explicit Control-Flow Statements

Java also provides statements that allow for explicit change in the flow of control of
a program.
Returning from a Method

If a Java method is declared with a return type of void, then flow of control
returns when it reaches the last line of code in the method or when it encounters a
return statement with no argument. If a method is declared with a return type,
however, the method is a function and it must exit by returning the function's
value as an argument to a return statement. The following (correct) example
illustrates returning from a function:

// Check for a specific birthday
public boolean checkBDay (int date) {
if (date == Birthdays.MIKES_BDAY) {

return true;

}

return false;

57

}

It follows that the return statement must be the last statement executed in a
function, as the rest of the code will never be reached.

Note that there is a significant difference between a statement being the last line
of code that is executed in a method and the last line of code in the method itself.
In the example above, the line return true; is clearly not the last line of code
that is written in the function, but it may be the last line that is executed (if the
condition involving date is true). Such a statement explicitly interrupts the flow
of control in the method. There are two other such explicit control-flow
statements, which are used in conjunction with loops and switch statements.

The break Statement
The typical use of a break statement has the following simple syntax:
break;

It is used to "break" out of the innermost switch, for, while, or do-

whi le statement body. When it is executed, a break statement causes the flow of
control to jump to the next line after the loop or switch to the body containing
the break.

The break statement can also be used in a labeled form to jump out of an
outernested loop or switch statement. In this case, it has the syntax

break label;

where label is a Java identifier that is used to label a loop or switch statement.
Such a label can only appear at the beginning of the declaration of a loop. There
are no other kinds of "go to" statements in Java.

We illustrate the use of a label with a break statement in the following simple
example:

public static boolean hasZeroEntry (int[][] a) {
boolean foundFlag = false;

zeroSearch:

for (int 1=0; i<a.length; 1++) {

for (int j=0; j<a[i]-length; j++) {

58

it (alilb] == 0) {
foundFlag = true;

break zeroSearch;

}
+
}

return foundFlag;

+

The example above also uses arrays, which are covered in Section 3.1.

The continue Statement

The other statement to explicitly change the flow of control in a Java program is
the continue statement, which has the following syntax:

continue label;

where label is an optional Java identifier that is used to label a loop. As
mentioned above, there are no explicit "go to" statements in Java. Likewise, the
continue statement can only be used inside loops (for, while, and do-
while). The continue statement causes the execution to skip over the
remaining steps of the loop body in the current iteration (but then continue the
loop if its condition is satisfied).

1.5 Arrays

A common programming task is to keep track of a numbered group of related objects.
For example, we may want a video game to keep track of the top ten scores for that
game. Rather than use ten different variables for this task, we would prefer to use a
single name for the group and use index numbers to refer to the high scores in that
group. Similarly, we may want a medical information system to keep track of the
patients currently assigned to beds in a certain hospital. Again, we would rather not
have to introduce 200 variables in our program just because the hospital has 200 beds.

In such cases, we can save programming effort by using an array, which is a
numbered collection of variables all of the same type. Each variable, or cell, in an
array has an index, which uniquely refers to the value stored in that cell. The cells of

59

an array a are numbered 0, 1,2, and so on. We illustrate an array of high scores for a
video game in Figure 1.6.

Figure 1.6: An illustration of an array of ten (int) high
scores for a video game.

Such an organization is quite useful, for it allows us to do some interesting
computations. For example, the following method adds up all the numbers in an array
of integers:

/** Adds all the numbers iIn an iInteger array. */

public static int sum(int[] a) {

int total = O;

for (int 1=0; 1 < a.length; 1==) //note the use of the length
variable

total += a[i];
return total;

}

This example takes advantage of a nice feature of Java, which allows us to find the
number of cells an array stores, that is, its length. In Java, an array a is a special kind
of object and the length of a is stored in an instance variable, length. That is, we
never need to guess the length of an array in Java, the length of an array can be

accessed as follows:
array_name.length

where array_name is the name of the array. Thus, the cells of an array a are
numbered 0, 1,2, and so on, up to a.length — 1.

Array Elements and Capacities
Each object stored in an array is called an element of that array. Element number 0

is a[0], element number 1 is a[1], element number 2 is a[2], and so on. Since the
length of an array determines the maximum number of things that can be stored in

60

the array, we will sometimes refer to the length of an array as its capacity. We show
another simple use of an array in the following code fragment, which counts the
number of times a certain number appears in an array:

/** Counts the number of times an integer appears in
an array. */

public static int findCount(int[] a, int k) {

int count = 0O;

for (int e: a) { /I note the use of the "foreach” loop
1T (e == k) //check if the current element equals k
count++;

by

return count;

b

Out of Bounds Errors

It is a dangerous mistake to attempt to index into an array a using a number outside
the range from 0 to a.length − 1. Such a reference is said to be out of
bounds. Out of bounds references have been exploited numerous times by hackers
using a method called the buffer overflow attack to compromise the security of
computer systems written in languages other than Java. As a safety feature, array
indices are always checked in Java to see if they are ever out of bounds. If an array
index is out of bounds, the run-time Java environment signals an error condition.
The name of this condition is the Array IndexOutOfBoundsException. This
check helps Java avoid a number of security problems (including buffer overflow
attacks) that other languages must cope with.

We can avoid out-of-bounds errors by making sure that we alway index into an
array, a, using an integer value between 0 and a. length. One shorthand way we
can do this is by carefully using the early termination feature of Boolean operations
in Java. For example, a statement like the following will never generate an index
out-of-bounds error:

if ((1 >=0) && (i < a.length) && (af[i] > 2))

x = a[i];

61

for the comparison "a[[1] > 0.5" will only be performed if the first two
comparisons succeed.

1.5.1 Declaring Arrays
One way to declare and initialize an array is as follows:
element_type[] array_name = {init_val_0,init_val 1,...,init_val N-1};

The element_type can be any Java base type or class name, and array_name can be
any value Java identifier. The initial values must be of the same type as the array.
For example, consider the following declaration of an array that is initialized to
contain the first ten prime numbers:

int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
In addition to creating an array and defining all its initial values when we declare it,
we can declare an array variable without initializing it. The form of this declaration
is as follows:

element_type[] array_name;

An array created in this way is initialized with all zeros if the array type is a number
type. Arrays of objects are initialized to all nul I references. Once we have
declared an array in this way, we can create the collection of cells for an array later
using the following syntax:

new element_type[length]
where length is a positive integer denoting the length of the array created. Typically
this expression appears in an assignment statement with an array name on the left
hand side of the assignment operator. So, for example, the following statement

defines an array variable named a, and later assigns it an array of 10 cells, each of
type double, which it then initializes:

double[] a;

//.. various steps ..

a = new double[10];

for (int k=0; k < a.length; k++) {

a[k] = 1.0;

62

The cells of this new array, "a," are indexed using the integer set {0,1,2,.. ,9}
(recall that arrays in Java always start indexing at 0), and, like every array in Java,
all the cells in this array are of the same type—double.

1.5.2 Arrays are Objects

Arrays in Java are special kinds of objects. In fact, this is the reason we can use the
new operator to create a new instance of an array. An array can be used just like
any general object in Java, but we have a special syntax (using square brackets, "["
and "]") to refer to its members. An array in Java can do everything that a general
object can. Since an array is an object, though, the name of an array in Java is
actually a reference to the place in memory where the array is stored. Thus, there is
nothing too special about using the dot operator and the instance variable, length, to
refer to the length of an array, for example, as "a. length.” The name, a, in this
case is just a reference, or pointer, to the underlying array object.

The fact that arrays in Java are objects has an important implication when it comes
to using array names in assignment statements. For when we write something like

b = a;

in a Java program, we really mean that b and a now both refer to the same array.
So, if we then write something like

b[3] = 5;

then we will also be setting the number a [3] to 5. We illustrate this crucial point in
Figure 1.7.

Figure 1.7: An illustration of an assignment of array
objects. We show the result of setting "b[3] = 5;"

after previously setting "b = a;".

63

Cloning an Array

If instead, we wanted to create an exact copy of the array, a, and assign that array
to the array variable, b, we should write

b = a.clone();

which copies all of the cells of a into a new array and assigns b to point to that
new array. In fact, the clone method is a built-in method of every Java object,
which makes an exact copy of that object. In this case, if we then write

b[3] = 5;

then the new (copied) array will have its cell at index 3, assigned the value 5, but
a[3] will remain unchanged. We illustrate this point in Figure 1.8.
Figure 1.8: An illustration of cloning of array objects.
We show the result of setting "b[3] = 5;" after

previously setting "b = a.clone();".

We should stress that the cells of an array are copied when we clone it. If the cells
are a base type, like I1nt, their values are copied. But if the cells are object
references, then those references are copied. This means that there are now two

64

ways to reference such an object. We explore the consequences of this fact in
Exercise R-1.1.

1.6 Simple Input and Output

Java provides a rich set of classes and methods for performing input and output
within a program. There are classes in Java for doing graphical user interface design,
complete with pop-up windows and pull-down menus, as well as methods for the
display and input of text and numbers. Java also provides methods for dealing with
graphical objects, images, sounds, Web pages, and mouse events (such as clicks,
mouse overs, and dragging). Moreover, many of these input and output methods can
be used in either stand-alone programs or in applets.

Unfortunately, going into the details on how all of the methods work for constructing
sophisticated graphical user interfaces is beyond the scope of this book. Still, for the
sake of completeness, we describe how simple input and output can be done in Java
in this section.

Simple input and output in Java occurs within the Java console window. Depending
on the Java environment we are using, this window is either a special pop-up window
that can be used for displaying and inputting text, or a window used to issue
commands to the operating system (such windows are referred to as shell windows,
DOS windows, or terminal windows).

Simple Output Methods

Java provides a built-in static object, called System. out, that performs output to
the "standard output™ device. Most operating system shells allow users to redirect
standard output to files or even as input to other programs, but the default output is
to the Java console window. The System.out object is an instance of the
Java.io.PrintStream class. This class defines methods for a buffered
output stream, meaning that characters are put in a temporary location, called a
buffer, which is then emptied when the console window is ready to print characters.

Specifically, the Java. 10.PrintStream class provides the following methods
for performing simple output (we use base_type here to refer to any of the possible
base types):
print(Object 0): Print the object o using its toString method.
print(String s): Printthe strings.
print(base_type b): Print the base type value b.
printIn(String s): Print the string s, followed by the newline

character.

65

An Output Example

Consider, for example, the following code fragment:
System.out.print(*'Java values: ");
System.out.print(3.1415);
System.out.print(*,");
System.out.print(15);
System.out.printIn(’® (double,char,int) .');

When executed, this fragment will output the following in the Java console
window: Java values: 3.1415,15 (double,char,int).

Simple Input Using the java.util.Scanner Class

Just as there is a special object for performing output to the Java console window,
there is also a special object, called System. in, for performing input from the
Java console window. Technically, the input is actually coming from the "standard
input” device, which by default is the computer keyboard echoing its characters in
the Java console. The System. in object is an object associated with the standard
input device. A simple way of reading input with this object is to use it to create a
Scanner object, using the expression

new Scanner(System.in)

The Scanner class has a number of convenient included methods that read from
the given input stream. For example, the following program uses a Scanner object
to process input:

import java.io.™;
import java.util.Scanner;

public class InputExample {

public static void main(String args[]) throws
I0Exception {

Scanner s = new Scanner(System.in);

System.out.print("Enter your height in centimeters:

")

66

float height = s_nextFloat();

System.out.print("Enter your weight in kilograms: ");
float weight = s.nextFloat();

float bmi = weight/(height*height)*10000;

System.out.printIn(’'Your body mass index is " + bmi +

")
}

ke

When executed, this program could produce the following on the Java console:
Enter your height In centimeters:180

Enter your weight in kilograms: 80.5

Your body mass index is 24.84568.

java.util.Scanner Methods

The Scanner class reads the input stream and divides it into tokens, which are
contiguous strings of characters separated by delimiters, which are special
separating characters. The default delimiter is whitespace, that is, tokens are
separated by strings of spaces, tabs, and newlines, by default. Tokens can either be
read immediately as strings or a Scanner object can convert a token to a base
type, if the token is in the right syntax. Specifically, the Scanner class includes
the following methods for dealing with tokens:

hasNext(): Return true if and only if there is another token in the input
stream.

next(): Return the next token string in the input stream; generate an error
if there are no more tokens left.

hasNextType(): Return true if and only if there is another token in the input
stream and it can be interpreted as the corresponding base type, Type, where Type
can be Boolean, Byte, Double, Float, Int, Long,or Short.

nextType(): Return the next token in the input stream, returned as the base
type corresponding to Type; generate an error if there are no more tokens left or if
the next token cannot be interpreted as a base type corresponding to Type.

67

Additionally, Scanner objects can process input line by line, ignoring delimiters,
and even look for patterns within lines while doing so. The methods for processing
input in this way include the following:

hasNextLine(): Returns true if and only if the input stream has another
line of text.

nextLine(): Advances the input past the current line ending and returns
the input that was skipped.

findInLine(String s): Attempts to find a string matching the (regular
expression) pattern s in the current line. If the pattern is found, it is returned and the
scanner advances to the first character after this match. If the pattern is not found,
the scanner returns nul I and doesn't advance.

These methods can be used with those above, as well, as in the following:
Scanner Input = new Scanner(System.in);
System.out.print("'Please enter an integer: ");
while (Minput.hasNextInt()) {

input. nextLine();

System.out.print(*"That® s not an integer; please enter
an integer:);

}
int i = input.nextint();

1.7 An Example Program

In this section, we describe a simple example Java program that illustrates many of
the constructs defined above. Our example consists of two classes, one,
CreditCard, that defines credit card objects, and another, Test, that tests the
functionality of CreditCard class. The credit card objects defined by the
CreditCard class are simplified versions of traditional credit cards. They have
identifying numbers, identifying information about their owners and their issuing
bank, and information about their current balance and credit limit. They do not charge
interest or late payments, however, but they do restrict charges that would cause a
card's balance to go over its spending limit.

The CreditCard Class

68

We show the CreditCard class in Code Fragment 1.5. Note that the
CreditCard class defines five instance variables, all of which are private to the
class, and it provides a simple constructor that initializes these instance variables.

It also defines five accessor methods that provide access to the current values of
these instance variables. Of course, we could have alternatively defined the instance
variables as being public, which would have made the accessor methods moot. The
disadvantage with this direct approach, however, is that it allows users to modify an
object's instance variables directly, whereas in many cases such as this, we prefer to
restrict the modification of instance variables to special update methods. We
include two such update methods, charge It and makePayment in Code

Fragment 1.5.

In addition, it is often convenient to include action methods, which define specific
actions for that object's behavior. To demonstrate, we have defined such an action
method, the printCard method, as a static method, which is also included in
Code Fragment 1.5.

The Test Class

We test the CreditCard class in a Test class. Note the use of an array,
wallet, of CreditCard objects here, and how we are using iteration to
make charges and payments. We show the complete code for the Test class in
Code Fragment 1.6. For simplicity's sake, the Test class does not do any fancy
graphical output, but simply sends its output to the Java console. We show this
output in Code Fragment 1.7. Note the difference between the way we utilize the
nonstatic charge I t and make-Payment methods and the static printCard
method.

Code Fragment 1.5: The CreditCard class.

69

Code Fragment 1.6:

The Test class.

70

Code Fragment 1.7:

Output from the Test class.

71

1.8 Nested Classes and Packages

The Java language takes a general and useful approach to the organization of classes
into programs. Every stand-alone public class defined in Java must be given in a
separate file. The file name is the name of the class with a .java extension. So a class,
public class SmartBoard, is defined in a file, SmartBoard.java. In this
section, we describe two ways that Java allows multiple classes to be organized in
meaningful ways.

Nested Classes

Java allows class definitions to be placed inside, that is, nested inside the definitions
of other classes. This is a useful construct, which we will exploit several times in
this book in the implementation of data structures. The main use for such nested
classes is to define a class that is strongly affiliated with another class. For example,

72

a text editor class may wish to define a related cursor class. Defining the cursor
class as a nested class inside the definition of the text editor class keeps these two
highly related classes together in the same file. Moreover, it also allows each of
them to access nonpublic methods of the other. One technical point regarding
nested classes is that the nested class should be declared as static. This
declaration implies that the nested class is associated with the outer class, not an
instance of the outer class, that is, a specific object.

Packages
A set of classes, all defined in a common subdirectory, can be a Java package.
Every file in a package starts with the line:

package package_name;

The subdirectory containing the package must be named the same as the package.
We can also define a package in a single file that contains several class definitions,
but when it is compiled, all the classes will be compiled into separate files in the
same subdirectory.

In Java, we can use classes that are defined in other packages by prefixing class
names with dots (that is, using the . character) that correspond to the other
packages' directory structures.

public boolean Temperature(TA.Measures.Thermometer
thermometer,

int temperature) {

/7.

}

The function Temperature takes a class Thermometer as a parameter.
Thermometer is defined in the TA package in a subpackage called Measures.
The dots in TA_.Measures.Thermometer correspond directly to the directory
structure in the TA package.

All the extra typing needed to refer to a class outside of the current package can get
tiring. In Java, we can use the import keyword to include external classes or
entire packages in the current file. To import an individual class from a specific
package, we type the following at the beginning of the file:

import packageName.classNames;

For example, we could type

73

package Project;
import TA._Measures.Thermometer;
import TA._Measures.Scale;

at the beginning of a Project package to indicate that we are importing the
classes named TA_Measures.Thermometer and TA.Measures.Scale.
The Java run-time environment will now search these classes to match identifiers to
classes, methods, and instance variables that we use in our program.

We can also import an entire package, by using the following syntax:
import <packageName>.*;

For example:
package student;
import TA.Measures.™*;

public boolean Temperature(Thermometer thermometer,
int temperature) {

// ..
}

In the case where two packages have classes of the same name, we must
specifically reference the package that contains a class. For example, suppose both
the package Gnomes and package Cook ing have a class named Mushroom.

If we provide an Import statement for both packages, then we must specify which
class we mean as follows:

Gnomes .Mushroom shroom = new Gnomes_.Mushroom
('purple™);

Cooking.Mushroom topping = new Cooking.Mushroom ();

If we do not specify the package (that is, in the previous example we just use a
variable of type Mushroom), the compiler will give an "ambiguous class" error.

To sum up the structure of a Java program, we can have instance variables and
methods inside a class, and classes inside a package.

1.9 Writing a Java Program

74

The process of writing a Java program involves three fundamental steps:

1. Design
2. Coding
3. Testing and Debugging.

We briefly discuss each of these steps in this section.

1.9.1 Design

The design step is perhaps the most important step in the process of writing a
program. For it is in the design step that we decide how to divide the workings of
our program into classes, we decide how these classes will interact, what data each
will store, and what actions each will perform. Indeed, one of the main challenges
that beginning Java programmers face is deciding what classes to define to do the
work of their program. While general prescriptions are hard to come by, there are
some general rules of thumb that we can apply when determining how to define our
classes:

. Responsibilities: Divide the work into different actors, each with a
different responsibility. Try to describe responsibilities using action verbs. These
actors will form the classes for the program.

. Independence: Define the work for each class to be as independent from
other classes as possible. Subdivide responsibilities between classes so that each
class has autonomy over some aspect of the program. Give data (as instance
variables) to the class that has jurisdiction over the actions that require access to
this data.

. Behaviors: So that the consequences of each action performed by a class
will be well understood by other classes that interact with it, define the behaviors
for each class carefully and precisely. These behaviors will define the methods
that this class performs. The set of behaviors for a class is sometimes referred to
as a protocol, for we expect the behaviors for a class to hold together as a
cohesive unit.

Defining the classes, together with their instance variables and methods, determines
the design of a Java program. A good programmer will naturally develop greater
skill in performing these tasks over time, as experience teaches him or her to notice
patterns in the requirements of a program that match patterns that he or she has seen
before.

1.9.2 Pseudo-Code

75

Programmers are often asked to describe algorithms in a way that is intended for
human eyes only, prior to writing actual code. Such descriptions are called pseudo-
code. Pseudo-code is not a computer program, but is more structured than usual
prose. Pseudo-code is a mixture of natural language and high-level programming
constructs that describe the main ideas behind a generic implementation of a data
structure or algorithm. There really is no precise definition ofthe pseudo-code
language, however, because of its reliance on natural language. At the same time, to
help achieve clarity, pseudo-code mixes natural language with standard
programming language constructs. The programming language constructs we
choose are those consistent with modern high-level languages such as C, C++, and
Java.

These constructs include the following:

. Expressions: We use standard mathematical symbols to express numeric
and Boolean expressions. We use the left arrow sign («) as the assignment
operator in assignment statements (equivalent to the = operator in Java) and we
use the equal sign (=) as the equality relation in Boolean expressions (equivalent
to the "==" relation in Java).

. Method declarations: Algorithm name(paraml, par am2,...) declares a
new method "name" and its parameters.

. Decision structures: if condition then true-actions [else false-actions]. We
use indentation to indicate what actions should be included in the true-actions and
false-actions.

. While-loops: while condition do actions. We use indentation to indicate
what actions should be included in the loop actions.

. Repeat-loops: repeat actions until condition. We use indentation to
indicate what actions should be included in the loop actions.

. For-loops: for variable-increment-definition do actions. We use
indentation to indicate what actions should be included among the loop actions.

. Array indexing: A[i] represents the ith cell in the array A. The cells of an
n-celled array A are indexed from A[0] to A[n — 1] (consistent with Java).

. Method calls: object.method(args) (object is optional if it is understood).

. Method returns: return value. This operation returns the value specified
to the method that called this one.

. Comments: { Comment goes here. }. We enclose comments in braces.

When we write pseudo-code, we must keep in mind that we are writing for a human
reader, not a computer. Thus, we should strive to communicate high-level ideas, not

76

low-level implementation details. At the same time, we should not gloss over
important steps. Like many forms of human communication, finding the right
balance is an important skill that is refined through practice.

1.9.3 Coding

As mentioned above, one of the key steps in coding up an object-oriented program
is coding up the descriptions of classes and their respective data and methods. In
order to accelerate the development of this skill, we discuss various design patterns
for designing object-oriented programs (see Section 2.1.3) at various points
throughout this text. These patterns provide templates for defining classes and the
interactions between these classes.

Many programmers do their initial coding not on a computer, but by using CRC
cards. Component-responsibility-collaborator, or CRC cards, are simple index cards
that subdivide the work required of a program. The main idea behind this tool is to
have each card represent a component, which will ultimately become a class in our
program. We write the name of each component on the top of an index card. On the
left-hand side of the card, we begin writing the responsibilities for this component.
On the right-hand side, we list the collaborators for this component, that is, the
other components that this component will have to interact with to perform its
duties. The design process iterates through an action/actor cycle, where we first
identify an action (that is, a responsibility), and we then determine an actor (that is,
a component) that is best suited to perform that action. The design is complete when
we have assigned all actions to actors.

By the way, in using index cards to begin our coding, we are assuming that each
component will have a small set of responsibilities and collaborators. This
assumption is no accident, for it helps keep our programs manageable.

An alternative to CRC cards is the use of UML (Unified Modeling Language)
diagrams to express the organization of a Program, and the use of pseudo-code to
describe the algorithms. UML diagrams are a standard visual notation to express
object-oriented software designs. Several computer-aided tools are available to
build UML diagrams. Describing algorithms in pseudo-code, on the other hand, is a
technique that we utilize throughout this book.

Once we have decided on the classes for our program and their responsibilities, we
are ready to begin the actual coding on a computer. We create the actual code for
the classes in our program by using either an independent text editor (such as
emacs, WordPad, or vi), or the editor embedded in an integrated development
environment (IDE), such as Eclipse or Borland JBuilder.

Once we have completed coding for a class (or package), we compile this file into
working code by invoking a compiler. If we are not using an IDE, then we compile
our program by calling a program, such as javac, on our file. If we are using an

77

IDE, then we compile our program by clicking the appropriate compilation button.
If we are fortunate, and our program has no syntax errors, then this compilation
process will create files with a ".class" extension.

If our program contains syntax errors, then these will be identified, and we will
have to go back into our editor to fix the offending lines of code. Once we have
eliminated all syntax errors, and created the appropriate compiled code, we can run
our program by either invoking a command, such as "java" (outside an IDE), or
by clicking on the appropriate "run™ button (within an IDE). When a Java program
is run in this way, the run-time environment locates the directories containing the
named class and any other classes that are referenced from this class according to a
special operating system environment variable. This variable is named
"CLASSPATH," and the ordering of directories to search in is given as a list of
directories, which are separated by colons in Unix/Linux or semicolons in
DOS/Windows. An example CLASSPATH assignment in the DOS/Windows
operating system could be the following:

SET CLASSPATH= . ;C:\jJava;C:\Program Files\Java\

Whereas an example CLASSPATH assignment in the Unix/Linux operating system
could be the following:

setenv CLASSPATH
"_:/usr/local/java/lib:/usr/netscape/classes”

In both cases, the dot (".") refers to the current directory in which the run-time
environment is invoked.

Javadoc

In order to encourage good use of block comments and the automatic production
of documentation, the Java programming environment comes with a
documentation production program called javadoc. This program takes a
collection of Java source files that have been commented using certain keywords,
called tags, and it produces a series of HTML documents that describe the classes,
methods, variables, and constants contained in these files. For space reasons, we
have not used javadocstyle comments in all the example programs included in this
book, but we include a javadoc example in Code Fragment 1.8 as well as other
examples at the Web site that accompanies this book.

Each javadoc comment is a block comment that starts with "/**" and ends with
"*/," and each line between these two can begin with a single asterisk, "*," which
is ignored. The block comment is assumed to start with a descriptive sentence,
followed by a blank line, which is followed by special lines that begin with
javadoc tags. A block comment that comes just before a class definition, instance

78

variable declaration, or method definition, is processed by javadoc into a
comment about that class, variable, or method.

Code Fragment 1.8: An example class definition
using javadoc-style comments. Note that this class

includes two instance variables, one constructor, and
two accessor methods.

79

The primary javadoc tags are the following:

. @author text: Identifies each author (one per line) for a class.

80

. @exception exception-name description: Identifies an error condition
that is signaled by this method (see Section 2.3).

. @param parameter-name description: Identifies a parameter accepted by
this method.

. @return description: Describes the return type and its range of values
for a method.

There are other tags as well; the interested reader is referred to on-line
documentation for javadoc for further discussion.

Readability and Style

Programs should be made easy to read and understand. Good programmers should
therefore be mindful of their coding style, and develop a style that communicates
the important aspects of a program's design for both humans and computers.

Much has been written about good coding style, with some of the main principles
being the following:

. Use meaningful names for identifiers. Try to choose names that can be
read aloud, and choose names that reflect the action, responsibility, or data each
identifier is naming. The tradition in most Java circles is to capitalize the first
letter of each word in an identifier, except for the first word in an identifier for a
variable or method. So, in this tradition, "Date," "Vector,"
"DeviceManager" would identify classes, and 'isFul1(),”
"insertltem()," "studentName," and "studentHeight" would
respectively identify methods and variables.

. Use named constants or enum types instead of literals. Readability,
robustness, and modifiability are enhanced if we include a series of definitions
of named constant values in a class definition. These can then be used within
this class and others to refer to special values for this class. The tradition in Java
is to fully capitalize such constants, as shown below:

public class Student {

public static final int MINCREDITS = 12; // min.
credits In a term
public static final int MAXCREDITS = 24; // max.

credits in a term

public static final int FRESHMAN = 1; // code for
freshman

81

public static final int SOPHOMORE = 2; // code for
sophomore

public static final int JUNIOR = 3; // code for

junior

public static final Int SENIOR
senior

4; // code for

// Instance variables, constructors, and method
definitions go here..

}

. Indent statement blocks. Typically programmers indent each statement
block by 4 spaces; in this book we typically use 2 spaces, however, to avoid
having our code overrun the book’s margins.

. Organize each class in the following order:
1. Constants
2. Instance variables
3. Constructors
4. Methods.

We note that some Java programmers prefer to put instance variable definitions
last. We put them earlier so that we can read each class sequentially and
understand the data each method is working with.

. Use comments that add meaning to a program and explain ambiguous or
confusing constructs. In-line comments are good for quick explanations and do
not need to be sentences. Block comments are good for explaining the purpose
of a method and complex code sections.

1.94 Testing and Debugging
Testing is the process of experimentally checking the correctness of a program,
while debugging is the process of tracking the execution of a program and

discovering the errors in it. Testing and debugging are often the most time-
consuming activity in the development of a program.

Testing

82

A careful testing plan is an essential part of writing a program. While verifying
the correctness of a program over all possible inputs is usually infeasible, we
should aim at executing the program on a representative subset of inputs. At the
very minimum, we should make sure that every method in the program is tested at
least once (method coverage). Even better, each code statement in the program
should be executed at least once (statement coverage).

Programs often tend to fail on special cases of the input. Such cases need to be
carefully identified and tested. For example, when testing a method that sorts (that
is, puts in order) an array of integers, we should consider the following inputs:

. The array has zero length (no elements)

. The array has one element

. All the elements of the array are the same
. The array is already sorted

. The array is reverse sorted.

In addition to special inputs to the program, we should also consider special
conditions for the structures used by the program. For example, if we use an array
to store data, we should make sure that boundary cases, such as
inserting/removing at the beginning or end of the subarray holding data, are
properly handled.

While it is essential to use hand-crafted test suites, it is also advantageous to run
the program on a large collection of randomly generated inputs. The Random
class in the Java.uti I package provides several methods to generate random
numbers.

There is a hierarchy among the classes and methods of a program induced by the
caller-callee relationship. Namely, a method A is above a method B in the
hierarchy if A calls B. There are two main testing strategies, top-down and
bottom-up, which differ in the order in which methods are tested.

Bottom-up testing proceeds from lower-level methods to higher-level methods.
Namely, bottom-level methods, which do not invoke other methods, are tested
first, followed by methods that call only bottom-level methods, and so on. This
strategy ensures that errors found in a method are not likely to be caused by
lower-level methods nested within it.

Top-down testing proceeds from the top to the bottom of the method hierarchy. It
is typically used in conjunction with stubbing, a boot-strapping technique that
replaces a lower-level method with a stub, a replacement for the method that
simulates the output of the original method. For example, if method A calls

83

method B to get the first line of a file, when testing A we can replace B with a stub
that returns a fixed string.

Debugging

The simplest debugging technique consists of using print statements (using
method System.out.println(string)) to track the values of variables during
the execution of the program. A problem with this approach is that the print
statements need to be eventually removed or commented out before the software
is finally released.

A better approach is to run the program within a debugger, which is a specialized
environment for controlling and monitoring the execution of a program. The basic
functionality provided by a debugger is the insertion of breakpoints within the
code. When the program is executed within the debugger, it stops at each
breakpoint. While the program is stopped, the current value of variables can be
inspected. In addition to fixed breakpoints, advanced debuggers allow for
specification of conditional breakpoints, which are triggered only if a given
expression is satisfied.

The standard Java tools include a basic debugger called ydb, which is
commandline oriented. IDEs for Java programming provide advanced debugging
environments with graphical user interfaces.

1.10 Exercises

For source code and help with exercises, please visit
jJava.datastructures.net.

Reinforcement
R-1.1

Suppose that we create an array A of GameEntry objects, which has an integer
scores field, and we clone A and store the result in an array B. If we then
immediately set A [4].score equal to 550, what is the score value of the
GameEntry object referenced by B[4]?

R-1.2

84

Modify the CreditCard class from Code Fragment 1.5 to charge interest on
each payment.

R-1.3

Modify the CreditCard class from Code Fragment 1.5 to charge a late fee
for any payment that is past its due date.

R-1.4

Modify the CreditCard class from Code Fragment 1.5 to include modifier
methods, which allow a user to modify internal variables in a CreditCard
class in a controlled manner.

R-1.5

Modify the declaration of the first for loop in the Test class in Code
Fragment 1.6 so that its charges will eventually cause exactly one of the three
credit cards to go over its credit limit. Which credit card is it?

R-1.6

Write a short Java function, inputAl IBaseTypes, that inputs a different
value of each base type from the standard input device and prints it back to the
standard output device.

R-1.7

Write a Java class, Flower, that has three instance variables of type String,
int, and Float, which respectively represent the name of the flower, its
number of pedals, and price. Your class must include a constructor method that
initializes each variable to an appropriate value, and your class should include
methods for setting the value of each type, and getting the value of each type.

R-1.8

Write a short Java function, isMultiple, that takes two long values, n and
m, and returns true if and only if n is a multiple of m, that is, n = mi for some
integer i.

R-1.9

Write a short Java function, 1sOdd, that takes an int i and returns true if and
only if i is odd. Your function cannot use the multiplication, modulus, or
division operators, however.

R-1.10

85

Write a short Java function that takes an integer n and returns the sum of all the
integers smaller than n.

R-1.11

Write a short Java function that takes an integer n and returns the sum of all the
odd integers smaller than n.

Creativity
C-1.1

Write a short Java function that takes an array of int values and determines if
there is a pair of numbers in the array whose product is odd.

C-1.2

Write a Java method that takes an array of 1nt values and determines if all the
numbers are different from each other (that is, they are distinct).

C-13

Write a Java method that takes an array containing the set of all integers in the
range 1 to 52 and shuffles it into random order. Your method should output each
possible order with equal probability.

C-14

Write a short Java program that outputs all possible strings formed by using the
characters 'c’, 'a’, 'r', ' b', ' 0', and 'n' exactly once.

C-15

Write a short Java program that takes all the lines input to standard input and
writes them to standard output in reverse order. That is, each line is output in the
correct order, but the ordering of the lines is reversed.

C-1.6

Write a short Java program that takes two arrays a and b of length n storing int
values, and returns the dot product of a and b. That is, it returns an array c of
length n such that c[i] = a[i] - b[i], fori=0,... ,n—1.

Projects

P-1.1

86

A common punishment for school children is to write out a sentence multiple
times. Write a Java stand-alone program that will write out the following
sentence one hundred times: "I will never spam my friends again.” Your
program should number each of the sentences and it should make eight different
random-looking typos.

P-1.2

(For those who know Java graphical user interface methods) Define a
GraphicalTest class that tests the functionality of the CreditCard class from
Code Fragment 1.5 using text fields and buttons.

P-1.3

The birthday paradox says that the probability that two people in a room will
have the same birthday is more than half as long as n, the number of people in
the room, is more than 23. This property is not really a paradox, but many
people find it surprising. Design a Java program that can test this paradox by a
series of experiments on randomly generated birthdays, which test this paradox
for n =5,10,15,20,..., 100.

Chapter Notes

For more detailed information about the Java programming language, we refer the
reader to some of the fine books about Java, including the books by Arnold and
Gosling [7], Cam-pione and Walrath [19], Cornell and Horstmann [26], Flanagan
[34], and Horstmann [51], as well as Sun's Java Web site

(http://www. Jjava.sun.com).

87

http://www.java.sun.com/

Chapter 2 Object-Oriented Design

Contents
2.1

Goals, Principles, and
Patterns.o ...

58

2.1.1

Object-Oriented Design Goals............
58

2.1.2

88

Object-Oriented Design Principles
59

2.1.3

Design Patterns.................

62

2.2

Inheritance and Polymorphism..
63

2.2.1

Inheritance.

63

2.2.2

Polymorphism.

65

2.2.3

Using Inheritance in Java..................
66

2.3

Exceptions.o

76

2.3.1

Throwing Exceptions.................

76

2.3.2

Catching Exceptions.

89

78

2.4

Interfaces and Abstract
ClaSSeS. & it i e e e e e e e e eeaa

80

2.4.1

Implementing Interfaces......
80

2.4.2

Multiple Inheritance iIn Interfaces...............
83

2.4.3

Abstract Classes and Strong TypIng..............
84

2.5

Casting and GenericCS. .. .o c i i e i i e i e eceaaann
85

2.5.1

CastinNg. .- oo e i i e e e ceeeaaaan

85

2.5.2

(61T T=T ol o1

89

2.6

EXercises.

91

90

Java.datastructures.net

2.1 Goals, Principles, and Patterns

As the name implies, the main "actors™ in the object-oriented design paradigm are
called objects. An object comes from a class, which is a specification of the data
fields, also called instance variables, that the object contains, as well as the methods
(operations) that the object can execute. Each class presents to the outside world a
concise and consistent view of the objects that are instances of this class, without
going into too much unnecessary detail or giving others access to the inner workings
of the objects. This view of computing is intended to fulfill several goals and
incorporate several design principles, which we discuss in this chapter.

2.1.1 Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and reusability.
(See Figure 2.1.)

Figure 2.1: Goals of object-oriented design.

Robustness

Every good programmer wants to develop software that is correct, which means
that a program produces the right output for all the anticipated inputs in the
program's application. In addition, we want software to be robust, that is, capable
of handling unexpected inputs that are not explicitly defined for its application.
For example, if a program is expecting a positive integer (for example,
representing the price of an item) and instead is given a negative integer, then the
program should be able to recover gracefully from this error. More importantly, in
life-critical applications, where a software error can lead to injury or loss of life,
software that is not robust could be deadly. This point was driven home in the late
1980s in accidents involving Therac-25, a radiation-therapy machine, which

91

severely overdosed six patients between 1985 and 1987, some of whom died from
complications resulting from their radiation overdose. All six accidents were
traced to software errors.

Adaptability

Modern software applications, such as Web browsers and Internet search engines,
typically involve large programs that are used for many years. Software,
therefore, needs to be able to evolve over time in response to changing conditions
in its environment. Thus, another important goal of quality software is that it
achieves adaptability (also called evolvability). Related to this concept is
portability, which is the ability of software to run with minimal change on
different hardware and operating system platforms. An advantage of writing
software in Java is the portability provided by the language itself.

Reusability

Going hand in hand with adaptability is the desire that software be reusable, that
is, the same code should be usable as a component of different systems in various
applications. Developing quality software can be an expensive enterprise, and its
cost can be offset somewhat if the software is designed in a way that makes it
easily reusable in future applications. Such reuse should be done with care,
however, for one of the major sources of software errors in the Therac-25 came
from inappropriate reuse of software from the Therac-20 (which was not object-
oriented and not designed for the hardware platform used with the Therac-25).

2.1.2 Object-Oriented Design Principles

Chief among the principles of the object-oriented approach, which are intended to
facilitate the goals outlined above, are the following (see Figure 2.2):

. Abstraction

. Encapsulation

. Modularity.

Figure 2.2 : Principles of object-oriented design.

92

Abstraction

The notion of abstraction is to distill a complicated system down to its most
fundamental parts and describe these parts in a simple, precise language.
Typically, describing the parts of a system involves naming them and explaining
their functionality. Applying the abstraction paradigm to the design of data
structures gives rise to abstract data types (ADTs). An ADT is a mathematical
model of a data structure that specifies the type of data stored, the operations
supported on them, and the types of parameters of the operations. An ADT
specifies what each operation does, but not how it does it. In Java, an ADT can be
expressed by an interface, which is simply a list of method declarations, where
each method has an empty body. (We say more about Java interfaces in Section
2.4.)

An ADT is realized by a concrete data structure, which is modeled in Java by a
class. A class defines the data being stored and the operations supported by the
objects that are instances of the class. Also, unlike interfaces, classes specify how
the operations are performed in the body of each method. A Java class is said to
implement an interface if its methods include all the methods declared in the
interface, thus providing a body for them. However, a class can have more
methods than those of the interface.

Encapsulation

Another important principle of object-oriented design is the concept of
encapsulation, which states that different components of a software system
should not reveal the internal details of their respective implementations. One of
the main advantages of encapsulation is that it gives the programmer freedom in
implementing the details of a system. The only constraint on the programmer is to
maintain the abstract interface that outsiders see.

93

Modularity

In addition to abstraction and encapsulation, a fundamental principle of object
oriented design is modularity. Modern software systems typically consist of
several different components that must interact correctly in order for the entire
system to work properly. Keeping these interactions straight requires that these
different components be well organized. In object-oriented design, this code
structuring approach centers around the concept of modularity. Modularity refers
to an organizing principle for code in which different components of a software
system are divided into separate functional units.

Hierarchical Organization

The structure imposed by modularity helps to enable software reusability. If
software modules are written in an abstract way to solve general problems, then
modules can be reused when instances of these same general problems arise in
other contexts.

For example, the structural definition of a wall is the same from house to house,
typically being defined in terms of 2- by 4-inch studs, spaced a certain distance
apart, etc. Thus, an organized architect can reuse his or her wall definitions from
one house to another. In reusing such a definition, some parts may require
redefinition, for example, a wall in a commercial building may be similar to that
of a house, but the electrical system and stud material might be different.

A natural way to organize various structural components of a software package is
in a hierarchical fashion, which groups similar abstract definitions together in a
level-by-level manner that goes from specific to more general as one traverses up
the hierarchy. A common use of such hierarchies is in an organizational chart,
where each link going up can be read as "is a," as in "a ranch is a house is a
building.” This kind of hierarchy is useful in software design, for it groups
together common functionality at the most general level, and views specialized
behavior as an extension of the general one.

Figure 2.3: An example of an "is a" hierarchy
involving architectural buildings.

94

2.1.3 Design Patterns

One of the advantages of object-oriented design is that it facilitates reusable, robust,
and adaptable software. Designing good code takes more than simply understanding
object-oriented methodologies, however. It requires the effective use of object-
oriented design techniques.

Computing researchers and practitioners have developed a variety of organizational
concepts and methodologies for designing quality object-oriented software that is
concise, correct, and reusable. Of special relevance to this book is the concept of a
design pattern, which describes a solution to a "typical™ software design problem.
A pattern provides a general template for a solution that can be applied in many
different situations. It describes the main elements of a solution in an abstract way
that can be specialized for a specific problem at hand. It consists of a name, which
identifies the pattern, a context, which describes the scenarios for which this pattern
can be applied, a template, which describes how the pattern is applied, and a result,
which describes and analyzes what the pattern produces.

We present several design patterns in this book, and we show how they can be
consistently applied to implementations of data structures and algorithms. These
design patterns fall into two groups—patterns for solving algorithm design
problems and patterns for solving software engineering problems. Some of the
algorithm design patterns we discuss include the following:

. Recursion (Section 3.5)

. Amortization (Section 6.1.4)

95

. Divide-and-conquer (Section 11.1.1)

. Prune-and-search, also known as decrease-and-conquer (Section 11.7.1)

. Brute force (Section 12.2.1)

. The greedy method (Section 12.4.2)

. Dynamic programming (Section 12.5.2).

Likewise, some of the software engineering design patterns we discuss include:
. Position (Section 6.2.2)
. Adapter (Section 6.1.2)
. Iterator (Section 6.3)

. Template method (Sections 7.3.7, 11.6, and 13.3.2)

. Composition (Section 8.1.2)
. Comparator (Section 8.1.2)
. Decorator (Section 13.3.1).

Rather than explain each of these concepts here, however, we introduce them
throughout the text as noted above. For each pattern, be it for algorithm engineering
or software engineering, we explain its general use and we illustrate it with at least
one concrete example.

2.2 Inheritance and Polymorphism

To take advantage of hierarchical relationships, which are common in software
projects, the object-oriented design approach provides ways of reusing code.

2.2.1 Inheritance

The object-oriented paradigm provides a modular and hierarchical organizing
structure for reusing code, through a technique called inheritance. This technique
allows the design of general classes that can be specialized to more particular
classes, with the specialized classes reusing the code from the general class. The
general class, which is also known as a base class or superclass, can define
standard instance variables and methods that apply in a multitude of situations. A
class that specializes, or extends, or inherits from, a superclass need not give new
implementations for the general methods, for it inherits them. It should only define
those methods that are specialized for this particular subclass.

96

Example 2.1: Consider a class S that defines objects with a field, x, and three
methods, a(), b(), and c(). Suppose we were to define a classT that extendsS
and includes an additional field, y, and two methods, d() ande (). The classT
would theninher it the instance variablex and the methodsa(), b(), andc()
fromS. We illustrate the relationships between the classS and the classT in
aclass inheritance diagramin Figure 2.4. Each box in such a diagram
denotes a class, with its name, fields (or instance variables), and methods included
as subrectangles.

Figure 2.4: A class inheritance diagram. Each box
denotes a class, with its name, fields, and methods, and
an arrow between boxes denotes an inheritance
relation.

Object Creation and Referencing

When an object o is created, memory is allocated for its data fields, and these
same fields are initialized to specific beginning values. Typically, one associates
the new object o with a variable, which serves as a "link™ to object o, and is said
to reference 0. When we wish to access object o (for the purpose of getting at its
fields or executing its methods), we can either request the execution of one of 0's
methods (defined by the class that o belongs to), or look up one of the fields of o.
Indeed, the primary way that an object p interacts with another object o is for p to

97

send a "message” to o that invokes one of o0's methods, for example, for o to print
a description of itself, for o to convert itself to a string, or for o to return the value
of one of its data fields. The secondary way that p can interact with o is for p to
access one of o's fields directly, but only if o has given other objects like p
permission to do so. For example, an instance of the Java class Integer stores,
as an instance variable, an integer, and it provides several operations for accessing
this data, including methods for converting it into other number types, for
converting it to a string of digits, and for converting strings of digits to a number.
It does not allow for direct access of its instance variable, however, for such
details are hidden.

Dynamic Dispatch

When a program wishes to invoke a certain method a() of some object o, it
sends a message to o, which is usually denoted, using the dot-operator syntax
(Section 1.3.2), as "0.a()." In the compiled version of this program, the code
corresponding to this invocation directs the run-time environment to examine 0's
class T to determine if the class T supports an a() method, and, if so, to execute
it. Specifically, the run-time environment examines the class T to see if it defines
an a() method itself. If it does, then this method is executed. If T does not define
an a() method, then the run-time environment examines the superclass S of T. If
S defines a(), then this method is executed. If S does not define a(), on the
other hand, then the run-time environment repeats the search at the superclass of
S. This search continues up the hierarchy of classes until it either finds an a()
method, which is then executed, or it reaches a topmost class (for example, the
Obiject class in Java) without an a() method, which generates a run-time error.
The algorithm that processes the message o.a() to find the specific method to
invoke is called the dynamic dispatch (or dynamic binding) algorithm, which
provides an effective mechanism for locating reused software. It also allows for
another powerful technique of object-oriented programming—polymorphism.

2.2.2 Polymorphism

Literally, "polymorphism" means "many forms." In the context of object-oriented
design, it refers to the ability of an object variable to take different forms. Object-
oriented languages, such as Java, address objects using reference variables. The
reference variable o must define which class of objects it is allowed to refer to, in
terms of some class S. But this implies that o can also refer to any object belonging
to a class T that extends S. Now consider what happens if S defines an a() method
and T also defines an a() method. The dynamic dispatch algorithm for method
invocation always starts its search from the most restrictive class that applies. When
o refers to an object from class T, then it will use T's a() method when asked for
o.a(), not S's. In this case, T is said to override method a() from S. Alternatively,
when o refers to an object from class S (that is not also a T object), it will execute

98

S's a() method when asked for 0.a(). Polymorphism such as this is useful
because the caller of 0.a() does not have to know whether the object o refers to an
instance of T or S in order to get the a() method to execute correctly. Thus, the
object variable o can be polymorphic, or take many forms, depending on the
specific class of the objects it is referring to. This kind of functionality allows a
specialized class T to extend a class S, inherit the standard methods from S, and
redefine other methods from S to account for specific properties of objects of T.

Some object-oriented languages, such as Java, also provide a useful technique
related to polymorphism, which is called method overloading. Overloading occurs
when a single class T has multiple methods with the same name, provided each one
has a different signature. The signature of a method is a combination of its name
and the type and number of arguments that are passed to it. Thus, even though
multiple methods in a class can have the same name, they can be distinguished by a
compiler, provided they have different signatures, that is, are different in actuality.
In languages that allow for method overloading, the run-time environment
determines which actual method to invoke for a specific method call by searching
up the class hierarchy to find the first method with a signature matching the method
being invoked. For example, suppose a class T, which defines a method a(),
extends a class U, which defines a method a(x,y). If an object o from class T
receives the message "o.a(x,y)," then it is U's version of method a that is invoked
(with the two parameters x and y). Thus, true polymorphism applies only to
methods that have the same signature, but are defined in different classes.

Inheritance, polymorphism, and method overloading support the development of
reusable software. We can define classes that inherit the standard instance variables
and methods and can then define new more-specific instance variables and methods
that deal with special aspects of objects of the new class.

2.2.3 Using Inheritance in Java

There are two primary ways of using inheritance of classes in Java, specialization
and extension.

Specialization

In using specialization we are specializing a general class to particular subclasses.
Such subclasses typically possess an "is a" relationship to their superclass. A
subclass then inherits all the methods of the superclass. For each inherited
method, if that method operates correctly independent of whether it is operating
for a specialization, no additional work is needed. If, on the other hand, a general
method of the superclass would not work correctly on the subclass, then we
should override the method to have the correct functionality for the subclass. For
example, we could have a general class, Dog, which has a method drink and a
method sniff. Specializing this class to a Bloodhound class would probably not

99

require that we override the dr ink method, as all dogs drink pretty much the
same way. But it could require that we override the sniff method, as a
Bloodhound has a much more sensitive sense of smell than a standard dog. In this
way, the Bloodhound class specializes the methods of its superclass, Dog.

Extension

In using extension, on the other hand, we utilize inheritance to reuse the code
written for methods of the superclass, but we then add new methods that are not
present in the superclass, so as to extend its functionality. For example, returning
to our Dog class, we might wish to create a subclass, BorderCol lie, which
inherits all the standard methods of the Dog class, but then adds a new method,
herd, since Border Collies have a herding instinct that is not present in standard
dogs. By adding the new method, we are extending the functionality of a standard
dog.

In Java, each class can extend exactly one other class. Even if a class definition
makes no explicit use of the extends clause, it still inherits from exactly one

other class, which in this case is class java. lang.Object. Because of this
property, Java is said to allow only for single inheritance among classes.

Types of Method Overriding

Inside the declaration of a new class, Java uses two kinds of method overriding,
refinement and replacement. In the replacement type of overriding, a method
completely replaces the method of the superclass that it is overriding (as in the
sniTf method of Bloodhound mentioned above). In Java, all regular methods
of a class utilize this type of overriding behavior.

In the refinement type of overriding, however, a method does not replace the
method of its superclass, but instead adds additional code to that of its superclass.
In Java, all constructors utilize the refinement type of overriding, a scheme called
constructor chaining. Namely, a constructor begins its execution by calling a
constructor of the superclass. This call can be made explicitly or implicitly. To
call a constructor of the superclass explicitly, we use the keyword super to refer
to the superclass. (For example, super () calls the constructor of the superclass
with no arguments.) If no explicit call is made in the body of a constructor,
however, the compiler automatically inserts, as the first line of the constructor, a
call to super (). (There is an exception to this general rule, which is discussed
in the next section.) Summarizing, in Java, constructors use the refinement type of
method overriding whereas regular methods use replacement.

The Keyword this

100

Sometimes, in a Java class, it is convenient to reference the current instance of
that class. Java provides a keyword, called this, for such a reference. Reference
this is useful, for example, if we would like to pass the current object as a
parameter to some method. Another application of this is to reference a field
inside the current object that has a name clash with a variable defined in the
current block, as shown in the program given in Code Fragment 2.1.

Code Fragment 2.1: Sample program illustrating
the use of reference this to disambiguate between a
field of the current object and a local variable with the
same name.

When this program is executed, it prints the following:
The dog local variable =5.0

The dog field = 2

An Illustration of Inheritance in Java

To make some of the notions above about inheritance and polymorphism more
concrete, let us consider some simple examples in Java.

In particular, we consider a series of several classes for stepping through and
printing out numeric progressions. A numeric progression is a sequence of
numbers, where each number depends on one or more of the previous numbers.
For example, an arithmetic progression determines the next number by addition
and a geometric progression determines the next number by multiplication. In

101

any case, a progression requires a way of defining its first value and it needs a
way of identifying the current value as well.

We begin by defining a class, Progression, shown in Code Fragment 2.2,
which defines the standard fields and methods of a numeric progression.
Specifically, it defines the following two long-integer fields:

. first: first value of the progression;
. cur: current value of the progression;
and the following three methods:

firstValue() : Reset the progression to the first value, and return
that value.

nextValue() : Step the progression to the next value and return that
value.

printProgression(n) : Reset the progression and print the first n values of
the progression.

We say that the method printProgression has no output in the sense that it
does not return any value, whereas the methods firstValue and nextValue
both return long-integer values. That is, FirstValue and nextValue are
functions, and printProgression is a procedure.

The Progression class also includes a method Progression(), which is a
constructor. Recall that constructors set up all the instance variables at the time
an object of this class is created. The Progression class is meant to be a
general superclass from which specialized classes inherit, so this constructor is
code that will be included in the constructors for each class that extends the
Progression class.

Code Fragment 2.2: General numeric progression
class.

102

103

An Arithmetic Progression Class

Next, we consider the class ArithProgression, which we present in Code
Fragment 2.3. This class defines an arithmetic progression, where the next value
is determined by adding a fixed increment, inc, to the previous value.
ArithProgression inherits fields first and cur and methods
firstvalue() and printProgression(n) from the Progression
class. It adds a new field, 1nc, to store the increment, and two constructors for
setting the increment. Finally, it overrides the nextValue () method to conform
to the way we get the next value for an arithmetic progression.

Polymorphism is at work here. When a Progression reference is pointing to
an Arith Progression object, then it is the ArithProgression methods
TirstvValue() and nextValue() that will be used. This polymorphism is
also true inside the inherited version of printProgression(n), because the
calls to the FirstValue() and nextValue() methods here are implicit for
the "current” object (called this in Java), which in this case will be of the Arith
Progression class.

Example Constructors and the Keyword this

In the definition of the Arith Progression class, we have added two
constructors, a default one, which takes no parameters, and a parametric one,
which takes an integer parameter as the increment for the progression. The default
constructor actually calls the parametric one, using the keyword this and
passing 1 as the value of the increment parameter. These two constructors
illustrate method overloading (where a method name can have multiple versions
inside the same class), since a method is actually specified by its name, the class
of the object that calls it, and the types of arguments that are passed to it—its
signature. In this case, the overloading is for constructors (a default constructor
and a parametric constructor).

The call this(1) to the parametric constructor as the first statement of the
default constructor triggers an exception to the general constructor chaining rule
discussed in Section 2.2.3. Namely, whenever the first statement of a constructor
C ' calls another constructor C " of the same class using the this reference, the
superclass constructor is not implicitly called for C. Note that a superclass
constructor will eventually be called along the chain, either explicitly or
implicitly. In particular, for our ArithProgression class, the default
constructor of the superclass (Progression) is implicitly called as the first
statement of the parametric constructor of Arith Progression.

We discuss constructors in more detail in Section 1.2.

104

Code Fragment 2.3: Class for arithmetic
progressions, which inherits from the general
progression class shown in Code Fragment 2.2.

A Geometric Progression Class

Let us next define a class, GeomProgression, shown in Code Fragment 2.4,
which steps through and prints out a geometric progression, where the next value
is determined by multiplying the previous value by a fixed base, base. A

105

geometric progression is like a general progression, except for the way we
determine the next value. Hence, Geom Progression is declared as a subclass
of the Progression class. As with the Arith Progression class, the
GeomProgression class inherits the fields First and cur, and the methods
firstValue and printProgression from Progression.

Code Fragment 2.4: Class for geometric
progressions.

106

A Fibonacci Progression Class

As a further example, we define a FibonacciProgression class that
represents another kind of progression, the Fibonacci progression, where the next
value is defined as the sum of the current and previous values. We show class
FibonacciProgression in Code Fragment 2.5. Note our use of a

107

parameterized constructor in the FibonacciProgression class to provide a
different way of starting the progression.

Code Fragment 2.5: Class for the Fibonacci
progression.

In order to visualize how the three different progression classes are derived from
the general Progression class, we give their inheritance diagram in Figure
2.5.

108

Figure 2.5 :Inheritance diagram for class
Progression and its subclasses.

To complete our example, we define a class TestProgression, shown in
Code Fragment 2.6, which performs a simple test of each of the three classes. In
this class, variable prog is polymorphic during the execution of the main
method, since it references objects of class ArithProgression,
GeomProgression, and FibonacciProgression in turn. When the main
method of the TestProgression class is invoked by the Java run-time
system, the output shown in Code Fragment 2.7 is produced.

The example presented in this section is admittedly small, but it provides a simple
illustration of inheritance in Java. The Progression class, its subclasses, and
the tester program have a number of shortcomings, however, which might not be
immediately apparent. One problem is that the geometric and Fibonacci
progressions grow quickly, and there is no provision for handling the inevitable
overflow of the long integers involved. For example, since 3** > 2°3 a geometric
progression with base b = 3 will overflow a long integer after 40 iterations.
Likewise, the 94th Fibonacci number is greater than 2°%; hence, the Fibonacci
progression will overflow a long integer after 94 iterations. Another problem is
that we may not allow arbitrary starting values for a Fibonacci progression. For
example, do we allow a Fibonacci progression starting with 0 and —1 ? Dealing
with input errors or error conditions that occur during the running of a Java
program requires that we have some mechanism for handling them. We discuss
this topic next.

109

Code Fragment 2.6: Program for testing the
progression classes.

Code Fragment 2.7: Output of the
TestProgression program shown in Code
Fragment 2.6.

110

2.3 Exceptions

Exceptions are unexpected events that occur during the execution of a program. An
exception can be the result of an error condition or simply an unanticipated input. In
any case, in an object-oriented language, such as Java, exceptions can be thought of
as being objects themselves.

2.3.1 Throwing Exceptions

In Java, exceptions are objects that are thrown by code that encounters some sort of
unexpected condition. They can also be thrown by the Java run-time environment
should it encounter an unexpected condition, like running out of object memory. A
thrown exception is caught by other code that "handles" the exception somehow, or
the program is terminated unexpectedly. (We will say more about catching
exceptions shortly.)

Exceptions originate when a piece of Java code finds some sort of problem during
execution and throws an exception object. It is convenient to give a descriptive
name to the class of the exception object. For instance, if we try to delete the tenth
element from a sequence that has only five elements, the code may throw a
BoundaryViolationException. This action could be done, for example,
using the following code fragment:

if (insertindex >= A_length) {
throw new

BoundaryViolationException("'No element at index ' +
insertindex);

111

}

It is often convenient to instantiate an exception object at the time the exception has
to be thrown. Thus, a throw statement is typically written as follows:

throw new exception_type(paramg, paramy, ..., paramu-1);

where exception_type is the type of the exception and the param;'s form the list of
parameters for a constructor for this exception.

Exceptions are also thrown by the Java run-time environment itself. For example,
the counterpart to the example above is
ArrayIndexOutOfBoundsException. If we have a six-element array and
ask for the ninth element, then this exception will be thrown by the Java run-time
system.

The Throws Clause

When a method is declared, it is appropriate to specify the exceptions it might
throw. This convention has both a functional and courteous purpose. For one, it
lets users know what to expect. It also lets the Java compiler know which
exceptions to prepare for. The following is an example of such a method
definition:

public void goShopping() throws
ShoppingListTooSmal lException,

OutOfMoneyException {

// method body..

}

By specifying all the exceptions that might be thrown by a method, we prepare
others to be able to handle all of the exceptional cases that might arise from using
this method. Another benefit of declaring exceptions is that we do not need to
catch those exceptions in our method. Sometimes this is appropriate in the case
where other code is responsible for causing the circumstances leading up to the
exception.

The following illustrates an exception that is "passed through™:

public void getReadyForClass() throws
ShoppingListTooSmal IException,

OutOfMoneyException {

112

goShopping(); // 1 don"t have to try or catch
the exceptions

// which goShopping() might throw
because

// getReadyForClass() will just pass
these along.

makeCookiesForTA(Q);

}

A function can declare that it throws as many exceptions as it likes. Such a listing
can be simplified somewhat if all exceptions that can be thrown are subclasses of
the same exception. In this case, we only have to declare that a method throws the
appropriate superclass.

Kinds of Throwables

Java defines classes Exception and Error as subclasses of Throwable,
which denotes any object that can be thrown and caught. Also, it defines class
RuntimeException as a subclass of Exception. The Error class is used
for abnormal conditions occurring in the run-time environment, such as running
out of memory. Errors can be caught, but they probably should not be, because
they usually signal problems that cannot be handled gracefully. An error message
or a sudden program termination is about as much grace as we can expect. The
Exception class is the root of the exception hierarchy. Specialized exceptions
(for example, BoundaryViolationException) should be defined by
subclassing from either Exception or RuntimeException. Note that
exceptions that are not subclasses of RuntimeException must be
declared in the throws clause of any method that can throw them.

2.3.2 Catching Exceptions

When an exception is thrown, it must be caught or the program will terminate. In
any particular method, an exception in that method can be passed through to the
calling method or it can be caught in that method. When an exception is caught, it
can be analyzed and dealt with. The general methodology for dealing with
exceptions is to "try" to execute some fragment of code that might throw an
exception. If it does throw an exception, then that exception is caught by having the
flow of control jump to a predefined catch block that contains the code dealing
with the exception.

The general syntax for a try-catch block in Java is as follows:

113

try
main_block_of statements
catch (exception_type; variable;)
block_of statements;
catch (exception_type, variable;)

block_of statements,

finally
block_of statements,

where there must be at least one catch part, but the Final ly part is optional.
Each exception_type; is the type of some exception, and each variable; is a valid
Java variable name.

The Java run-time environment begins performing a try-catch block such as
this by executing the block of statements, main_block_of statements. If this
execution generates no exceptions, then the flow of control continues with the first
statement after the last line of the entire try-catch block, unless it includes an
optional Final ly part. The Final ly part, if it exists, is executed regardless of
whether any exceptions are thrown or caught. Thus, in this case, if no exception is
thrown, execution progresses through the try-catch block, jumps to the
Tinally part, and then continues with the first statement after the last line of the
try-catch block.

If, on the other hand, the block, main_block of_ statements, generates an
exception, then execution in the try-catch block terminates at that point and
execution jumps to the catch block whose exception_type most closely matches
the exception thrown. The variable for this catch statement references the exception
object itself, which can be used in the block of the matching catch statement.
Once execution of that catch block completes, control flow is passed to the
optional Final ly block, if it exists, or immediately to the first statement after the
last line of the entire try-catch block if there is no final ly block. Otherwise,
if there is no catch block matching the exception thrown, then control is passed to
the optional Final ly block, if it exists, and then the exception is thrown back to
the calling method.

Consider the following example code fragment:

int index = Integer _MAX_VALUE; // 2.14 Billion

114

try // This code might have a
problem..

{
String toBuy = shoppingList[index];
b
catch (ArraylndexOutOfBoundsException aioobx)
{

System.out._printIn("'The index "+index+" iIs outside
the array.™);

}

If this code does not catch a thrown exception, the flow of control will immediately
exit the method and return to the code that called our method. There, the Java run-
time environment will look again for a catch block. If there is no catch block in the
code that called this method, the flow of control will jump to the code that called
this, and so on. Eventually, if no code catches the exception, the Java run-time
system (the origin of our program's flow of control) will catch the exception. At this
point, an error message and a stack trace is printed to the screen and the program is
terminated.

The following is an actual run-time error message:

jJava.lang.NullPointerException: Returned a null
locator

at java.awt.Component.handleEvent(Component. java:900)
at java.awt.Component.postEvent(Component. java:838)
at java.awt.Component.postEvent(Component. java:845)

at
sun.awt.motif.MButtonPeer.action(MButtonPeer.java:39)

at java.lang.Thread.run(Thread. java)
Once an exception is caught, there are several things a programmer might want to
do. One possibility is to print out an error message and terminate the program.

There are also some interesting cases in which the best way to handle an exception
IS to ignore it (this can be done by having an empty catch block).

115

Ignoring an exception is usually done, for example, when the programmer does not
care whether there was an exception or not. Another legitimate way of handling
exceptions is to create and throw another exception, possibly one that specifies the
exceptional condition more precisely. The following is an example of this approach:

catch (ArraylndexOutOfBoundsException aioobx) {
throw new ShoppingListTooSmallException(

"Product index is not in the shopping list™);

}

Perhaps the best way to handle an exception (although this is not always possible) is
to find the problem, fix it, and continue execution.

2.4 Interfaces and Abstract Classes

In order for two objects to interact, they must "know" about the various messages that
each will accept, that is, the methods each object supports. To enforce this
"knowledge," the object-oriented design paradigm asks that classes specify the
application programming interface (API), or simply interface, that their objects
present to other objects. In the ADT-based approach (see Section 2.1.2) to data
structures followed in this book, an interface defining an ADT is specified as a type
definition and a collection of methods for this type, with the arguments for each
method being of specified types. This specification is, in turn, enforced by the
compiler or run-time system, which requires that the types of parameters that are
actually passed to methods rigidly conform with the type specified in the
interface.This requirement is known as strong typing. Having to define interfaces and
then having those definitions enforced by strong typing admittedly places a burden on
the programmer, but this burden is offset by the rewards it provides, for it enforces
the encapsulation principle and often catches programming errors that would
otherwise go unnoticed.

2.4.1 Implementing Interfaces

The main structural element in Java that enforces an APl is the interface. An
interface is a collection of method declarations with no data and no bodies. That is,
the methods of an interface are always empty (that is, they are simply method
signatures). When a class implements an interface, it must implement all of the
methods declared in the interface. In this way, interfaces enforce requirements that
an implementing class has methods with certain specified signatures.

Suppose, for example, that we want to create an inventory of antiques we own,
categorized as objects of various types and with various properties. We might, for

116

instance, wish to identify some of our objects as sellable, in which case they could
implement the Sel labl e interface shown in Code Fragment 2.8.

We can then define a concrete class, Photograph, shown in Code Fragment 2.9,
that implements the Sel labl e interface, indicating that we would be willing to
sell any of our Photograph objects: This class defines an object that
implements each of the methods of the Sel labl e interface, as required. In
addition, it adds a method, 1sColor, which is specialized for Photograph
objects.

Another kind of object in our collection might be something we could transport. For
such objects, we define the interface shown in Code Fragment 2.10.

Code Fragment 2.8: Interface Sellable.

Code Fragment 2.9 : Class Photograph
implementing the Sellable interface.

117

Code Fragment 2.10: Interface Transportable.

We could then define the class Boxed I'tem, shown in Code Fragment 2.11, for
miscellaneous antiques that we can sell, pack, and ship. Thus, the class

Boxed I'tem implements the methods of the Sel labl e interface and the
Transportable interface, while also adding specialized methods to set an
insured value for a boxed shipment and to set the dimensions of a box for shipment.

Code Fragment 2.11 : Class Boxedltem.

118

The class Boxed I tem shows another feature of classes and interfaces in Java, as
well—a class can implement multiple interfaces—which allows us a great deal of
flexibility when defining classes that should conform to multiple APIs. For, while a
class in Java can extend only one other class, it can nevertheless implement many
interfaces.

2.4.2 Multiple Inheritance in Interfaces

119

The ability of extending from more than one class is known as multiple
inheritance. In Java, multiple inheritance is allowed for interfaces but not for
classes. The reason for this rule is that the methods of an interface never have
bodies, while methods in a class always do. Thus, if Java were to allow for multiple
inheritance for classes, there could be a confusion if a class tried to extend from two
classes that contained methods with the same signatures. This confusion does not
exist for interfaces, however, since their methods are empty. So, since no confusion
is involved, and there are times when multiple inheritance of interfaces is useful,
Java allows for interfaces to use multiple inheritance.

One use for multiple inheritance of interfaces is to approximate a multiple
inheritance technique called the mixin. Unlike Java, some object-oriented
languages, such as Smalltalk and C++, allow for multiple inheritance of concrete
classes, not just interfaces. In such languages, it is common to define classes, called
mixin classes, that are never intended to be created as stand-alone objects, but are
instead meant to provide additional functionality to existing classes. Such
inheritance is not allowed in Java, however, so programmers must approximate it
with interfaces. In particular, we can use multiple inheritance of interfaces as a
mechanism for "mixing" the methods from two or more unrelated interfaces to
define an interface that combines their functionality, possibly adding more methods
of its own. Returning to our example of the antique objects, we could define an
interface for insurable items as follows:

public interface Insurableltem extends Transportable,
Sellable {

/** Returns insured Value in cents */
public int insuredValue();

}

This interface mixes the methods of the Transportable interface with the
methods of the Sel labl e interface, and adds an extra method, insuredValue.
Such an interface could allow us to define the Boxed I tem alternately as follows:

public class Boxedltem2 implements Insurableltem {

// .. same code as class Boxedltem

}

In this case, note that the method 1nsuredValue is not optional, whereas it was
optional in the declaration of Boxed I'tem given previously.

Java interfaces that approximate the mixin include java. lang.Cloneable,
which adds a copy feature to a class, Jjava. lang.Comparable, which adds a

120

comparability feature to a class (imposing a natural order on its instances), and
Java.util_Observer, which adds an update feature to a class that wishes to
be notified when certain "observable" objects change state.

2.4.3 Abstract Classes and Strong Typing

An abstract class is a class that contains empty method declarations (that is,
declarations of methods without bodies) as well as concrete definitions of methods
and/or instance variables. Thus, an abstract class lies between an interface and a
complete concrete class. Like an interface, an abstract class may not be instantiated,
that is, no object can be created from an abstract class. A subclass of an abstract
class must provide an implementation for the abstract methods of its superclass,
unless it is itself abstract. But, like a concrete class, an abstract class A can extend
another abstract class, and abstract and concrete classes can further extend A, as
well. Ultimately, we must define a new class that is not abstract and extends
(subclasses) the abstract superclass, and this new class must fill in code for all
abstract methods. Thus, an abstract class uses the specification style of inheritance,
but also allows for the specialization and extension styles as well (see Section 2.2.3.

The java.lang.Number Class

It turns out that we have already seen an example of an abstract class. Namely, the
Java number classes (shown in Table 1.2) specialize an abstract class called
jJava. lang.Number. Each concrete number class, such as

jJava.lang. Integer and java. lang.Double, extends the

jJava. lang.Number class and fills in the details for the abstract methods of
the superclass. In particular, the methods intValue, fFloatValue,
doubleValue, and longValue are all abstract in Jjava. lang.Number.
Each concrete number class must specify the details of these methods.

Strong Typing

In Java, an object can be viewed as being of various types. The primary type of an
object o is the class C specified at the time o was instantiated. In addition, o is of
type S for each superclass S of C and is of type | for each interface | implemented
byC.

However, a variable can be declared as being of only one type (either a class or an
interface), which determines how the variable is used and how certain methods
will act on it. Similarly, a method has a unique return type. In general, an
expression has a unique type.

By enforcing that all variables be typed and that methods declare the types they
expect and return, Java uses the technique of strong typing to help prevent bugs.
But with rigid requirements on types, it is sometimes necessary to change, or

121

convert, a type into another type. Such conversions may have to be specified by
an explicit cast operator. We have already discussed (Section 1.3.3) how
conversions and casting work for base types. Next, we discuss how they work for
reference variables.

2.5 Casting and Generics

In this section, we discuss casting among reference variables, as well as a technique,
called generics, which allow us to avoid explicit casting in many cases.

2.5.1 Casting

We begin our discussion with methods for type conversions for objects.

Widening Conversions

A widening conversion occurs when a type T is converted into a "wider" type U.
The following are common cases of widening conversions:

. T and U are class types and U is a superclass of T
. T and U are interface types and U is a superinterface of T
. T is a class that implements interface U.

Widening conversions are automatically performed to store the result of an
expression into a variable, without the need for an explicit cast. Thus, we can
directly assign the result of an expression of type T into a variable v of type U
when the conversion from T to U is a widening conversion. The example code
fragment below shows that an expression of type Integer (a newly constructed
Integer object) can be assigned to a variable of type Number.

Integer i = new Integer(3);

Number n = 1; // widening conversion from Integer
to Number

The correctness of a widening conversion can be checked by the compiler and its

validity does not require testing by the Java run-time environment during program
execution.

Narrowing Conversions

A narrowing conversion occurs when a type T is converted into a "narrower"
type S. The following are common cases of narrowing conversions:

122

. T and S are class types and S is a subclass of T
. T and S are interface types and S is a subinterface of T
. T is an interface implemented by class S.

In general, a narrowing conversion of reference types requires an explicit cast.
Also, the correctness of a narrowing conversion may not be verifiable by the
compiler. Thus, its validity should be tested by the Java run-time environment
during program execution.

The example code fragment below shows how to use a cast to perform a
narrowing conversion from type Number to type Integer.

Number n = new Integer(2); // widening conversion
from Integer to Number

Integer 1 = (Integer) n; // narrowing conversion
from Number to Integer

In the first statement, a new object of class Integer is created and assigned to a
variable n of type Number. Thus, a widening conversion occurs in this
assignment and no cast is required. In the second statement, we assign n to a
variable 1 of type Integer using a cast. This assignment is possible because n
refers to an object of type Integer. However, since variable n is of type
Number, a narrowing conversion occurs and the cast is necessary.

Casting Exceptions

In Java, we can cast an object reference o of type T into a type S, provided the

object o is referring to is actually of type S. If, on the other hand, object o is not

also of type S, then attempting to cast o to type S will throw an exception called

ClassCastException. We illustrate this rule in the following code fragment:
Number n;

Integer 1;

n new Integer(3);

(Integer) n; // This i1s legal

S5
I

new Double(3.1415);

(Integer) n; // This is illegal!

123

To avoid problems such as this and to avoid peppering our code with try-
catch blocks every time we perform a cast, Java provides a way to make sure an
object cast will be correct. Namely, it provides an operator, instanceof, that
allows us to test whether an object variable is referring to an object of a certain
class (or implementing a certain interface). The syntax for using this operator is
object referenceinstanceof reference_type, where object_reference is an
expression that evaluates to an object reference and reference_type is the name of
some existing class, interface, or enum (Section 1.1.3). If object_reference is
indeed an instance of reference_type, then the expression above returns true.
Otherwise, it returns fal se. Thus, we can avoid a ClassCastException
from being thrown in the code fragment above by modifying it as follows:

Number n;
Integer i;
n = new Integer(3);
if (n instanceof Integer)
i = (Integer) n; // This is legal
n = new Double(3.1415);
if (n instanceof Integer)

i = (Integer) n; // This will not be attempted

Casting with Interfaces

Interfaces allow us to enforce that objects implement certain methods, but using
interface variables with concrete objects sometimes requires casting. Suppose we
declare a Person interface as shown in Code Fragment 2.12. Note that method
equalTo of the Person interface takes one parameter of type Person. Thus, we
can pass an object of any class implementing the Person interface to this
method.

Code Fragment 2.12 : Interface Person.

124

We show in Code Fragment 2.13 a class, Student, that implements Person.
The method equal To assumes that the argument (declared of type Person) is
also of type Student and performs a narrowing conversion from type Person
(an interface) to type Student (a class) using a cast. The conversion is allowed
in this case, because it is a narrowing conversion from class T to interface U,
where we have an object taken from T such that T extends S (or T=S) and S
implements U.

Code Fragment 2.13 : Class Student implementing
interface Person.

Because of the assumption above in the implementation of method equalTo, we
have to make sure that an application using objects of class Student will not
attempt the comparison of Student objects with other types of objects, or
otherwise, the cast in method equal To will fail. For example, if our application
manages a directory of Student objects and uses no other types of Person
objects, the assumption will be satisfied.

125

The ability of performing narrowing conversions from interface types to class
types allows us to write general kinds of data structures that only make minimal
assumptions about the elements they store. In Code Fragment 2.14, we sketch
how to build a directory storing pairs of objects implementing the Person
interface. The remove method performs a search on the directory contents and
removes the specified person pair, if it exists, and, like the FindOther method,
it uses the equal To method to do this.

Code Fragment 2.14 : Sketch of class
PersonPairDirectory.

Now, suppose we have filled a directory, myDirectory, with pairs of
Student objects that represent roommate pairs. In order to find the roommate of
a given Student object, smart_one, we may try to do the following (which is
wrong):

Student cute_one = myDirectory.findOther(smart_one);
// wrong!

The statement above causes an "explicit-cast-required™ compilation error. The
problem here is that we are trying to perform a narrowing conversion without an
explicit cast. Namely, the value returned by method FindOther is of type
Person while the variable cute_one, to which it is assigned, is of the
narrower type Student, a class implementing interface Person. Thus, we use
a cast to convert type Person to type Student, as follows:

Student cute_one = (Student)
myDirectory.findOther(smart_one);

Casting the value of type Person returned by method FindOther to type
Student works fine as long as we are sure that the call to

myDirectory. findOther is really giving us a Student object. In general,
interfaces can be a valuable tool for the design of general data structures, which
can then be specialized by other programmers through the use of casting.

2.5.2 Generics

126

Starting with 5.0, Java includes a generics framework for using abstract types in a
way that avoids many explicit casts. A generic type is a type that is not defined at
compilation time, but becomes fully specified at run time. The generics framework
allows us to define a class in terms of a set of formal type parameters, with could
be used, for example, to abstract the types of some internal variables of the class.
Angle brackets are used to enclose the list of formal type parameters. Although any
valid identifier can be used for a formal type parameter, single-letter uppercase
names are conventionally used. Given a class that has been defined with such
parameterized types, we instantiate an object of this class by using actual type
parameters to indicate the concrete types to be used.

In Code Fragment 2.15, we show a class Pair storing key-value pairs, where the
types of the key and value are specified by parameters K and V, respectively. The
main method creates two instances of this class, one for a String-Integer pair
(for example, to store a dimension and its value), and the other for a Student-
Doubl e pair (for example, to store the grade given to a student).

Code Fragment 2.15: Example using the Student
class from Code Fragment 2.13.

127

The output of the execution of this method is shown below:
[height, 36]
[Student(ID: A5976, Name: Sue, Age: 19), 9.5]

In the previous example, the actual type parameter can be an arbitrary type. To
restrict the type of an actual parameter, we can use an extends clause, as shown
below, where class PersonPairDirectoryGeneric is defined in terms of a
generic type parameter P, partially specified by stating that it extends class
Person.

public class PersonPairDirectoryGeneric<P extends
Person> {

//.. instance variables would go here ..

public PersonPairDirectoryGeneric() { /* default
constructor goes here */ }

128

public void insert (P person, P other) { /* insert
code goes here */ }

public P findOther (P person) { return null; } // stub
for find

public void remove (P person, P other) { /7* remove
code goes here */ }

}

This class should be compared with class PersonPairDirectory in Code
Fragment 2.14. Given the class above, we can declare a variable referring to an
instance of PersonPairDirectoryGeneric, that stores pairs of objects of
type Student:

PersonPairDirectoryGeneric<Student>
myStudentDirectory;

For such an instance, method FindOther returns a value of type Student. Thus,
the following statement, which does not use a cast, is correct:

Student cute _one =
myStudentDirectory. findOther(smart_one);

The generics framework allows us to define generic versions of methods. In this
case, we can include the generic definition among the method modifiers. For
example, we show below the definition of a method that can compare the keys from
any two Pair objects, provided that their keys implement the Comparable
interface:

public static <K extends Comparable,V,L,W> int
comparePairs(Pair<K,V> p, Pair<L,W> q) {

return p.getKey().compareTo(g-getkey()); 7/ p°s key
implements compare To

}

There is an important caveat related to generic types, namely, that the elements
stored in array cannot be a type variable or a parameterized type. Java allows for an
array to be defined with a parameterized type, but it doesn't allow a parameterized
type to be used to create a new array. Fortunately, it allows for an array defined
with a parameterized type to be initialized with a newly created, nonparametric
array. Even so, this latter mechanism causes the Java compiler to issue a warning,
because it is not 100% type-safe. We illustrate this point in the following:

129

public static void main(String[] args) {

Pair<String, Integer>[] a = new Pair[10]; // right, but
gives a warning

Pair<String, Integer>[] b = new
Pair<String, Integer>[10]; // wrong

a[0] = new Pair<String, Integer>(); // this is
completely right

a[0].set(''Dog'*,10); // this and the next statement are
right too

System.out.printIn(""First pair is "+a[0].getKey(QQ+",
"+a[0] .getvValue());

}

2.6 Exercises

For source code and help with exercises, please visit
java.datastructures.net.

Reinforcement
R-2.1
Can two interfaces extend each other? Why or why not?
R-2.2
Give three examples of life-critical software applications.
R-2.3

Give an example of a software application where adaptability can mean the
difference between a prolonged sales lifetime and bankruptcy.

R-2.4

Describe a component from a text-editor GUI (other than an "edit" menu) and
the methods that it encapsulates.

R-2.5

Draw a class inheritance diagram for the following set of classes:

130

Class Goat extends Object and adds an instance variable tai I and
methods mi 1 k() and Jump().

Class Pig extends Ob ject and adds an instance variable nose and
methods eat() and wal Fow().

Class Horse extends Ob ject and adds instance variables height and
color, and methods run() and jJump().

Class Racer extends Horse and adds a method race().

Class Equestrian extends Horse and adds an instance variable
weight and methods trot() and is Trained().

R-2.6

Give a short fragment of Java code that uses the progression classes from
Section 2.2.3 to find the 8th value of a Fibonacci progression that starts with 2
and 2 as its first two values.

R-2.7

If we choose 1nc = 128, how many calls to the nextValue method from the
ArithProgression class of Section 2.2.3 can we make before we cause a
long-integer overflow?

R-2.8

Suppose we have an instance variable p that is declared of type
Progression, using the classes of Section 2.2.3. Suppose further that p
actually refers to an instance of the class Geom Progression that was
created with the default constructor. If we cast p to type Progression and
call p.FirstValue(), what will be returned? Why?

R-2.9

131

Consider the inheritance of classes from Exercise R-2.5, and let d be an object
variable of type Horse. If d refers to an actual object of type EqQuestrian,
can it be cast to the class Racer? Why or why not?

R-2.10

Give an example of a Java code fragment that performs an array reference that
is possibly out of bounds, and if it is out of bounds, the program catches that
exception and prints the following error message: *"Don"t try buffer
overflow attacks in Javal"

R-2.11

Consider the following code fragment, taken from some package:

public class Maryland extends State {
Maryland() { /7* null constructor */ }

public void printMe() { System.out.printIn("'Read
it."); }

public static void main(String[] args) {
Region mid = new State();
State md = new Maryland();
Object obj = new Place();
Place usa = new Region();
md.printMe();
mid.printMe();

((Place) obj).printMe();
obj = md;

((Maryland) obj).printMe();
obj = usa;

((Place) obj).printMe();

usa = md;

132

((Place) usa).printMe();
¥
by
class State extends Region {
State() { /* null constructor */ }

public void printMe() { System.out.printIn(Ship
it."); }

by
class Region extends Place {
Region() { /7* null constructor */ }

public void printMe() { System.out.printIn('Box 1t.");
}

by
class Place extends Object {
Place() { /* null constructor */ }

public void printMe() { System.out.printin("Buy it.");
ks

by
What is the output from calling the main() method of the Maryland class?
R-2.12

Write a short Java method that counts the number of vowels in a given character
string.

R-2.13

Write a short Java method that removes all the punctuation from a string s
storing a sentence. For example, this operation would transform the string

"Let"s try, Mike.'"™ to "Lets try Mike".

R-2.14

133

Write a short program that takes as input three integers, a, b, and c, from the
Java console and determines if they can be used in a correct arithmetic formula
(in the given order), like"a+b=c,""a=b—c," or"a*b=c."

R-2.15

Write a short Java program that creates a Pai r class that can store two objects
declared as generic types. Demonstrate this program by creating and printing
Pair objects that contain five different kinds of pairs, such as
<Integer,String>and <Float,Long>.

R-2.16

Generic parameters are not included in the signature of a method declaration, so
you cannot have different methods in the same class that have different generic
parameters but otherwise have the same names and the types and number of
their parameters. How can you change the signatures of the conflicting methods
to get around this restriction?

Creativity
C-2.1

Explain why the Java dynamic dispatch algorithm, which looks for the method
to invoke for a call 0.a(), will never get into an infinite loop.

C-2.2

Write a Java class that extends the Progression class so that each value in
the progression is the absolute value of the difference between the previ- ous
two values. You should include a default constructor that starts with 2 and 200
as the first two values and a parametric constructor that starts with a specified
pair of numbers as the first two values.

C-2.3

Write a Java class that extends the Progression class so that each value in
the progression is the square root of the previous value. (Note that you can no
longer represent each value with an integer.) You should include a default
constructor that has 65,536 as the first value and a parametric constructor that
starts with a specified (double) number as the first value.

C-24

Rewrite all the classes in the Progression hierarchy so that all values are
from the BigInteger class, in order to avoid overflows all together.

134

C-2.5

Write a program that consists of three classes, A, B, and C, such that B extends
A and C extends B. Each class should define an instance variable named "x"
(that is, each has its own variable named x). Describe a way for a method in C to
access and set A's version of x to a given value, without changing B or C's
version.

C-2.6

Write a set of Java classes that can simulate an Internet application, where one
party, Alice, is periodically creating a set of packets that she wants to send to
Bob. An Internet process is continually checking if Alice has any packets to
send, and if so, it delivers them to Bob's computer, and Bob is periodically
checking if his computer has a packet from Alice, and, if so, he reads and
deletes it.

Projects
P-2.1

Write a Java program that inputs a document and then outputs a bar-chart plot
of the frequencies of each alphabet character that appears in that document.

P-2.2

Write a Java program that simulates a handheld calculator. Your program
should be able process input, either in a GUI or from the Java console, forthe
buttons that are pushed, and then output the contents of the screen after each
operation is performed. Minimally, your calculator should be able to process the
basic arithmetic operations and a reset/clear operation.

P-2.3

Fill in code for the PersonPairDirectory class of Code Fragment 2.14,
assuming person pairs are stored in an array with capacity 1,000. The directory
should keep track of how many person pairs are actually in it.

P-2.4

Write a Java program that can take a positive integer greater than 2 as input and
write out the number of times one must repeatedly divide this number by 2
before getting a value less than 2.

P-2.5

135

Write a Java program that can "make change.” Your program should take two
numbers as input, one that is a monetary amount charged and the other that is a
monetary amount given. It should then return the number of each kind of bill
and coin to give back as change for the difference between the amount given
and the amount charged. The values assigned to the bills and coins can be based
on the monetary system of any current or former government. Try to design
your program so that it returns the fewest number of bills and coins as possible.

Chapter Notes

For a broad overview of developments in computer science and engineering, we refer
the reader to The Computer Science and Engineering Handbook [92]. For more
information about the Therac-25 incident, please see the paper by Leveson and
Turner [66].

The reader interested in studying object-oriented programming further, is referred to
the books by Booch [14], Budd [17], and Liskov and Guttag [69]. Liskov and Guttag
[69] also provide a nice discussion of abstract data types, as does the survey paper by
Cardelli and Wegner [20] and the book chapter by Demurjian [28] in the The
Computer Science and Engineering Handbook [92]. Design patterns are described in
the book by Gamma, et al. [38]. The class inheritance diagram notation we use is
derived from the book by Gamma, et al.

136

Chapter 3 Arrays, Linked Lists, and Recursion

Contents
3.1
USINg ArraysS. .« - oo e i e e cecccaaaan
96
3.1.1
Storing Game Entries In an Array...........
96
3.1.2
Sorting an Array.......ccceoeaaaann
103
3.1.3
Java.util Methods for Arrays and Random Numbers.
106
3.1.4

Simple Cryptography with Strings and Character
Arrays

137

108

3.1.5

Two-Dimensional Arrays and Positional Games...
111

3.2

Singly Linked Lists.

115

3.2.1

Insertion in a Singly Linked List...........
117

3.2.2

Removing an Element in a Singly Linked List....
119

3.3

Doubly Linked Lists...

120

3.3.1

Insertion in the Middle of a Doubly Linked List...
123

3.3.2

Removal i1n the Middle of a Doubly Linked List...
124

3.3.3

An Implementation of a Doubly Linked List.....

125

138

3.4

Circularly Linked Lists and Linked-List Sorting....
128

3.4.1

Circularly Linked Lists and Duck, Duck, Goose...
128

3.4.2

Sorting a Linked List.................
133

3.5

Recursion.o
134

3.5.1

Linear Recursion.-.
140

3.5.2

Binary Recursion
144

3.5.3

Multiple Recursion..................
147

3.6

EXercises.
149

jJava.datastructures.net

139

3.1 Using Arrays

In this section, we explore a few applications of arrays, which were introduced in
Section 1.5.

3.1.1 Storing Game Entries in an Array

The first application we study is for storing entries in an array—in particular, high
score entries for a video game. Storing entries in arrays is a common use for arrays,
and we could just as easily have chosen to store records for patients in a hospital or
the names of students in a data structures class. But instead, we have decided to
store high score entries, which is a simple application that presents some important
data structuring concepts that we will use for other implementations in this book.

We should begin by asking ourselves what we want to include in a high score entry.
Obviously, one component we should include is an integer representing the score
itself, which we will call score. Another nice feature would be to include the
name of the person earning this score, which we will simply call name. We could
go on from here adding fields representing the date the score was earned or game
statistics that led to that score. Let us keep our example simple, however, and just
have two fields, score and name. We show a Java class, GameEntry,
representing a game entry in Code Fragment 3.1.

Code Fragment 3.1: Java code for a simple
GameEntry class. Note that we include methods for
returning the name and score for a game entry object,
as well as a method for return a string representation of
this entry.

140

A Class for High Scores

Suppose we have some high scores that we want to store in an array named
entries. The number of scores we want to store could be 10, 20, or 50, so let us
use a symbolic name, maxEntries, which represents the number of scores we
want to store. We must set this variable to a specific value, of course, but by using
this variable throughout our code, we can make it easy to change its value later if
we need to. We can then define the array, entries, to be an array of length
maxEntries. Initially, this array stores only nul lentries, but as users play
our video game, we will fill in the entries array with entries, but as users play
our video game, we will fill in the entries array with references to new
GameEntry objects. So we will eventually have to define methods for updating
the GameEntry references in the entries array.

The way we keep the entries array organized is simple—we store our set of
GameEntry objects ordered by their integer score values, highest to lowest. If
the number of GameEntry objects is less than maxEntries, then we let the
end of the entries array store null I references. This approach prevents having
any empty cells, or "holes," in the continuous series of cells of array entries
that store the game entries from index 0 onward. We illustrate an instance of the
data structure in Figure 3.1 and we give Java code for such a data structure in
Code Fragment 3.2. In an exercise (C-3.1), we explore how game entry addition
might be simplified for the case when we don't need to preserve relative orders.

141

Figure 3.1: An illustration of an array of length ten
storing references to six GameEntry objects in the
cells from index 0 to 5, with the rest being nul |
references.

Code Fragment 3.2: Class for maintaining a set of
scores as GameEntry objects.

142

Note that we include a method, toString(), which produces a string
representation of the high scores in the entries array. This method is quite
useful for debugging purposes. In this case, the string will be a comma-separated
listing of the GameEntry objects in the entries array. We produce this listing
with a simple for-loop, which adds a comma just before each entry that comes
after the first one. With such a string representation, we can print out the state of
the entries array during debugging, for testing how things look before and
after we make updates.

Insertion

One of the most common updates we might want to make to the entries array
of high scores is to add a new game entry. So suppose we want to insert a new
GameEntry object, e. In particular, let us consider how we might perform the
following update operation on an instance of the Scores class:

add(e) : Insert game entry e into the collection of high scores. If the
collection is full, then e is added only if its score is higher than the lowest score in
the set, and in this case, e replaces the entry with the lowest score.

The main challenge in implementing this operation is figuring out where e should
go in the entries array and making room for e.

143

Visualizing Game Entry Insertion

To visualize this insertion process, imagine that we store in array entries
remote controls representing references to the nonnull GameEntry objects,
listed left-to-right from the one with highest score to the one with the lowest.

Given the new game entry, e, we need to figure out where it belongs. We start this
search at the end of the entries array. If the last reference in this array is not
nul I and its score is bigger than e's score, then we can stop immediately. For, in
this case, e is not a high score—it doesn't belong in the entries array at all.
Otherwise, we know that e belongs in the array, and we also know that the last
thing in the entries array no longer belongs there. Next, we go to the second to
the last reference in the array. If this reference is null 1 or it points to a
GameEntry object whose score is less thane's, this reference needs to be moved
one cell to the right in the entries array. Moreover, if we move this reference,
then we need to repeat this comparison with the next one, provided we haven't
reached the beginning of the entries array. We continue comparing and
shifting references to game entries until we either reach the beginning of the
entries array or we compare e's score with a game entry with a higher score. In
either case, we will have identified the place where e belongs. (See Figure 3.2.)

Figure 3.2: Preparing to add a new GameEntry
object to the entries array. In order to make room
for the new reference, we have to shift the references
to game entries with smaller scores than the new one
to the right by one cell.

144

Once we have identified the place in the entries array where the new game
entry, e, belongs, we add a reference to e at this position. That is, continuing our
visualization of object references as remote controls, we add a remote control
designed especially for e to this location in the entries array. (See Figure 3.3.)

Figure 3.3: Adding a reference to a new
GameEntry object to the entries array. The
reference can now be inserted at index 2, since we
have shifted all references to GameEntry objects with
scores less than the new one to the right.

145

The details of our algorithm for adding the new game entry e to the entries
array are similar to this informal description, and are given in Java in Code
Fragment 3.3. Note that we use a loop to move references out of the way. The
number of times we perform this loop depends on the number of references we
have to move to make room for a reference to the new game entry. If there are 0,
1, or even just a few references to move over, this add method will be pretty fast.
But if there are a lot to move, then this method could be fairly slow. Also note
that if the array is full and we perform an add on it, then we will either remove
the reference to the current last game entry or we will fail to add a reference to the
new game entry, e.

Code Fragment 3.3: Java code for inserting a
GameEntry object.

146

Object Removal

Suppose some hot shot plays our video game and gets his or her name on our high
score list. In this case, we might want to have a method that lets us remove a
game entry from the list of high scores. Therefore, let us consider how we might
remove a reference to a GameEntry object from the entries array. That is, let
us consider how we might implement the following operation:

remove (1) : Remove and return the game entry e at index i in the
entries array. If index i is outside the bounds of the entries array, then this
method throws an exception; otherwise, the entries array will be updated to
remove the object at index i and all objects previously stored at indices higher
than i are "moved over" to fill in for the removed object.

Our implementation for remove will be much like performing our algorithm for
object addition, but in reverse. Again, we can visualize the entries array as an
array of remote controls pointing to GameEntry objects. To remove the
reference to the object at index i, we start at index i and move all the references at
indices higher than i one cell to the left. (See Figure 3.4.)

Figure 3.4: An illustration of a removal at index 3 in
an array storing references to GameEntry objects.

147

Some Subtle Points About Entry Removal

The details for doing the remove operation contain a few subtle points. The first is
that, in order to remove and return the game entry (let's call it e) at index i in our
array, we must first save e in a temporary variable. We will use this variable to
return e when we are done removing it. The second subtle point is that, in moving
references higher than i one cell to the left, we don't go all the way to the end of
the array—we stop at the second to last reference. We stop just before the end,
because the last reference does not have any reference to its right (hence, there is
no reference to move into the last place in the entries array). For the last
reference in the entries array, it is enough that we simply null it out. We
conclude by returning a reference to the removed entry (which no longer has any
reference pointing to it in the entries array). See Code Fragment 3.4.

Code Fragment 3.4: Java code for performing the
remove operation.

148

These methods for adding and removing objects in an array of high scores are
simple. Nevertheless, they form the basis of techniques that are used repeatedly to
build more sophisticated data structures. These other structures may be more
general than the array structure above, of course, and often they will have a lot
more operations that they can perform than just add and remove. But studying
the concrete array data structure, as we are doing now, is a great starting point to
understanding these other structures, since every data structure has to be
implemented using concrete means.

In fact, later in this book, we will study a Java Collections Class, ArrayList,
which is more general than the array structure we are studying here. The
ArrayList has methods to do a lot of the things we will want to do with an
array, while also eliminating the error that occurs when adding an object to a full
array. The ArrayL ist eliminates this error by automatically copying the objects
into a larger array if necessary. Rather than discuss this process here, however, we
will say more about how this is done when we discuss the ArrayL i st in detalil.

3.1.2 Sorting an Array

In the previous section, we worked hard to show how we can add or remove objects
at a certain index i in an array while keeping the previous order of the objects intact.
In this section, we study a way of starting with an array with objects that are out of
order and putting them in order. This is known as the sorting problem.

A Simple Insertion-Sort Algorithm

We study several sorting algorithms in this book, most of which appear in Chapter
11. As a warm up, we describe in this section a nice, simple sorting algorithm
called insertion—sort. In this case, we describe a specific version of the algorithm
where the input is an array of comparable elements. We consider more general
kinds of sorting algorithms later in this book.

149

This simple insertion—sort algorithm goes as follows. We start with the first
character in the array. One character by itself is already sorted. Then we consider
the next character in the array. If it is smaller than the first, we swap them. Next
we consider the third character in the array. We swap it leftward until it is in its
proper order with the first two characters. We then consider the fourth character,
and swap it leftward until it is in the proper order with the first three. We continue
in this manner with the fifth integer, the sixth, and so on, until the whole array is
sorted. Mixing this informal description with programming constructs, we can
express the insertion-sort algorithm as shown in Code Fragment 3.5.

Code Fragment 3.5: High-level description of the
insertion-sort algorithm.

This is a nice, high-level description of insertion-sort. It also demonstrates why
this algorithm is called "insertion-sort"—because each iteration of the main
inserts the next element into the sorted part of the array that comes before it.
Before we can code this description up, however, we need to work out more of
the details of how we do this insertion task.

Diving into those details a bit more, let us rewrite our description so that we now
use two nested loops. The outer loop will consider each element in the array in
turn and the inner loop will move that element to its proper location with the
(sorted) subarray of characters that are to its left.

Refining the Details for Insertion-Sort

Refining the details, then, we can describe our algorithm as shown in Code
Fragment 3.6.

Code Fragment 3.6: Intermediate-level description
of the insertion-sort algorithm.

150

This description is much closer to actual code, since it is a better explanation of
how to insert the element A [i] into the subarray that comes before it. It still uses
an informal description of moving elements if they are out of order, but this is not
a terribly difficult thing to do.

A Java Description of Insertion-Sort

Now we are ready to give Java code for this simple version of the insertion-sort
algorithm. We give such a description in Code Fragment 3.7 for the special case
when A is an array of characters, a.

Code Fragment 3.7: Java code for performing
insertion-sort on an array of characters.

We illustrate an example run of the insertion-sort algorithm in Figure 3.5.
Figure 3.5: Execution of the insertion-sort algorithm
on an array of eight characters. We show the

151

completed (sorted) part of the array in white, and we
color the next element that is being inserted into the
sorted part of the array with light blue. We also
highlight that character on the left, since it is stored in
the cur variable. Each row corresponds to an iteration
of the outer loop, and each copy of the array in a row
corresponds to an iteration of the inner loop. Each
comparison is shown with an arc. In addition, we
indicate whether that comparison resulted in a move
or not.

An interesting thing happens in the insertion-sort algorithm if the array is already
sorted. In this case, the inner loop does only one comparison, determines that

152

there is no swap needed, and returns back to the outer loop. That is, we perform
only one iteration of the inner loop for each iteration of the outer loop. Thus, in
this case, we perform a minimum number of comparisons. Of course, we might
have to do a lot more work than this if the input array is extremely out of order. In
fact, we will have to do the most work if the input array is in decreasing order.

3.1.3 java.util Methods for Arrays and Random Numbers

Because arrays are so important, Java provides a number of built-in methods for
performing common tasks on arrays. These methods appear as static methods in the
Java.util _Arrays class. That is, they are associated with the class,
Java.util _Arrays itself, and not with a particular instance of this class.
Describing some of these methods will have to wait, however, until later in this
book (when we discuss the concept that these methods are based on).

Some Simple Methods of java.util.Arrays

We list below some simple methods of class java.util . Arrays that need no
further explanation:

equals(A, B): Returns true if and only if the array A and the array B
are equal. Two arrays are considered equal if they have the same number of
elements and every corresponding pair of elements in the two arrays are equal.
That is, A and B have the same elements in the same order.

Till(A,x): Stores element x into every cell of array A.

sort(A) : Sorts the array A using the natural ordering of its
elements.

toString(A) : Returns a String representation of the array A.

For example, the following string would be returned by the method toString
called on an array of integers A =[4,5,2,3,5,7,10]:

[4,5,2,3,5,7,10]

Note that, from the list above, Java has a built-in sorting algorithm. This is not the
insertion-sort algorithm we presented above, however. It is an algorithm called
quick-sort, which usually runs much faster than insertion—sort. We discuss the
quick-sort algorithm in Section 11.2.

An Example Using Pseudo-Random Numbers

153

We show in Code Fragment 3.8 a short (but complete) Java program that uses the
methods above.

Code Fragment 3.8: Test program ArrayTest
that uses various built-in methods of the Arrays
class.

Program ArrayTest uses another feature in Java—the ability to generate
pseudorandomnumbers, that is, numbers that are statistically random (but not
truly random). In particular, it uses a yava.util _.Random object, which is a
pseudo-random number generator, that is, an object that computes, or
"generates," a sequence of numbers that are statistically random. Such a generator
needs a place to start, however,which is its seed. The sequence of numbers
generated for a given seed will always be the same. In our program, we set the
seed to the current time in milliseconds since January 1, 1970 (using the method
System.currentTimeMil11s), which will be different each time we run
our program. Once we have set the seed, we can repeatedly get a random number
between 0 and 99 by calling the next Int method with argument 100. We show
a sample output of this program below:

arrays equal before sort: true
arrays equal after sort: false

old = [41,38,48,12,28,46,33,19,10,58]

154

num = [10,12,19,28,33,38,41,46,48,58]

By the way, there is a slight chance that the old and num arrays will remain
equal even after num is sorted, namely, if num is already sorted before it is
cloned. But the odds of this occurring are less than one in four million.

3.14 Simple Cryptography with Strings and Character
Arrays

One of the primary applications of arrays is the representation of strings of
characters.That is, string objects are usually stored internally as an array of
characters. Even if strings may be represented in some other way, there is a natural
relationship between strings and character arrays—both use indices to refer to their
characters. Because of this relationship, Java makes it easy for us to create string
objects from character arrays and vice versa. Specifically, to create an object of
class String from a character array A, we simply use the expression,

new String(A)

That is, one of the constructors for the String class takes a character array as its
argument and returns a string having the same characters in the same order as the
array. For example, the string we would construct from the array A = [a, c, a, t] is
acat. Likewise, given a string S, we can create a character array representation of
S by using the expression,

S.toCharArray(Q

That is, the String class has a method, toCharArray, which returns an array
(of type char[]) with the same characters as S. For example, if we call
toCharArray on the string adog, we would get the array B=[a, d, o, g].

The Caesar Cipher

One area where being able to switch from string to character array and back again
is useful is in cryptography, the science of secret messages and their applications.
This field studies ways of performing encryption, which takes a message, called
the plaintext, and converts it into a scrambled message, called the ciphertext.
Likewise, cryptography also studies corresponding ways of performing
decryption, which takes a ciphertext and turns it back into its original plaintext.

Arguably the earliest encryption scheme is the Caesar cipher, which is named
after Julius Caesar, who used this scheme to protect important military messages.
(All of Caesar's messages were written in Latin, of course, which already makes
them unreadable for most of us!) The Caesar cipher is a simple way to obscure a
message written in a language that forms words with an alphabet.

155

The Caesar cipher involves replacing each letter in a message with the letter that
is three letters after it in the alphabet for that language. So, in an English message,
we would replace each A with D, each B with E, each C with F, and so on. We
continue this approach all the way up to W, which is replaced with Z. Then, we
let the substitution pattern wrap around, so that we replace X with A, Y with B,
and Z with C.

Using Characters as Array Indices

If we were to number our letters like array indices, so that Ais 0, Bis 1, C is 2,
and so on, then we can write the Caesar cipher as a simple formula:

Replace each letter i with the letter (i + 3) mod 26,

where mod is the modulus operator, which returns the remainder after performing
an integer division. This operator is denoted %in Java, and it is exactly the
operator we need to easily perform the wrap around at the end of the alphabet. For
26 mod 26 is 0, 27 mod 26 is 1, and 28 mod 26 is 2. The decryption algorithm for
the Caesar cipher is just the opposite—we replace each letter with the one three
places before it, with wrap around for A, B, and C.

We can capture this replacement rule using arrays for encryption and decryption.
Since every character in Java is actually stored as a number—its Unicode value—
we can use letters as array indices. For an uppercase character c, for example, we
can use c as an array index by taking the Unicode value for ¢ and subtracting A.
Of course, this only works for uppercase letters, so we will require our secret
messages to be uppercase. We can then use an array, encrypt, that represents
the encryption replacement rule, so that encrypt [i] is the letter that replaces
letter number i (which is ¢ — A for an uppercase character ¢ in Unicode). This
usage is illustrated in Figure 3.6. Likewise, an array, decrypt, can represent the
decryption replacement rule, so that decrypt[i] is the letter that replaces letter
number i.

Figure 3.6: Illustrating the use of uppercase
characters as array indices, in this case to perform the
replacement rule for Caesar cipher encryption.

156

In Code Fragment 3.9, we give a simple, complete Java class for performing the
Caesar cipher, which uses the approach above and also makes use of conversions
between strings and character arrays. When we run this program (to perform a
simple test), we get the following output:

Encryption order = DEFGHIJKLMNOPQRSTUVWXYZABC
Decryption order = XYZABCDEFGHIJKLMNOPQRSTUVW
WKH HDJOH LV LQ SODB; PHHW DW MRH®"V.

THE EAGLE IS IN PLAY; MEET AT JOE"S.
Code Fragment 3.9: A simple, complete Java class
for the Caesar cipher.

157

3.1.5 Two-Dimensional Arrays and Positional Games

158

Many computer games, be they strategy games, simulation games, or first-person
conflict games, use a two-dimensional "board." Programs that deal with such
positional games need a way of representing objects in a two-dimensional space. A
natural way to do this is with a two-dimensional array, where we use two indices,
say i and j, to refer to the cells in the array. The first index usually refers to a row
number and the second to a column number. Given such an array we can then
maintain two-dimensional game boards, as well as perform other kinds of
computations involving data that is stored in rows and columns.

Arrays in Java are one-dimensional; we use a single index to access each cell of an
array. Nevertheless, there is a way we can define two-dimensional arrays in Java—
we can create a two-dimensional array as an array of arrays. That is, we can define
a two—dimensional array to be an array with each of its cells being another array.
Such a two—dimensional array is sometimes also called a matrix. In Java, we
declare a two—dimensional array as follows:

int[J[] Y = new int[8][10];

This statement creates a two-dimensional "array of arrays,” Y, which is 8 x 10,
having 8 rows and 10 columns. That is, Y is an array of length 8 such that each
element of Y is an array of length 10 of integers. (See Figure 3.7.) The following
would then be valid uses of array Y and int variables 1 and j:

YEi][i+1] = Y[i][i] + 3;

a.length;

J Y[4]-1length;

Two-dimensional arrays have many applications to numerical analysis. Rather than
going into the details of such applications, however, we explore an application of
two-dimensional arrays for implementing a simple positional game.

Figure 3.7: Illustration of a two-dimensional integer
array, Y, which has 8 rows and 10 columns. The value of
Y[3][5] is 100 and the value of Y[6][2] is 632.

159

Tic-Tac-Toe

As most school children know, tic-tac-toe is a game played in a three-by-three
board. Two players—X and O—alternate in placing their respective marks in the
cells of this board, starting with player X. If either player succeeds in getting three
of his or her marks in a row, column, or diagonal, then that player wins.

This is admittedly not a sophisticated positional game, and it's not even that much
fun to play, since a good player O can always force a tie. Tic-tac-toe's saving
grace is that it is a nice, simple example showing how two-dimensional arrays can
be used for positional games. Software for more sophisticated positional games,
such as checkers, chess, or the popular simulation games, are all based on the
same approach we illustrate here for using a two-dimensional array for tic—tac—
toe. (See Exercise P-7.8.)

The basic idea is to use a two-dimensional array, board, to maintain the game
board. Cells in this array store values that indicate if that cell is empty or stores an
X or O. That is, board is a three-by-three matrix, whose middle row consists of
the cells board[1][0], board[1][1], and board[1][2]. In our case, we choose to
make the cells in the board array be integers, with a 0 indicating an empty cell, a 1
indicating an X, and a —1 indicating O. This encoding allows us to have a simple
way of testing if a given board configuration is a win for X or O, namely, if the
values of a row, column, or diagonal add up to —3 or 3. We illustrate this

approach in Figure 3.8.
Figure 3.8: An illustration of a tic-tac-toe board and

the two-dimensional integer array, board,
representing it.

160

We give a complete Java class for maintaining a Tic-Tac-Toe board for two
players in Code Fragments 3.10 and 3.11. We show a sample output in Figure 3.9.
Note that this code is just for maintaining the tic-tac-toe board and registering
moves; it doesn't perform any strategy or allow someone to play tic-tac-toe
against the computer. Such a program would make a good project in a class on
Artificial Intelligence.

Code Fragment 3.10: A simple, complete Java class
for playing Tic-Tac-Toe between two players.
(Continues in Code Fragment 3.11))

161

162

Code Fragment 3.11: A simple, complete Java class
for playing Tic-Tac-Toe between two players.
(Continued from Code Fragment 3.10.)

163

Figure 3.9: Sample output of a Tic-Tac-Toe game.

3.2 Singly Linked Lists

In the previous sections, we presented the array data structure and discussed some of
its applications. Arrays are nice and simple for storing things in a certain order, but
they have the drawback of not being very adaptable, since we have to fix the size N of
the array in advance.

There are other ways to store a sequence of elements, however, that do not have this
drawback. In this section, we explore an important alternate implementation, which is
known as the singly linked list.

A linked list, in its simplest form, is a collection of nodes that together form a linear
ordering. The ordering is determined as in the children's game "Follow the Leader,"
in that each node is an object that stores a reference to an element and a reference,
called next, to another node. (See Figure 3.10.)

Figure 3.10: Example of a singly linked list whose
elements are strings indicating airport codes. The next
pointers of each node are shown as arrows. The nul |
object is denoted as 0.

It might seem strange to have a node reference another node, but such a scheme easily
works. The next reference inside a node can be viewed as a link or pointer to
another node. Likewise, moving from one node to another by following a next
reference is known as link hopping or pointer hopping. The first and last node of a
linked list usually are called the head and tail of the list, respectively. Thus, we can
link hop through the list starting at the head and ending at the tail. We can identify the
tail as the node having a null next reference, which indicates the end of the list. A
linked list defined in this way is known as a singly linked list.

164

Like an array, a singly linked list keeps its elements in a certain order. This order is
determined by the chain of next links going from each node to its successor in the
list. Unlike an array, a singly linked list does not have a predetermined fixed size, and
uses space proportional to the number of its elements. Likewise, we do not keep track
of any index numbers for the nodes in a linked list. So we cannot tell just by
examining a node if it is the second, fifth, or twentieth node in the list.

Implementing a Singly Linked List

To implement a singly linked list, we define a Node class, as shown in Code
Fragment 3.12, which specifies the type of objects stored at the nodes of the list.
Here we assume elements are character strings. In Chapter 5, we describe how to
define nodes that can store arbitrary types of elements. Given the Node class, we
can define a class, SLinkedList, shown in Code Fragment 3.13, defining the
actual linked list. This class keeps a reference to the head node and a variable
counting the total number of nodes.

Code Fragment 3.12: Implementation of a node of a
singly linked list.

Code Fragment 3.13: Partial implementation of the
class for a singly linked list.

165

3.2.1 Insertion in a Singly Linked List

When using a singly linked list, we can easily insert an element at the head of the
list, as shown in Figure 3.11 and Code Fragment 3.14. The main idea is that we
create a new node, set its next link to refer to the same object as head, and then

set head to point to the new node.
Figure 3.11: Insertion of an element at the head of a

singly linked list: (a) before the insertion; (b) creation of
a new node; (c) after the insertion.

166

Code Fragment 3.14: Inserting a new node v at the
beginning of a singly linked list. Note that this method
works even if the list is empty. Note that we set the
next pointer for the new node v before we make
variable head point to v.

Inserting an Element at the Tail of a Singly Linked List

We can also easily insert an element at the tail of the list, provided we keep a
reference to the tail node, as shown in Figure 3.12. In this case, we create a new
node, assign its next reference to point to the null I object, set the next
reference of the tai I to point to this new object, and then assign the tail
reference itself to this new node. We give the details in Code Fragment 3.15.

167

Figure 3.12: Insertion at the tail of a singly linked list:
(a) before the insertion; (b) creation of a new node; (c)
after the insertion. Note that we set the next link for

the tail in (b) before we assign the tail variable to

point to the new node in (c).

Code Fragment 3.15: Inserting a new node at the
end of a singly linked list. This method works also if
the list is empty. Note that we set the next pointer for
the old tail node before we make variable tail point to
the new node.

3.2.2 Removing an Element in a Singly Linked List

168

The reverse operation of inserting a new element at the head of a linked list is to
remove an element at the head. This operation is illustrated in Figure 3.13 and given
in detail in Code Fragment 3.16.

Figure 3.13: Removal of an element at the head of a
singly linked list: (a) before the removal; (b) "linking out”
the old new node; (c) after the removal.

Code Fragment 3.16: Removing the node at the
beginning of a singly linked list.

Unfortunately, we cannot easily delete the tail node of a singly linked list. Even if
we have a tai I reference directly to the last node of the list, we must be able to
access the node before the last node in order to remove the last node. But we cannot
reach the node before the tail by following next links from the tail. The only way to

169

access this node is to start from the head of the list and search all the way through
the list. But such a sequence of link hopping operations could take a long time.

3.3 Doubly Linked Lists

As we saw in the previous section, removing an element at the tail of a singly linked
list is not easy. Indeed, it is time consuming to remove any node other than the head
in a singly linked list, since we do not have a quick way of accessing the node in front
of the one we want to remove. Indeed, there are many applications where we do not
have quick access to such a predecessor node. For such applications, it would be nice
to have a way of going both directions in a linked list.

There is a type of linked list that allows us to go in both directions—forward and
reverse—in a linked list. It is the doubly linked list. Such lists allow for a great
variety of quick update operations, including insertion and removal at both ends, and
in the middle. A node in a doubly linked list stores two references—a next link,
which points to the next node in the list, and a prev link, which points to the
previous node in the list.

A Java implementation of a node of a doubly linked list is shown in Code Fragment
3.17, where we assume that elements are character strings. In Chapter 5, we discuss
how to define nodes for arbitrary element types.

Code Fragment 3.17: Java class DNode representing
a node of a doubly linked list that stores a character
string.

170

Header and Trailer Sentinels

To simplify programming, it is convenient to add special nodes at both ends of a
doubly linked list: a header node just before the head of the list, and a trailer node
just after the tail of the list. These "dummy" or sentinel nodes do not store any
elements. The header has a valid next reference but a null prev reference, while
the trailer has a valid prev reference but a null next reference. A doubly linked
list with these sentinels is shown in Figure 3.14. Note that a linked list object would
simply need to store references to these two sentinels and a size counter that
keeps track of the number of elements (not counting sentinels) in the list.

Figure 3.14: A doubly linked list with sentinels,
header and trailer, marking the ends of the list. An
empty list would have these sentinels pointing to each
other. We do not show the null prev pointer for the

171

header nor do we show the null next pointer for the
trailer.

Inserting or removing elements at either end of a doubly linked list is straight-
forward to do. Indeed, the prev links eliminate the need to traverse the list to get to
the node just before the tail. We show the removal at the tail of a doubly linked list
in Figure 3.15 and the details for this operation in Code Fragment 3.18.

Figure 3.15: Removing the node at the end of a a
doubly linked list with header and trailer sentinels: (a)
before deleting at the tail; (b) deleting at the tail; (c)
after the deletion.

Code Fragment 3.18: Removing the last node of a
doubly linked list. Variable size keeps track of the
current number of elements in the list. Note that this
method works also if the list has size one.

172

Likewise, we can easily perform an insertion of a new element at the beginning of a
doubly linked list, as shown in Figure 3.16 and Code Fragment 3.19.

Figure 3.16: Adding an element at the front: (a)
during; (b) after.

Code Fragment 3.19: Inserting a new node v at the
beginning of a doubly linked list. Variable size keeps
track of the current number of elements in the list. Note
that this method works also on an empty list.

173

3.3.1 Insertion in the Middle of a Doubly Linked List

Doubly linked lists are useful for more than just inserting and removing elements at
the head and tail of the list, however. They also are convenient for maintaining a list
of elements while allowing for insertion and removal in the middle of the list. Given
a node v of a doubly linked list (which could be possibly the header but not the
trailer), we can easily insert a new node z immediately after v. Specifically, let w the
be node following v. We execute the following steps:

1. make z's prev link refer to v
2. make z's next link refer to w
3. make w's prev link refer to z
4. make v's next link refer to z

This method is given in detail in Code Fragment 3.20, and is illustrated in Figure
3.17. Recalling our use of header and trailer sentinels, note that this algorithm
works even if v is the tail node (the node just before the trailer).

Code Fragment 3.20: Inserting a new node z after a
given node v in a doubly linked list.

174

Figure 3.17: Adding a new node after the node
storing JFK: (a) creating a new node with element BWI
and linking it in; (b) after the insertion.

3.3.2 Removal in the Middle of a Doubly Linked List

Likewise, it is easy to remove a node v in the middle of a doubly linked list. We
access the nodes u and w on either side of v using v's getPrev and getNext
methods (these nodes must exist, since we are using sentinels). To remove node v,
we simply have u and w point to each other instead of to v. We refer to this
operation as the linking out of v. We also null out v's prev and next pointers so
as not to retain old references into the list. This algorithm is given in Code

Fragment 3.21 and is illustrated in Figure 3.18.
Code Fragment 3.21: Removing a node vin a

doubly linked list. This method works even if v is the
first, last, or only nonsentinel node.

175

Figure 3.18: Removing the node storing PVD: (a)
before the removal; (b) linking out the old node; (c)
after the removal (and garbage collection).

3.3.3 An Implementation of a Doubly Linked List

In Code Fragments 3.22-3.24 we show an implementation of a doubly linked list
with nodes that store character string elements.

Code Fragment 3.22: Java class DList for a doubly
linked list whose nodes are objects of class DNode (see
Code Fragment 3.17) storing character strings.
(Continues in Code Fragment 3.23))

176

Code Fragment 3.23: Java class DList for a doubly
linked list. (Continues in Code Fragment 3.24.)

177

Code Fragment 3.24: A doubly linked list class.
(Continued from Code Fragment 3.23))

178

We make the following observations about class DList above.

. Obiject of class DNode, which store String elements, are used for all the
nodes of the list, including the header and trai ler sentinels.

. We can use class DLi st for a doubly linked list of String objects only.
To build a linked list of other types of objects, we can use a generic declaration,
which we discuss in Chapter 5.

. Methods getFirst and getLast provide direct access to the first and
last nodes in the list.

. Methods getPrev and getNext allow to traverse the list.

. Methods hasPrev and hasNext detect the boundaries of the list.

. Methods, addFirst and addLast add a new node at the beginning or

end of the list.

. Methods, add Before and add After add a new node before or after
an existing node.

179

. Having only a single removal method, remove, is not actually a
restriction, since we can remove at the beginning or end of a doubly linked list L
by executing L.remove(L.getFirst() or L.remove(L.getLast()),
respectively.

. Method toString for converting an entire list into a string is useful for
testing and debugging purposes.

34 Circularly Linked Lists and Linked-List Sorting

In this section, we study some applications and extensions of linked lists.

3.4.1 Circularly Linked Lists and Duck, Duck, Goose

The children's game, "Duck, Duck, Goose," is played in many cultures. Children in
Minnesota play a version called "Duck, Duck, Grey Duck" (but please don't ask us
why.) In Indiana, this game is called "The Mosh Pot.” And children in the Czech
Republic and Ghana play sing-song versions known respectively as "Pesek" and
"Antoakyire." A variation on the singly linked list, called the circularly linked list,
is used for a number of applications involving circle games, like "Duck, Duck,
Goose." We discuss this type of list and the circle-game application next.

A circularly linked list has the same kind of nodes as a singly linked list. That is,
each node in a circularly linked list has a next pointer and a reference to an element.
But there is no head or tail in a circularly linked list. For instead of having the last
node's next pointer be null 1, in a circularly linked list, it points back to the first
node. Thus, there is no first or last node. If we traverse the nodes of a circularly
linked list from any node by following next pointers, we will cycle through the
nodes.

Even though a circularly linked list has no beginning or end, we nevertheless need
some node to be marked as a special node, which we call the cursor. The cursor
node allows us to have a place to start from if we ever need to traverse a circularly
linked list. And if we remember this starting point, then we can also know when we
are done-we are done with a traversal of a circularly linked list when we return to
the node that was the cursor node when we started.

We can then define some simple update methods for a circularly linked list:

add(Vv) : Insert a new node v immediately after the cursor; if the list is
empty, then v becomes the cursor and its next pointer points to itself.

remove() : Remove and return the node v immediately after the cursor
(not the cursor itself, unless it is the only node); if the list becomes empty, the
cursor is setto nul .

180

advance(): Advance the cursor to the next node in the list.

In Code Fragment 3.25, we show a Java implementation of a circularly linked list,
which uses the Node class from Code Fragment 3.12 and includes also a
toString method for producing a string representation of the list.

Code Fragment 3.25: A circularly linked list class
with simple nodes.

181

182

Some Observations about the CircleList Class

There are a few observations we can make about the CircleListclass. Itisa
simple program that can provide enough functionality to simulate circle games,
like Duck, Duck, Goose, as we will soon show. It is not a robust program,
however. In particular, if a circle list is empty, then calling advance or remove
on that list will cause an exception. (Which one?) Exercise R-3.5 deals with this
exception-generating behavior and ways of handling this empty-list condition
better.

Duck, Duck, Goose

In the children's game, Duck, Duck, Goose, a group of children sit in a circle. One
of them is elected "it" and that person walks around the outside of the circle. The
person who is "it" pats each child on the head, saying "Duck" each time, until
reaching a child that the "it" person identifies as "Goose." At this point there is a
mad scramble, as the "Goose™ and the "it" person race around the circle. Who
ever returns to the Goose's former place first gets to remain in the circle. The loser
of this race is the "it" person for the next round of play. This game continues like
this until the children get bored or an adult tells them it is snack time, at which
point the game ends. (See Figure 3.19.)

Figure 3.19: The Duck, Duck, Goose game: (a)
choosing the "Goose;" (b) the race to the "Goose's"
place between the "Goose" and the "it" person.

Simulating this game is an ideal application of a circularly linked list. The
children can represent nodes in the list. The "it" person can be identified as the
person sitting after the cursor, and can be removed from the circle to simulate the
marching around. We can advance the cursor with each "Duck" the "it" person
identifies, which we can simulate with a random decision. Once a "Goose" is

183

identified, we can remove this node from the list, make a random choice to
simulate whether the "Goose" or the "it" person win the race, and insert the
winner back into the list. We can then advance the cursor and insert the "it"

person back in to repeat the process (or be done if this is the last time we play the

game).

Using a Circularly Linked List to Simulate Duck, Duck,
Goose

We give Java code for a simulation of Duck, Duck, Goose in Code Fragment
3.26.

Code Fragment 3.26: The main method from a
program that uses a circularly linked list to simulate
the Duck, Duck, Goose children's game.

184

Some Sample Output

185

We show an example output from a run of the Duck, Duck, Goose program in
Figure 3.20.

Figure 3.20: Sample output from the Duck, Duck,
Goose program.

Note that each iteration in this particular execution of this program produces a
different outcome, due to the different initial configurations and the use of
random choices to identify ducks and geese. Likewise, whether the "Duck" or the
"Goose" wins the race is also different, depending on random choices. This
execution shows a situation where the next child after the "it" person is
immediately identified as the "Goose," as well a situation where the "it" person
walks all the way around the group of children before identifying the "Goose."
Such situations also illustrate the usefulness of using a circularly linked list to
simulate circular games like Duck, Duck, Goose.

3.4.2 Sorting a Linked List

186

We show in Code Fragment 3.27 theinsertion-sort algorithm (Section 3.1.2) for a
doubly linked list. A Java implementation is given in Code Fragment 3.28.

Code Fragment 3.27: High-level pseudo-code
description of insertion-sort on a doubly linked list.

Code Fragment 3.28: Java implementation of the
insertion-sort algorithm on a doubly linked list

represented by class DList (see Code Fragments 3.22—
3.24).

187

3.5 Recursion

We have seen that repetition can be achieved by writing loops, such as for loops and
whi le loops. Another way to achieve repetition is through recursion, which occurs
when a function calls itself. We have seen examples of methods calling other
methods, so it should come as no surprise that most modern programming languages,
including Java, allow a method to call itself. In this section, we will see why this
capability provides an elegant and powerful alternative for performing repetitive
tasks.

The Factorial function

To illustrate recursion, let us begin with a simple example of computing the value
of the factorial function. The factorial of a positive integer n, denoted n!, is defined
as the product of the integers from 1 to n. If n = 0, then n! is defined as 1 by
convention. More formally, for any integer n > 0,

1 it w =0

no(n =D (m - .- -3.2-1 if 21

For example, 5! =5:4.3:2.1 = 120. To make the connection with methods clearer,
we use the notation factorial(n) to denote n!.

188

The factorial function can be defined in a manner that suggests a recursive
formulation. To see this, observe that

factorial(5)=5:(4-3:-2-1)=5. factorial(4).

Thus, we can define Factorial(5) in terms of factorial(4). In general, for a
positive integer n, we can define factorial(n) to be n-factorial(n —1). This
leads to the following recursive definition.

1 if =0
factorial {#) =
- factorial (7 - 1) ifrw 21

This definition is typical of many recursive definitions. First, it contains one or
more base cases, which are defined nonrecursively in terms of fixed quantities. In
this case, n = 0 is the base case. It also contains one or more recursive cases, which
are defined by appealing to the definition of the function being defined. Observe
that there is no circularity in this definition, because each time the function is
invoked, its argument is smaller by one.

A Recursive Implementation of the Factorial Function

Let us consider a Java implementation of the factorial function shown in Code
Fragment 3.29 under the name recursiveFactorial (). Notice that no
looping was needed here. The repeated recursive invocations of the function takes
the place of looping.

Code Fragment 3.29: A recursive implementation of
the factorial function.

We can illustrate the execution of a recursive function definition by means of a
recursion trace. Each entry of the trace corresponds to a recursive call. Each new
recursive function call is indicated by an arrow to the newly called function. When
the function returns, an arrow showing this return is drawn and the return value may
be indicated with this arrow. An example of a trace is shown in Figure 3.21.

What is the advantage of using recursion? Although the recursive implementation
of the factorial function is somewhat simpler than the iterative version, in this case
there is no compelling reason for preferring recursion over iteration. For some

189

problems, however, a recursive implementation can be significantly simpler and
easier to understand than an iterative implementation. Such an example follows.

Figure 3.21: A recursion trace for the call
recursivefFactorial (4).

Drawing an English Ruler

As a more complex example of the use of recursion, consider how to draw the
markings of a typical English ruler. A ruler is broken up into 1-inch intervals, and
each interval consists of a set of ticks placed at intervals of 1/2 inch, 1/4 inch, and
so on. As the size of the interval decreases by half, the tick length decreases by one.

(See Figure 3.22.)
Figure 3.22: Three sample outputs of the ruler-

drawing function: (a) a 2-inch ruler with major tick
length 4; (b) a 1-inch ruler with major tick length 5; (c) a
3-inch ruler with major tick length 3.

190

Each multiple of 1 inch also has a numeric label. The longest tick length is called
the major tick length. We will not worry about actual distances, however, and just
print one tick per line.

A Recursive Approach to Ruler Drawing

Our approach to drawing such a ruler consists of three functions. The main function
drawRuller () draws the entire ruler. Its arguments are the total number of inches
in the ruler, nInches, and the major tick length, majorLength. The utility
function drawOneT i ck() draws a single tick of the given length. It can also be
given an optional integer label, which is printed if it is nonnegative.

The interesting work is done by the recursive function drawT1cks (), which
draws the sequence of ticks within some interval. Its only argument is the tick
length associated with the interval's central tick. Consider the 1-inch ruler with
major tick length 5 shown in Figure 3.22(b). Ignoring the lines containing 0 and 1,
let us consider how to draw the sequence of ticks lying between these lines. The
central tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above
and below this central tick are identical, and each has a central tick of length 3. In
general, an interval with a central tick length L > 1 is composed of the following:

. An interval with a central tick length L — 1

191

. A single tick of length L
. A interval with a central tick length L — 1.

With each recursive call, the length decreases by one. When the length drops to
zero, we simply return. As a result, this recursive process will always terminate.
This suggests a recursive process, in which the first and last steps are performed by
calling the drawTicks(L — 1) recursively. The middle step is performed by
calling the function drawOneT i ck(L). This recursive formulation is shown in
Code Fragment 3.30. As in the factorial example, the code has a base case (when L
= 0). In this instance we make two recursive calls to the function.

Code Fragment 3.30: A recursive implementation of
a function that draws a ruler.

Illustrating Ruler Drawing using a Recursion Trace

The recursive execution of the recursive drawT i cks function, defined above, can
be visualized using a recursion trace.

192

The trace for drawT 1 cks is more complicated than in the factorial example,
however, because each instance makes two recursive calls. To illustrate this, we
will show the recursion trace in a form that is reminiscent of an outline for a
document. See Figure 3.23.

Figure 3.23: A partial recursion trace for the call
drawTicks(3). The second pattern of calls for
drawTicks(2) is not shown, but it is identical to the
first.

Throughout this book we shall see many other examples of how recursion can be

used in the design of data structures and algorithms.

193

Further Illustrations of Recursion

As we discussed above, recursion is the concept of defining a method that makes a
call to itself. Whenever a method calls itself, we refer to this as a recursive call. We
also consider a method M to be recursive if it calls another method that ultimately
leads to a call back to M.

The main benefit of a recursive approach to algorithm design is that it allows us to
take advantage of the repetitive structure present in many problems. By making our
algorithm description exploit this repetitive structure in a recursive way, we can
often avoid complex case analyses and nested loops. This approach can lead to
more readable algorithm descriptions, while still being quite efficient.

In addition, recursion is a useful way for defining objects that have a repeated
similar structural form, such as in the following examples.

Example 3.1: Modern operating systems define file-system directories (which
are also sometimes called "folders") in a recursive way. Namely, a file system
consists of a top-level directory, and the contents of this directory consists of files
and other directories, which in turn can contain files and other directories, and so
on. The base directories in the file system contain only files, but by using this
recursive definition, the operating system allows for directories to be nested
arbitrarily deep (as long as there is enough space in memory).

Example 3.2: Much of the syntax in modern programming languages is defined
in a recursive way. For example, we can define an argument list in Java using the
following notation:

argument-list:
argument
argument-list, argument

In other words, an argument list consists of either (i) an argument or (ii) an
argument list followed by a comma and an argument. That is, an argument list
consists of a comma-separated list of arguments. Similarly, arithmetic expressions
can be defined recursively in terms of primitives (like variables and constants) and
arithmetic expressions.

Example 3.3: There are many examples of recursion in art and nature. One of
the most classic examples of recursion used in art is in the Russian Matryoshka
dolls. Each doll is made of solid wood or is hollow and contains another
Matryoshka doll inside it.

3.5.1 Linear Recursion

194

The simplest form of recursion is linear recursion, where a method is defined so
that it makes at most one recursive call each time it is invoked. This type of
recursion is useful when we view an algorithmic problem in terms of a first or last
element plus a remaining set that has the same structure as the original set.

Summing the Elements of an Array Recursively

Suppose, for example, we are given an array, A, of n integers that we wish to sum
together. We can solve this summation problem using linear recursion by
observing that the sum of all n integers in A is equal to A[0], if n =1, or the sum
of the first n — 1 integers in A plus the last element in A. In particular, we can
solve this summation problem using the recursive algorithm described in Code

Fragment 3.31.
Code Fragment 3.31: Summing the elements in an

array using linear recursion.

This example also illustrates an important property that a recursive method should
always possess—the method terminates. We ensure this by writing a nonrecursive
statement for the case n = 1. In addition, we always perform the recursive call on
a smaller value of the parameter (n — 1) than that which we are given (n), so that,
at some point (at the "bottom™ of the recursion), we will perform the nonrecursive
part of the computation (returning A[0]). In general, an algorithm that uses linear
recursion typically has the following form:

. Test for base cases. We begin by testing for a set of base cases (there
should be at least one). These base cases should be defined so that every
possible chain of recursive calls will eventually reach a base case, and the
handling of each base case should not use recursion.

. Recur. After testing for base cases, we then perform a single recursive
call. This recursive step may involve a test that decides which of several
possible recursive calls to make, but it should ultimately choose to make just
one of these calls each time we perform this step. Moreover, we should define
each possible recursive call so that it makes progress towards a base case.

195

Analyzing Recursive Algorithms using Recursion Traces

We can analyze a recursive algorithm by using a visual tool known as a recursion
trace. We used recursion traces, for example, to analyze and visualize the
recursive Fibonacci function of Section 3.5, and we will similarly use recursion
traces for the recursive sorting algorithms of Sections 11.1 and 11.2.

To draw a recursion trace, we create a box for each instance of the method and
label it with the parameters of the method. Also, we visualize a recursive call by
drawing an arrow from the box of the calling method to the box of the called
method. For example, we illustrate the recursion trace of the LinearSum
algorithm of Code Fragment 3.31 in Figure 3.24. We label each box in this trace
with the parameters used to make this call. Each time we make a recursive call,
we draw a line to the box representing the recursive call. We can also use this
diagram to visualize stepping through the algorithm, since it proceeds by going
from the call for n to the call for n — 1, to the call for n — 2, and so on, all the way
down to the call for 1. When the final call finishes, it returns its value back to the
call for 2, which adds in its value, and returns this partial sum to the call for 3, and
so on, until the call for n — 1 returns its partial sum to the call for n.

Figure 3.24: Recursion trace for an execution of
LinearSum(A,n) with input parameters A = {4,3,6,2,5}
and n = 5.

From Figure 3.24, it should be clear that for an input array of size n, Algorithm
LinearSum makes n calls. Hence, it will take an amount of time that is roughly
proportional to n, since it spends a constant amount of time performing the

196

nonrecursive part of each call. Moreover, we can also see that the memory space
used by the algorithm (in addition to the array A) is also roughly proportional to n,
since we need a constant amount of memory space for each of the n boxes in the
trace at the time we make the final recursive call (for n = 1).

Reversing an Array by Recursion

Next, let us consider the problem of reversing the n elements of an array, A, so
that the first element becomes the last, the second element becomes second to the
last, and so on. We can solve this problem using linear recursion, by observing
that the reversal of an array can be achieved by swapping the first and last
elements and then recursively reversing the remaining elements in the array. We
describe the details of this algorithm in Code Fragment 3.32, using the convention
that the first time we call this algorithm we do so as ReverseArray(A,0,n — 1).

Code Fragment 3.32: Reversing the elements of an
array using linear recursion.

Note that, in this algorithm, we actually have two base cases, namely, when i =
and when i > j. Moreover, in either case, we simply terminate the algorithm, since
a sequence with zero elements or one element is trivially equal to its reversal.
Furthermore, note that in the recursive step we are guaranteed to make progress
towards one of these two base cases. If n is odd, we will eventually reach the i =
case, and if n is even, we will eventually reach the i > j case. The above argument
immediately implies that the recursive algorithm of Code Fragment 3.32 is
guaranteed to terminate.

Defining Problems in Ways That Facilitate Recursion

To design a recursive algorithm for a given problem, it is useful to think of the
different ways we can subdivide this problem to define problems that have the
same general structure as the original problem. This process sometimes means we
need to redefine the original problem to facilitate similar-looking subproblems.
For example, with the ReverseArray algorithm, we added the parameters i and
J so that a recursive call to reverse the inner part of the array A would have the
same structure (and same syntax) as the call to reverse all of A. Then, rather than

197

initially calling the algorithm as ReverseArray(A), we call it initially as
ReverseArray(A,0,n—1). In general, if one has difficulty finding the repetitive
structure needed to design a recursive algorithm, it is sometimes useful to work
out the problem on a few concrete examples to see how the subproblems should
be defined.

Tail Recursion

Using recursion can often be a useful tool for designing algorithms that have
elegant, short definitions. But this usefulness does come at a modest cost. When
we use a recursive algorithm to solve a problem, we have to use some of the
memory locations in our computer to keep track of the state of each active
recursive call. When computer memory is at a premium, then, it is useful in some
cases to be able to derive nonrecursive algorithms from recursive ones.

We can use the stack data structure, discussed in Section 5.1, to convert a
recursive algorithm into a nonrecursive algorithm, but there are some instances
when we can do this conversion more easily and efficiently. Specifically, we can
easily convert algorithms that use tail recursion. An algorithm uses tail recursion
if it uses linear recursion and the algorithm makes a recursive call as its very last
operation. For example, the algorithm of Code Fragment 3.32 uses tail recursion
to reverse the elements of an array.

It is not enough that the last statement in the method definition include a recursive
call, however. In order for a method to use tail recursion, the recursive call must
be absolutely the last thing the method does (unless we are in a base case, of
course). For example, the algorithm of Code Fragment 3.31 does not use tail
recursion, even though its last statement includes a recursive call. This recursive
call is not actually the last thing the method does. After it receives the value
returned from the recursive call, it adds this value to A [n — 1] and returns this
sum. That is, the last thing this algorithm does is an add, not a recursive call.

When an algorithm uses tail recursion, we can convert the recursive algorithm
into a nonrecursive one, by iterating through the recursive calls rather than calling
them explicitly. We illustrate this type of conversion by revisiting the problem of
reversing the elements of an array. In Code Fragment 3.33, we give a
nonrecursive algorithm that performs this task by iterating through the recursive
calls of the algorithm of Code Fragment 3.32. We initially call this algorithm as
IterativeReverseArray (A, 0,n —1).

Code Fragment 3.33: Reversing the elements of an
array using iteration.

198

3.5.2 Binary Recursion

When an algorithm makes two recursive calls, we say that it uses binary recursion.
These calls can, for example, be used to solve two similar halves of some problem,
as we did in Section 3.5 for drawing an English ruler. As another application of
binary recursion, let us revisit the problem of summing the n elements of an integer
array A. In this case, we can sum the elements in A by: (i) recursively summing the
elements in the first half of A; (ii) recursively summing the elements in the second
half of A; and (iii) adding these two values together. We give the details in the
algorithm of Code Fragment 3.34, which we initially call as BinarySum(A,0,n).

Code Fragment 3.34: Summing the elements in an
array using binary recursion.

To analyze Algorithm BinarySum, we consider, for simplicity, the case where n
is a power of two. The general case of arbitrary n is considered in Exercise R-4.4.
Figure 3.25 shows the recursion trace of an execution of method BinarySum(0,8).
We label each box with the values of parameters i and n, which represent the
starting index and length of the sequence of elements to be reversed, respectively.
Notice that the arrows in the trace go from a box labeled (i,n) to another box labeled
(i,n/2) or (i + n/2,n/2). That is, the value of parameter n is halved at each recursive
call. Thus, the depth of the recursion, that is, the maximum number of method
instances that are active at the same time, is 1 + log,n. Thus, Algorithm
BinarySum uses an amount of additional space roughly proportional to this value.
This is a big improvement over the space needed by the LinearSum method of Code
Fragment 3.31. The running time of Algorithm BinarySum is still roughly

199

proportional to n, however, since each box is visited in constant time when stepping
through our algorithm and there are 2n — 1 boxes.

Figure 3.25: Recursion trace for the execution of
BinarySum(0,8).

Computing Fibonacci Numbers via Binary Recursion

Let us consider the problem of computing the kth Fibonacci number. Recall from
Section 2.2.3, that the Fibonacci numbers are recursively defined as follows:

Fo=0

Fi=1

Fi=Fin+Fi» fori<l.
By directly applying this definition, Algorithm BinaryFib, shown in Code

Fragment 3.35, computes the sequence of Fibonacci numbers using binary
recursion.

Code Fragment 3.35: Computing the kth Fibonacci
number using binary recursion.

200

Unfortunately, in spite of the Fibonacci definition looking like a binary recursion,
using this technique is inefficient in this case. In fact, it takes an exponential
number of calls to compute the kth Fibonacci number in this way. Specifically, let
nk denote the number of calls performed in the execution of BinaryFib(k).
Then, we have the following values for the ny's:

ng=1

ng=1
Nn=n;+ng+1=1+1+1=3
Ng3=np+n;+1=3+1+1=5
Ng=n3+n2+1=5+3+1=9
Ns=Ng+nN3+1=9+5+1=15
Ng=nNs+tnNs+1=15+9+1=25
Nnz=Neg+ns+1=25+15+1=41
Ng=n;+ng+1=41+25+1=67.

If we follow the pattern forward, we see that the number of calls more than
doubles for each two consecutive indices. That is, n4 is more than twice n; ns is
more than twice ns, ng is more than twice n4, and so on. Thus, ny > 2X2, which
means that BinaryFib(k) makes a number of calls that are exponential in k. In
other words, using binary recursion to compute Fibonacci numbers is very
inefficient.

Computing Fibonacci Numbers via Linear Recursion

The main problem with the approach above, based on binary recursion, is that the
computation of Fibonacci numbers is really a linearly recursive problem. It is not
a good candidate for using binary recursion. We simply got tempted into using
binary recursion because of the way the kth Fibonacci number, Fy, depends on the
two previous values, Fy-; and Fy_,. But we can compute Fy much more efficiently
using linear recursion.

In order to use linear recursion, however, we need to slightly redefine the
problem. One way to accomplish this conversion is to define a recursive function
that computes a pair of consecutive Fibonacci numbers (Fy,Fx—1) using the
convention F—1 = 0. Then we can use the linearly recursive algorithm shown in
Code Fragment 3.36.

201

Code Fragment 3.36: Computing the kth Fibonacci
number using linear recursion.

The algorithm given in Code Fragment 3.36 shows that using linear recursion to
compute Fibonacci numbers is much more efficient than using binary recursion.
Since each recursive call to LinearFibonacci decreases the argument k by 1,
the original call LinearFibonacci (k) results in a series of k — 1 additional
calls. That is, computing the kth Fibonacci number via linear recursion requires k
method calls. This performance is significantly faster than the exponential time
needed by the algorithm based on binary recursion, which was given in Code
Fragment 3.35. Therefore, when using binary recursion, we should first try to
fully partition the problem in two (as we did for summing the elements of an
array) or, we should be sure that overlapping recursive calls are really necessary.

Usually, we can eliminate overlapping recursive calls by using more memory to
keep track of previous values. In fact, this approach is a central part of a technique
called dynamic programming, which is related to recursion and is discussed in
Section 12.5.2.

3.5.3 Multiple Recursion

Generalizing from binary recursion, we use multiple recursion when a method may
make multiple recursive calls, with that number potentially being more than two.
One of the most common applications of this type of recursion is used when we
wish to enumerate various configurations in order to solve a combinatorial puzzle.
For example, the following are all instances of summation puzzles:

pot + pan = bib
dog + cat = pig

boy + girl = baby

202

To solve such a puzzle, we need to assign a unique digit (that is, 0,1,..., 9) to each
letter in the equation, in order to make the equation true. Typically, we solve such a
puzzle by using our human observations of the particular puzzle we are trying to
solve to eliminate configurations (that is, possible partial assignments of digits to
letters) until we can work though the feasible configurations left, testing for the
correctness of each one.

If the number of possible configurations is not too large, however, we can use a
computer to simply enumerate all the possibilities and test each one, without
employing any human observations. In addition, such an algorithm can use multiple
recursion to work through the configurations in a systematic way. We show
pseudocode for such an algorithm in Code Fragment 3.37. To keep the description
general enough to be used with other puzzles, the algorithm enumerates and tests all
k-length sequences without repetitions of the elements of a given set U. We build
the sequences of k elements by the following steps:

1. Recursively generating the sequences of k — 1 elements
2. Appending to each such sequence an element not already contained in it.

Throughout the execution of the algorithm, we use the set U to keep track of the
elements not contained in the current sequence, so that an element e has not been
used yet if and only if e is in U.

Another way to look at the algorithm of Code Fragment 3.37 is that it enumerates
every possible size-k ordered subset of U, and tests each subset for being a possible
solution to our puzzle.

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the sequence
corresponds to a given letter. For example, the first position could stand for b, the
second for o, the third for y, and so on.

Code Fragment 3.37: Solving a combinatorial puzzle
by enumerating and testing all possible configurations.

203

In Figure 3.26, we show a recursion trace of a call to PuzzleSolve(3,S,U),
where S is empty and U = {a,b,c}. During the execution, all the permutations of the
three characters are generated and tested. Note that the initial call makes three
recursive calls, each of which in turn makes two more. If we had executed
PuzzleSolve(3,S, U) on a set U consisting of four elements, the initial call
would have made four recursive calls, each of which would have a trace looking
like the one in Figure 3.26.

Figure 3.26: Recursion trace for an execution of
PuzzleSolve(3,5U), where S is empty and U = {q, b,
c}. This execution generates and tests all permutations
of a, b, and c. We show the permutations generated
directly below their respective boxes.

204

3.6 Exercises

For source code and help with exercises, please visit
jJava.datastructures.net.

Reinforcement
R-3.1

The add and remove methods of Code Fragments 3.3 and 3.4 do not keep
track of the number,n, of non-null entries in the array, a. Instead, the unused
cells point to the null I object. Show how to change these methods so that they
keep track of the actual size of a in an instance variable n.

R-3.2

Describe a way to use recursion to add all the elements inan x n (two
dimensional) array of integers.

R-3.3

Explain how to modify the Caesar cipher program (Code Fragment 3.9) so that
it performs ROT 13 encryption and decryption, which uses 13 as the alphabet
shift amount. How can you further simplify the code so that the body of the
decrypt method is only a single line?

R-3.4

Explain the changes that would have be made to the program of Code Fragment
3.9 so that it could perform the Caesar cipher for messages that are written in an
alphabet-based language other than English, such as Greek, Russian, or Hebrew.

R-3.5

What is the exception that is thrown when advance or remove is called on an
empty list, from Code Fragment 3.25? Explain how to modify these methods so
that they give a more instructive exception name for this condition.

R-3.6
Give a recursive definition of a singly linked list.
R-3.7

Describe a method for inserting an element at the beginning of a singly linked
list. Assume that the list does not have a sentinel header node, and instead uses
a variable head to reference the first node in the list.

205

R-3.8

Give an algorithm for finding the penultimate node in a singly linked list where
the last element is indicated by a null next reference.

R-3.9

Describe a nonrecursive method for finding, by link hopping, the middle node
of a doubly linked list with header and trailer sentinels. (Note: This method
must only use link hopping; it cannot use a counter.) What is the running time
of this method?

R-3.10

Describe a recursive algorithm for finding the maximum element in an array A
of n elements. What is your running time and space usage?

R-3.11

Draw the recursion trace for the execution of method ReverseArray (A ,0,4)
(Code Fragment 3.32) on array A = {4,3,6,2,5}.

R-3.12

Draw the recursion trace for the execution of method PuzzleSolve(3,S, U)
(Code Fragment 3.37), where S is empty and U = {a,b,c,d}.

R-3.13

Write a short Java method that repeatedly selects and removes a random entry
from an array until the array holds no more entries.

R-3.14

Write a short Java method to count the number of nodes in a circularly linked
list.

Creativity
C-3.1

Give Java code for performing add(e) and remove(i) methods for game
entries, stored in an array a, as in Code Fragments 3.3 and 3.4, except now don't
maintain the game entries in order. Assume that we still need to keep n entries
stored in indices 0 to n — 1. Try to implement the add and remove methods
without using any loops, so that the number of steps they perform does not
depend on n.

206

C-3.2

Let A be an array of size n > 2 containing integers from 1 to n — 1, inclusive,
with exactly one repeated. Describe a fast algorithm for finding the integer in A
that is repeated.

C-3.3

Let B be an array of size n > 6 containing integers from 1 to n — 5, inclusive,
with exactly five repeated. Describe a good algorithm for finding the five
integers in B that are repeated.

C-34

Suppose you are designing a multi-player game that has n > 1000 players,
numbered 1 to n, interacting in an enchanted forest. The winner of this game is
the first player who can meet all the other players at least once (ties are
allowed). Assuming that there is a method meet(i,j), which is called each time a
player i meets a player j (with i # j), describe a way to keep track of the pairs of
meeting players and who is the winner.

C-35

Give a recursive algorithm to compute the product of two positive integers, m
and n, using only addition and subtraction.

C-3.6

Describe a fast recursive algorithm for reversing a singly linked list L, so that
the ordering of the nodes becomes opposite of what it was before, a list has only
one position, then we are done; the list is already reversed. Otherwise, remove

C-3.7

Describe a good algorithm for concatenating two singly linked lists L and M,
with header sentinels, into a single list L ’ that contains all the nodes of L
followed by all the nodes of M.

C-3.8

Give a fast algorithm for concatenating two doubly linked lists L and M, with
header and trailer sentinel nodes, into a single list L .

C-3.9

Describe in detail how to swap two nodes x and y in a singly linked list L given
references only to x and y. Repeat this exercise for the case when L is a doubly
linked list. Which algorithm takes more time?

207

C-3.10

Describe in detail an algorithm for reversing a singly linked list L using only a
constant amount of additional space and not using any recursion.

C-3.11

In the Towers of Hanoi puzzle, we are given a platform with three pegs, a, b,
and c, sticking out of it. On peg a is a stack of n disks, each larger than the next,
so that the smallest is on the top and the largest is on the bottom. The puzzle is
to move all the disks from peg a to peg ¢, moving one disk at a time, so that we
never place a larger disk on top of a smaller one. See Figure 3.27 for an
example of the case n = 4. Describe a recursive algorithm for solving the
Towers of Hanoi puzzle for arbitrary n. (Hint: Consider first the subproblem of
moving all but the nth disk from peg a to another peg using the third as
"temporary storage.”)

Figure 3.27: An illustration of the Towers of Hanoi
puzzle.

C-3.12

Describe a recursive method for converting a string of digits into the integer it
represents. For example, **13531" represents the integer 13,531.

C-3.13

Describe a recursive algorithm that counts the number of nodes in a singly
linked list.

C-3.14

208

Write a recursive Java program that will output all the subsets of a set of n
elements (without repeating any subsets).

C-3.15

Write a short recursive Java method that finds the minimum and maximum
values in an array of 1nt values without using any loops.

C-3.16

Describe a recursive algorithm that will check if an array A of integers contains
an integer A[i] that is the sum of two integers that appear earlier in A, that is,
such that A[i] = A[j] +A[K] for j,k > i.

C-3.17

Write a short recursive Java method that will rearrange an array of int values
so that all the even values appear before all the odd values.

C-3.18

Write a short recursive Java method that takes a character string s and outputs
its reverse. So for example, the reverse of *"pots&pans’ would be
"'snap&stop”.

C-3.19

Write a short recursive Java method that determines if a string s is a palindrome,
that is, it is equal to its reverse. For example, "'racecar" and
""gohangasalami imalasagnahog' are palindromes.

C-3.20

Use recursion to write a Java method for determining if a string s has more
vowels than consonants.

C-3.21

Suppose you are given two circularly linked lists, L and M, that is, two lists of
nodes such that each node has a nonnull next node. Describe a fast algorithm for
telling if L and M are really the same list of nodes, but with different (cursor)
starting points.

C-3.22

Given a circularly linked list L containing an even number of nodes, describe
how to split L into two circularly linked lists of half the size.

209

Projects
P-3.1

Write a Java program for a matrix class that can add and multiply arbitrary two-
dimensional arrays of integers.

P-3.2

Perform the previous project, but use generic types so that the matrices involved
can contain arbitrary number types.

P-3.3

Write a class that maintains the top 10 scores for a game application,
implementing the add and remove methods of Section 3.1.1, but using a
singly linked list instead of an array.

P-3.4

Perform the previous project, but use a doubly linked list. Moreover, your
implementation of remove(i) should make the fewest number of pointer hops
to get to the game entry at index i.

P-3.5

Perform the previous project, but use a linked list that is both circularly linked
and doubly linked.

P-3.6

Write a program for solving summation puzzles by enumerating and testing all
possible configurations. Using your program, solve the three puzzles given in
Section 3.5.3.

P-3.7

Write a program that can perform encryption and decryption using an arbitrary
substitution cipher. In this case, the encryption array is a random shuffling of
the letters in the alphabet. Your program should generate a random encryption
array, its corresponding decryption array, and use these to encode and decode a
message.

P-3.8

Write a program that can perform the Caesar cipher for English messages that
include both upper and lowercase characters.

210

Chapter Notes

The fundamental data structures of arrays and linked lists, as well as recursion,
discussed in this chapter, belong to the folklore of computer science. They were first
chronicled in the computer science literature by Knuth in his seminal book on
Fundamental Algorithms [62].

Chapter4 Analysis Tools

Contents
4.1
The Seven Functions Used in This Book .
154
4.1.1

The Constant Function

154

4.1.2

The Logarithm Function
154

4.1.3

The Linear Function

211

156

4.1.4

The N-Log-N Function
156

4.1.5

The Quadratic Function

156

4.1.6

The Cubic Function and Other Polynomials .
158

4.1.7

The Exponential Function

159

4.1.8

Comparing Growth Rates
161

4.2

Analysis of Algorithms .

162
4.2.1

Experimental Studies

163

4.2.2

212

Primitive Operations

164
4.2.3

Asymptotic Notation

166
4.2.4

Asymptotic Analysis

170
4.2.5

Using the Big-Oh Notation

172

4.2.6

A Recursive Algorithm for Computing Powers .
176

4.3

Simple Justification Techniques .

177
4.3.1

By Example

177
4.3.2

The "Contra" Attack

213

177
4.3.3

Induction and Loop Invariants . . .

178

4.4

Exercises .

181

jJava.datastructures.net

4.1 The Seven Functions Used in This Book

In this section, we briefly discuss the seven most important functions used in the
analysis of algorithms. We will use only these seven simple functions for almost all
the analysis we do in this book. In fact, a section that uses a function other than one of
these seven will be marked with a star () to indicate that it is optional. In addition to
these seven fundamental functions, Appendix A contains a list of other useful
mathematical facts that apply in the context of data structure and algorithm analysis.

411 The Constant Function

The simplest function we can think of is the constant function. This is the function,
f(n) =c,

for some fixed constant ¢, such as ¢ = 5, ¢ = 27, or ¢ = 2'°. That is, for any argument
n, the constant function f(n) assigns the value c. In other words, it doesn't matter
what the value of n is; f (n) will always be equal to the constant value c.

Since we are most interested in integer functions, the most fundamental constant
function is g(n) = 1, and this is the typical constant function we use in this book.
Note that any other constant function, f(n) = ¢, can be written as a constant ¢ times
g(n). That is,f(n) = cg(n) in this case.

As simple as it is, the constant function is useful in algorithm analysis, because it
characterizes the number of steps needed to do a basic operation on a computer, like
adding two numbers, assigning a value to some variable, or comparing two
numbers.

214

4.1.2 The Logarithm function

One of the interesting and sometimes even surprising aspects of the analysis of data
structures and algorithms is the ubiquitous presence of the logarithm function, f(n)
= logpn, for some constant b > 1. This function is defined as follows:

x = logy n if and only if b* = n.
By definition, log, 1 = 0. The value b is known as the base of the logarithm.

Computing the logarithm function exactly for any integer n involves the use of
calculus, but we can use an approximation that is good enough for our purposes
without calculus. In particular, we can easily compute the smallest integer greater
than or equal to logan, for this number is equal to the number of times we can
divide n by a until we get a number less than or equal to 1. For example, this
evaluation of logs27 is 3, since 27/3/3/3 = 1. Likewise, this evaluation of log464 is
4, since 64/4/4/4/4 = 1, and this approximation to log,12 is 4, since 12/2/2/2/2 =
0.75 < 1. This base-two approximation arises in algorithm analysis, actually, since a
common operation in many algorithms is to repeatedly divide an input in half.

Indeed, since computers store integers in binary, the most common base for the
logarithm function in computer science is 2. In fact, this base is so common that we
will typically leave it off when it is 2. That is, for us,

logn = logan.

We note that most handheld calculators have a button marked LOG, but this is
typically for calculating the logarithm base-10, not base-two.

There are some important rules for logarithms, similar to the exponent rules.

Proposition 4.1 (Logarithm Rules): Given real numbersa>0,b>1,
c>0andd > 1, we have:

1. logpac = logpa + logpc
2. logpa/c = logpa— log,C
3. logpa® = clogpa

4, logha = (logga)/loggb
5. blog da e alog db-

Also, as a notational shorthand, we use log‘n to denote the function (logn)°. Rather
than show how we could derive each of the identities above which all follow from
the definition of logarithms and exponents, let us illustrate these identities with a
few examples instead.

215

Example 4.2: We demonstrate below some interesting applications of the

logarithm rules from Proposition 4.1 (using the usual convention that the base of a
logarithm is 2 if it is omitted).

. log(2n) =log2 + log n =1 + logn, by rule 1
. log(n/2) = logn — log2 = logn — 1, by rule 2
. logn® = 3logn, by rule 3

. log2" =nlog2 =n- 1 =n, by rule 3

. logan = (log n)/ log4 = (logn) /2, by rule 4
. 299" = nl°92 = ' = n, by rule 5.

As a practical matter, we note that rule 4 gives us a way to compute the base-two
logarithm on a calculator that has a base-10 logarithm button, LOG, for

log,n = LOGN/LOG2.

4.1.3 The Linear function

Another simple yet important function is the linear function,
f(n)=n.
That is, given an input value n, the linear function f assigns the value n itself.

This function arises in algorithm analysis any time we have to do a single basic
operation for each of n elements. For example, comparing a number x to each
element of an array of size n will require n comparisons. The linear function also
represents the best running time we can hope to achieve for any algorithm that
processes a collection of n objects that are not already in the computer's memory,
since reading in the n objects itself requires n operations.

4.14 The N-Log-N function

The next function we discuss in this section is the n-log-n function,
f(n) = nlogn,

that is, the function that assigns to an input n the value of n times the logarithm
base-two of n. This function grows a little faster than the linear function and a lot
slower than the quadratic function. Thus, as we will show on several occasions, if
we can improve the running time of solving some problem from quadratic to n-log-
n, we will have an algorithm that runs much faster in general.

216

4.1.5 The Quadratic function

Another function that appears quite often in algorithm analysis is the quadratic
function,

f(n) = n’.

That is, given an input value n, the function f assigns the product of n with itself (in
other words, "n squared").

The main reason why the quadratic function appears in the analysis of algo rithms is
that there are many algorithms that have nested loops, where the inner loop
performs a linear number of operations and the outer loop is performed a linear
number of times. Thus, in such cases, the algorithm performs n - n = n? operations.

Nested Loops and the Quadratic function

The quadratic function can also arise in the context of nested loops where the first
iteration of a loop uses one operation, the second uses two operations, the third
uses three operations, and so on. That is, the number of operations is

1+2+3+...+(n—-2)+(n—1) +n.

In other words, this is the total number of operations that will be performed by the
nested loop if the number of operations performed inside the loop increases by
one with each iteration of the outer loop. This quantity also has an interesting
history.

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils
occupied by adding up the integers from 1 to 100. But almost immediately one of
the children claimed to have the answer! The teacher was suspicious, for the
student had only the answer on his slate. But the answer was correct—5,050—
and the student, Carl Gauss, grew up to be one of the greatest mathematicians of
his time. It is widely suspected that young Gauss used the following identity.

Proposition 4.3: For any integer n > 1, we have:
1+2+3+...+(n—2)+(n—1)+n=n(n+1)/2.

We give two "visual™ justifications of Proposition 4.3 in Figure 4.1.
Figure 4.1: Visual justifications of Proposition 4.3.
Both illustrations visualize the identity in terms of the
total area covered by n unit-width rectangles with
heights 1,2,...,n. In (a) the rectangles are shown to

217

cover a big triangle of area n?/2 (base n and height n)
plus n small triangles of area 1/2 each (base 1 and
height 1). In (b), which applies only when n is even, the
rectangles are shown to cover a big rectangle of base
n/2 and height n+ 1.

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm
with nested loops such that the operations in the inner loop increase by one each
time, then the total number of operations is quadratic in the number of times, n,
we perform the outer loop. In particular, the number of operations is n%/2 + n/2, in
this case, which is a little more than a constant factor (1/2) times the quadratic
function n?. In other words, such an algorithm is only slightly better than an
algorithm that uses n operations each time the inner loop is performed. This
observation might at first seem nonintuitive, but it is nevertheless true, as shown

in Figure 4.1.

416 The Cubic Function and Other
Polynomials

Continuing our discussion of functions that are powers of the input, we consider the
cubic function,

f(n) = n®,

218

which assigns to an input value n the product of n with itself three times. This
function appears less frequently in the context of algorithm analysis than the
constant, linear, and quadratic functions previously mentioned, but it does appear
from time to time.

Polynomials

Interestingly, the functions we have listed so far can be viewed as all being part of
a larger class of functions, the polynomials.

A polynomial function is a function of the form,
f(n) = ap + a1n + axn’ + azn® + ... + agn’,

where ap,a1,...,a4 are constants, called the coefficients of the polynomial, and a4
0. Integer d, which indicates the highest power in the polynomial, is called the
degree of the polynomial.

For example, the following functions are all polynomials:
e fn)=2+5n+n’

« f(n)=1+n’

. fn)=1
. f(n) =n
e f(n)=n%

Therefore, we could argue that this book presents just four important functions
used in algorithm analysis, but we will stick to saying that there are seven, since
the constant, linear, and quadratic functions are too important to be lumped in
with other polynomials. Running times that are polynomials with degree, d, are
generally better than polynomial running times with large degree.

Summations

A notation that appears again and again in the analysis of data structures and
algorithms is the summation, which is defined as follows:

i =a

b
L S =fla) tfa + 1) Hfla +2) + - HAE)

219

where a and b are integers and a < b. Summations arise in data structure and
algorithm analysis because the running times of loops naturally give rise to
summations.

Using a summation, we can rewrite the formula of Proposition 4.3 as

- n(a+1)
o2

Likewise, we can write a polynomial f(n) of degree d with coefficients ay, ..., a4
as

Thus, the summation notation gives us a shorthand way of expressing sums of
increasing terms that have a regular structure.

4.1.7 The Exponential Function

Another function used in the analysis of algorithms is the exponential function,
f(n) =b",

where b is a positive constant, called the base, and the argument n is the exponent.
That is, function f(n) assigns to the input argument n the value obtained by
multiplying the base b by itself n times. In algorithm analysis, the most common
base for the exponential function is b = 2. For instance, if we have a loop that starts
by performing one operation and then doubles the number of operations performed
with each iteration, then the number of operations performed in the nth iteration is
2". In addition, an integer word containing n bits can represent all the nonnegative
integers less than 2". Thus, the exponential function with base 2 is quite common.
The exponential function will also be referred to as exponent function.

We sometimes have other exponents besides n, however; hence, it is useful for us to
know a few handy rules for working with exponents. In particular, the following
exponent rules are quite helpful.

Proposition 4.4 (Exponent Rules): Given positive integers a,b,and
c,we have

1. (ba)c - bac
2. b*h® = b**°
3. b%b° =b%" ¢,

220

For example, we have the following:
. 256 = 162 = (2*)? = 2*2 = 2® = 256 (Exponent Rule 1)
. 243 = 3° = 32** = 323% = 9. 27 = 243 (Exponent Rule 2)
. 16 = 1024/64 = 2'°/2° = 219°° = 2% = 16 (Exponent Rule 3).

We can extend the exponential function to exponents that are fractions or real
numbers and to negative exponents, as follows. Given a positive integer k, we
define b** to be kth root of b, that is, the number r such that r = b. For example,
25Y2 = 5, since 5° = 25. Likewise, 27%® = 3 and 16"* = 2. This approach allows us
to define any power whose exponent can be expressed as a fraction, for b¥ = (b%)'°,
by Exponent Rule 1. For example, 9%% = (932 = 7292 = 27. Thus, b?" is really just
the cth root of the integral exponent b®,

We can further extend the exponential function to define b* for any real number x,
by computing a series of numbers of the form b®® for fractions a/c that get
progressively closer and closer to x. Any real number x can be approximated
arbitrarily close by a fraction a/c; hence, we can use the fraction a/c as the exponent
of b to get arbitrarily close to b*. So, for example, the number 2" is well defined.
Finally, given a negative exponent d, we define b? = 1/b™%, which corresponds to
applying Exponent Rule 3 witha=0and ¢ = —d.

Geometric Sums

Suppose we have a loop where each iteration takes a multiplicative factor longer
than the previous one. This loop can be analyzed using the following proposition.

Proposition 4.5: For any integer n > 0 and any real number a such that a >
0 and a # 1, consider the summation

M
S =l4ata - +a
=q

a,

(remembering that a° = 1 if a > 0). This summation is equal to
a™t la-1

Summations as shown in Proposition 4.5 are called geometric summations,
because each term is geometrically larger than the previous one if a > 1. For
example, everyone working in computing should know that

1+2+4+8+ .. +2"t=02"1

for this is the largest integer that can be represented in binary notation using n
bits.

221

4.1.8 Comparing Growth Rates

To sum up, Table 4.1 shows each of the seven common functions used in algorithm
analysis, which we described above, in order.

Table 4.1: Classes of functions. Here we assume that a
> 1 is a constant.

constant
logarithm
linear
n-log-n
quadratic
cubic
exponent
1

log n

n

nlogn

Ideally, we would like data structure operations to run in times proportional to the
constant or logarithm function, and we would like our algorithms to run in linear or
n-log-n time. Algorithms with quadratic or cubic running times are less practical,
but algorithms with exponential running times are infeasible for all but the smallest
sized inputs. Plots of the seven functions are shown in Figure 4.2.

Figure 4.2: Growth rates for the seven fundamental
functions used in algorithm analysis. We use base a = 2
for the exponential function. The functions are plotted
in a log-log chart, to compare the growth rates

222

primarily as slopes. Even so, the exponential function
grows too fast to display all its values on the chart. Also,
we use the scientific notation for numbers, where, aE+b
denotes a10°.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. The value of
a logarithm is typically not an integer, yet the running time of an algorithm is
usually expressed by means of an integer quantity, such as the number of
operations performed. Thus, the analysis of an algorithm may sometimes involve
the use of thefloor function and ceiling function, which are defined respectively
as follows:

. X =the largest integer less than or equal to x.

. X = the smallest integer greater than or equal to x.

4.2 Analysis of Algorithms

In a classic story, the famous mathematician Archimedes was asked to determine if a
golden crown commissioned by the king was indeed pure gold, and not part silver, as
an informant had claimed. Archimedes discovered a way to perform this analysis
while stepping into a (Greek) bath. He noted that water spilled out of the bath in
proportion to the amount of him that went in. Realizing the implications of this fact,
he immediately got out of the bath and ran naked through the city shouting, "Eureka,
eureka!,” for he had discovered an analysis tool (displacement), which, when
combined with a simple scale, could determine if the king's new crown was good or
not. That is, Archimedes could dip the crown and an equal-weight amount of gold

223

into a bowl of water to see if they both displaced the same amount. This discovery

was unfortunate for the goldsmith, however, for when Archimedes did his analysis,
the crown displaced more water than an equal-weight lump of pure gold, indicating
that the crown was not, in fact, pure gold.

In this book, we are interested in the design of "good" data structures and algorithms.
Simply put, a data structure is a systematic way of organizing and accessing data,
and an algorithm is a step-by-step procedure for performing some task in a finite
amount of time. These concepts are central to computing, but to be able to classify
some data structures and algorithms as “good,"” we must have precise ways of
analyzing them.

The primary analysis tool we will use in this book involves characterizing the running
times of algorithms and data structure operations, with space usage also being of
interest. Running time is a natural measure of "goodness,"” since time is a precious
resource—computer solutions should run as fast as possible.

In general, the running time of an algorithm or data structure method increases with
the input size, although it may also vary for different inputs of the same size. Also,
the running time is affected by the hardware environment (as reflected in the
processor, clock rate, memory, disk, etc.) and software environment (as reflected in
the operating system, programming language, compiler, interpreter, etc.) in which the
algorithm is implemented, compiled, and executed. All other factors being equal, the
running time of the same algorithm on the same input data will be smaller if the
computer has, say, a much faster processor or if the implementation is done in a
program compiled into native machine code instead of an interpreted implementation
run on a virtual machine. Nevertheless, in spite of the possible variations that come
from different environmental factors, we would like to focus on the relationship
between the running time of an algorithm and the size of its input.

We are interested in characterizing an algorithm's running time as a function of the
input size. But what is the proper way of measuring it?

4.2.1 Experimental Studies

if an algorithm has been implemented, we can study its running time by executing it
on various test inputs and recording the actual time spent in each execution.
Fortunately, such measurements can be taken in an accurate manner by using
system calls that are built into the language or operating system (for example, by
using the System.current Time Millis () method or calling the run-time
environment with profiling enabled). Such tests assign a specific running time to a
specific input size, but we are interested in determining the general dependence of
running time on the size of the input. In order to determine this dependence, we
should perform several experiments on many different test inputs of various sizes.
Then we can visualize the results of such experiments by plotting the performance
of each run of the algorithm as a point with x-coordinate equal to the input size, n,

224

and y-coordinate equal to the running time, t. (See Figure 4.3.) From this
visualization and the data that supports it, we can perform a statistical analysis that
seeks to fit the best function of the input size to the experimental data. To be
meaningful, this analysis requires that we choose good sample inputs and test
enough of them to be able to make sound statistical claims about the algorithm's
running time.

Figure 4.3: Results of an experimental study on the
running time of an algorithm. A dot with coordinates (n,
t) indicates that on an input of size n, the running time
of the algorithm is t milliseconds (ms).

While experimental studies of running times are useful, they have three major
limitations:

. Experiments can be done only on a limited set of test inputs; hence, they
leave out the running times of inputs not included in the experiment (and these
inputs may be important).

225

. We will have difficulty comparing the experimental running times of two
algorithms unless the experiments were performed in the same hardware and
software environments.

. We have to fully implement and execute an algorithm in order to study its
running time experimentally.

This last requirement is obvious, but it is probably the most time consuming aspect
of performing an experimental analysis of an algorithm. The other limitations
impose serious hurdles too, of course. Thus, we would ideally like to have an
analysis tool that allows us to avoid performing experiments.

In the rest of this chapter, we develop a general way of analyzing the running times
of algorithms that:

. Takes into account all possible inputs

. Allows us to evaluate the relative efficiency of any two algorithms in a
way that is independent from the hardware and software environment

. Can be performed by studying a high-level description of the algorithm
without actually implementing it or running experiments on it.

This methodology aims at associating, with each algorithm, a function f(n) that
characterizes the running time of the algorithm as a function of the input size n.
Typical functions that will be encountered include the seven functions mentioned
earlier in this chapter.

4.2.2 Primitive Operations

As noted above, experimental analysis is valuable, but it has its limitations. If we
wish to analyze a particular algorithm without performing experiments on its
running time, we can perform an analysis directly on the high-level pseudo-code
instead. We define a set of primitive operations such as the following:

. Assigning a value to a variable

. Calling a method

. Performing an arithmetic operation (for example, adding two numbers)
. Comparing two numbers

. Indexing into an array

. Following an object reference

. Returning from a method.

226

Counting Primitive Operations

Specifically, a primitive operation corresponds to a low-level instruction with an
execution time that is constant. Instead of trying to determine the specific
execution time of each primitive operation, we will simply count how many
primitive operations are executed, and use this number t as a measure of the
running-time of the algorithm.

This operation count will correlate to an actual running time in a specific
computer, for each primitive operation corresponds to a constant-time instruction,
and there are only a fixed number of primitive operations. The implicit
assumption in this approach is that the running times of different primitive
operations will be fairly similar. Thus, the number, t, of primitive operations an
algorithm performs will be proportional to the actual running time of that
algorithm.

An algorithm may run faster on some inputs than it does on others of the same
size. Thus, we may wish to express the running time of an algorithm as the
function of the input size obtained by taking the average over all possible inputs
of the same size. Unfortunately, such an average-case analysis is typically quite
challenging. It requires us to define a probability distribution on the set of inputs,
which is often a difficult task. Figure 4.4 schematically shows how, depending on
the input distribution, the running time of an algorithm can be anywhere between
the worst-case time and the best-case time. For example, what if inputs are really
only of types "A" or "D"?

Figure 4.4: The difference between best-case and
worst-case time. Each bar represents the running time
of some algorithm on a different possible input.

227

Focusing on the Worst Case

An average-case analysis usually requires that we calculate expected running
times based on a given input distribution, which usually involves sophisticated
probability theory. Therefore, for the remainder of this book, unless we specify
otherwise, we will characterize running times in terms of the worst case, as a
function of the input size, n, of the algorithm.

Worst-case analysis is much easier than average-case analysis, as it requires only
the ability to identify the worst-case input, which is often simple. Also, this
approach typically leads to better algorithms. Making the standard of success for
an algorithm to perform well in the worst case necessarily requires that it will do
well on every input. That is, designing for the worst case leads to stronger
algorithmic "muscles,” much like a track star who always practices by running up
an incline.

4.2.3 Asymptotic Notation

In general, each basic step in a pseudo-code description or a high-level language
implementation corresponds to a small number of primitive operations (except for
method calls, of course). Thus, we can perform a simple analysis of an algorithm
written in pseudo-code that estimates the number of primitive operations executed
up to a constant factor, by pseudo-code steps (but we must be careful, since a single
line of pseudo-code may denote a number of steps in some cases).

228

Simplifying the Analysis Further

In algorithm analysis, we focus on the growth rate of the running time as a
function of the input size n, taking a "big-picture” approach, rather than being
bogged down with small details. It is often enough just to know that the running
time of an algorithm such as arrayMax, given in Section 1.9.2, grows
proportionally to n, with its true running time being n times a constant factor that
depends on the specific computer.

We analyze data structures and algorithms using a mathematical notation for
functions that disregards constant factors. Namely, we characterize the running
times of algorithms by using functions that map the size of the input, n, to values
that correspond to the main factor that determines the growth rate in terms of n.
We do not formally define what n means, however, and instead let n refer to a
chosen measure of the input "size," which is allowed to be defined differently for
each algorithm we are analyzing. This approach allows us to focus attention on
the primary "big-picture” aspects in a running time function. In addition, the same
approach lets us characterize space usage for data structures and algorithms,
where we define space usage to be the total number of memory cells used.

The "Big-Oh" Notation

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We
say that f(n) is O(g(n)) if there is a real constant ¢ > 0 and an integer constant no >
1 such that

f(n) <cg(n), for n> no.

This definition is often referred to as the "big-Oh™ notation, for it is sometimes
pronounced as "f(n) is big-Oh of g(n)." Alternatively, we can also say "f(n) is
order of g(n)." (This definition is illustrated in Figure 4.5.)

Figure 4.5: Illustrating the "big-Oh" notation. The
function f(n) is O(g(n)), since f(n) < ¢ - g(n) when n>ny.

229

Example 4.6: The function 8n — 2 is O(n).

Justification: By the big-Oh definition, we need to find a real constant ¢ >
0 and an integer constant no > 1 such that 8n — 2 < cn for every integer n > no. It
is easy to see that a possible choice is ¢ = 8 and ng = 1. Indeed, this is one of
infinitely many choices available because any real number greater than or equal to
8 will work for ¢, and any integer greater than or equal to 1 will work for ng

The big-Oh notation allows us to say that a function f(n) is "less than or equal to"
another function g(n) up to a constant factor and in the asymptotic sense as n
grows toward infinity. This ability comes from the fact that the definition uses "<"
to compare f(n) to a g(n) times a constant, c, for the asymptotic cases when n>ny.

Characterizing Running Times using the Big-Oh
Notation

The big-Oh notation is used widely to characterize running times and space
bounds in terms of some parameter n, which varies from problem to problem, but
is always defined as a chosen measure of the "size" of the problem. For example,
if we are interested in finding the largest element in an array of integers, as in the
arrayMax algorithm, we should let n denote the number of elements of the
array. Using the big-Oh notation, we can write the following mathematically
precise statement on the running time of algorithm arrayMax for any computer.

230

Proposition 4.7: The AlgorithmarrayMax, for computing the maximum
element in an array ofn integers, runs in O(n) time.

Justification: The number of primitive operations executed by algorithm
arrayMax in each iteration is a constant. Hence, since each primitive operation
runs in constant time, we can say that the running time of algorithm arrayMax
on an input of size n is at most a constant times n, that is, we may conclude that
the running time of algorithm arrayMax is O(n).

Some Properties of the Big-Oh Notation

The big-Oh notation allows us to ignore constant factors and lower order terms
and focus on the main components of a function that affect its growth.

Example 4.8:5n*+3n®+2n? +4n + 1is O(n?.

Justification: Notethat5n* +3n®+2n+4n+ 1< (5+ 3+ 2 + 4+ 1)n* =
cn?, forc =15, whenn>n’=1.

|

In fact, we can characterize the growth rate of any polynomial function.
Proposition 4.9: Iff(n) is a polynomial of degree d, that is,

f(n) = ap+ ain+ ... + agn’,

and aq > 0, then f(n) is O(n%.

Justification: Note that, for n>1, we have 1 <n<n”<... <n% hence,
ag+ain+an’+...+agn?<(ag+ai+a,+... +ag)n’.

Therefore, we can show f(n) is O(n®) by defining ¢ = ao + a; +... + ag and ng = 1.

Thus, the highest-degree term in a polynomial is the term that determines the
asymptotic growth rate of that polynomial. We consider some additional
properties of the big-Oh notation in the exercises. Let us consider some further
examples here, however, focusing on combinations of the seven fundamental
functions used in algorithm design.

Example 4.10: 5n°+ 3nlog n+ 2n+ 5 is O(n?).

231

Justification: 5n° + 3nlogn + 2n + 5 < (5 + 3 + 2+5)n? =cn, for c= 15,
when n>ng = 2 (note that n log n is zero for n = 1).

|
Example 4.11: 20n®+ 10n log n + 5 is O(n®).

Justification: 20n® + 10n log n + 5<35n° forn>1.

|
Example 4.12: 3logn+ 2is O(log n).

Justification: 3logn+2<5logn, forn>2. Note that log n is zero for n
= 1. That is why we use n > ngy = 2 in this case.

|
Example 4.13: 2"+2is O(2").

Justification: 2"?=2"22 = 4.2" hence, we can take c =4 and no = 1 in
this case.

|
Example 4.14: 2n+ 100 log nis O(n).

Justification: 2n+ 100 log n <102 n, for n> ng = 2; hence, we can take ¢
= 102 in this case.

Characterizing Functions in Simplest Terms

In general, we should use the big-Oh notation to characterize a function as closely
as possible. While it is true that the function f(n) = 4n* + 3n? is O(n°) or even
O(n*, it is more accurate to say that f(n) is O(n*). Consider, by way of analogy, a
scenario where a hungry traveler driving along a long country road happens upon
a local farmer walking home from a market. If the traveler asks the farmer how
much longer he must drive before he can find some food, it may be truthful for
the farmer to say, "certainly no longer than 12 hours," but it is much more
accurate (and helpful) for him to say, "you can find a market just a few minutes
drive up this road." Thus, even with the big-Oh notation, we should strive as
much as possible to tell the whole truth.

It is also considered poor taste to include constant factors and lower order terms in
the big-Oh notation. For example, it is not fashionable to say that the function 2n?

232

is O(4n? + 6n log n), although this is completely correct. We should strive instead
to describe the function in the big-Oh in simplest terms.

The seven functions listed in Section 4.1 are the most common functions used in
conjunction with the big-Oh notation to characterize the running times and space
usage of algorithms. Indeed, we typically use the names of these functions to refer
to the running times of the algorithms they characterize. So, for example, we
would say that an algorithm that runs in worst-case time 4n” + n log n as a
quadratic-time algorithm, since it runs in O(n®) time. Likewise, an algorithm
running in time at most 5n + 20 log n + 4 would be called a linear-time algorithm.

Big-Omega

Just as the big-Oh notation provides an asymptotic way of saying that a function
is "less than or equal to™ another function, the following notations provide an
asymptotic way of saying that a function grows at a rate that is "greater than or
equal to" that of another.

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We
say that f(n) is ©(g(n)) (pronounced "f(n) is big-Omega of g(n)") if g(n) is O(f(n))
, that is, there is a real constant ¢ > 0 and an integer constant no > 1 such that

f(n) >cg(n), for n>ny.

This definition allows us to say asymptotically that one function is greater than or
equal to another, up to a constant factor.

Example 4.15: 3nlog n + 2nis Q(n log n).

Justification: 3nlogn+2n>3nlogn, forn>2.

Big-Theta

In addition, there is a notation that allows us to say that two functions grow at the
same rate, up to constant factors. We say that f(n) is ® (g(n)) (pronounced "f(n) is
big-Theta of g(n)") if f(n) is O(g(n)) and f(n) is Q(g(n)) , that is, there are real
constants ¢ ' >0 and ¢ " > 0, and an integer constant no > 1 such that

¢ ‘g(n) <f(n) <c "g(n), forn=>ny.

Example 4.16: 3nlogn+4n+ 5log nis®(n log n).

Justification: 3nlogn<3nlogn+4n+5logn<(3+4+5)nlognforn>
2.

233

4.2.4 Asymptotic Analysis

Suppose two algorithms solving the same problem are available: an algorithm A,
which has a running time of O(n), and an algorithm B, which has a running time of
O(n?). Which algorithm is better? We know that n is O(n?), which implies that
algorithm A is asymptotically better than algorithm B, although for a small value of
n, B may have a lower running time than A.

We can use the big-Oh notation to order classes of functions by asymptotic growth
rate. Our seven functions are ordered by increasing growth rate in the sequence
below, that is, if a function f(n) precedes a function g(n) in the sequence, then f(n) is

O(g(n)):
1 logn n nlogn n* n® 2"

We illustrate the growth rates of some important functions in Figure 4.2.

Table 4.2: Selected values of fundamental functions in
algorithm analysis.

n
logn
n
nlogn

n2

n3

2n

24
64

512

234

256

16

16
64

256

4,096
65,536

32

5

32

160

1,024
32,768
4,294,967,296
64

6

64

384

4,096
262,144
1.84 x 10"
128

7

128

235

896
16,384
2,097,152
3.40 x 10%
256

8

256

2,048
65,536
16,777,216
1.15 x 10"
512

9

512

4,608
262,144
134,217,728
1.34 x 10™*

We further illustrate the importance of the asymptotic viewpoint in Table 4.3. This
table explores the maximum size allowed for an input instance that is processed by
an algorithm in 1 second, 1 minute, and 1 hour. It shows the importance of good
algorithm design, because an asymptotically slow algorithm is beaten in the long
run by an asymptotically faster algorithm, even if the constant factor for the
asymptotically faster algorithm is worse.

Table 4.3: Maximum size of a problem that can be
solved in 1 second, 1 minute,and 1 hour, for various
running times measured in microseconds.

236

Running
Maximum Problem Size (n)
Time (us)
1 second
1 minute
1 hour
400n
2,500
150,000
9,000,000
2n?

707
5,477
42,426

on

19

25

31

The importance of good algorithm design goes beyond just what can be solved
effectively on a given computer, however. As shown in Table 4.4, even if we
achieve a dramatic speed-up in hardware, we still cannot overcome the handicap of
an asymptotically slow algorithm. This table shows the new maximum problem size
achievable for any fixed amount of time, assuming algorithms with the given
running times are now run on a computer 256 times faster than the previous one.

Table 4.4: Increase in the maximum size of a problem
that can be solved in a fixed amount of time, by using a
computer that is 256 times faster than the previous one.

237

Each entry is a function of m, the previous maximum
problem size.

Running Time

New Maximum Problem Size

400n

256m

2n?

16m

on

m+8

4.2.5 Using the Big-Oh Notation

Having made the case of using the big-Oh notation for analyzing algorithms, let us
briefly discuss a few issues concerning its use. It is considered poor taste, in
general, to say "f(n) < O(g(n))," since the big-Oh already denotes the "less-than-or-
equal-to"” concept. Likewise, although common, it is not fully correct to say "f(n) =
O(g(n))" (with the usual understanding of the "=" relation), since there is no way to
make sense of the statement "O(g(n)) = f(n)." In addition, it is completely wrong to
say "f(n) > O(g(n))" or "f(n) > O(g(n))," since the g(n) in the big-Oh expresses an
upper bound on f(n). It is best to say,

"f(n) is O(g(n))."
For the more mathematically inclined, it is also correct to say,
“f(n) O(g(n)).”

for the big-Oh notation is, technically speaking, denoting a whole collection of
functions. In this book, we will stick to presenting big-Oh statements as "f(n) is
O(g(n))." Even with this interpretation, there is considerable freedom in how we can
use arithmetic operations with the big-Oh notation, and with this freedom comes a
certain amount of responsibility.

Some Words of Caution

A few words of caution about asymptotic notation are in order at this point. First,
note that the use of the big-Oh and related notations can be somewhat misleading

238

should the constant factors they "hide™ be very large. For example, while it is true
that the function 10'®n is O(n), if this is the running time of an algorithm being
compared to one whose running time is 10nlogn, we should prefer the O(nlogn)
time algorithm, even though the linear-time algorithm is asymptotically faster.
This preference is because the constant factor, 10", which is called "one googol,"
is believed by many astronomers to be an upper bound on the number of atoms in
the observable universe. So we are unlikely to ever have a real-world problem that
has this number as its input size. Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constant factors and lower order terms
we are "hiding."

The observation above raises the issue of what constitutes a "fast™ algorithm.
Generally speaking, any algorithm running in O(nlogn) time (with a reasonable
constant factor) should be considered efficient. Even an O(n?) time method may
be fast enough in some contexts, that is, when n is small. But an algorithm
running in O(2") time should almost never be considered efficient.

Exponential Running Times

There is a famous story about the inventor of the game of chess. He asked only
that his king pay him 1 grain of rice for the first square on the board, 2 grains for
the second, 4 grains for the third, 8 for the fourth, and so on. It is an interesting
test of programming skills to write a program to compute exactly the number of
grains of rice the king would have to pay. In fact, any Java program written to
compute this number in a single integer value will cause an integer overflow to
occur (although the run-time machine will probably not complain). To represent
this number exactly as an integer requires using a Biglnteger class.

If we must draw a line between efficient and inefficient algorithms, therefore, it is
natural to make this distinction be that between those algorithms running in
polynomial time and those running in exponential time. That is, make the
distinction between algorithms with a running time that is O(n°®), for some
constant ¢c> 1, and those with a running time that is O(b"), for some constant b >
1. Like so many notions we have discussed in this section, this too should be
taken with a "grain of salt," for an algorithm running in O(n*®) time should
probably not be considered "efficient.” Even so, the distinction between
polynomial-time and exponential-time algorithms is considered a robust measure
of tractability.

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta

provide a convenient language for us to analyze data structures and algorithms.
As mentioned earlier, these notations provide convenience because they let us

concentrate on the "big picture™ rather than low-level details.

Two Examples of Asymptotic Algorithm Analysis

239

We conclude this section by analyzing two algorithms that solve the same
problem but have rather different running times. The problem we are interested in
is the one of computing the so-called prefix averages of a sequence of numbers.
Namely, given an array X storing n numbers, we want to compute an array A such
that A[i] is the average of elements X[0],..., X[i], fori=0,..., n — 1, that is,

Computing prefix averages has many applications in economics and statistics. For
example, given the year-by-year returns of a mutual fund, an investor will
typically want to see the fund's average annual returns for the last year, the last
three years, the last five years, and the last ten years. Likewise, given a stream of
daily Web usage logs, a Web site manager may wish to track average usage trends
over various time periods.

A Quadratic-Time Algorithm

Our first algorithm for the prefix averages problem, called prefixAveragesi,
is shown in Code Fragment 4.1. It computes every element of A separately,
following the definition.

Code Fragment 4.1: Algorithm prefixAveragesl.

Let us analyze the prefixAverages1 algorithm.
. Initializing and returning array A at the beginning and end can be done

with a constant number of primitive operations per element, and takes O(n)
time.

240

. There are two nested for loops, which are controlled by counters i and j,
respectively. The body of the outer loop, controlled by counter i, is executed n
times, for i =0,...,n — 1. Thus, statements a = 0 and A[i] = a/(i+ 1) are executed
n times each. This implies that these two statements, plus the incrementing and
testing of counter i, contribute a number of primitive operations proportional to
n, that is, O(n) time.

. The body of the inner loop, which is controlled by counter j, is executed i
+ 1 times, depending on the current value of the outer loop counter i. Thus,
statement a = a + X[j] in the inner loop is executed 1 + 2 + 3 +... +n times. By
recalling Proposition 4.3, we know that 1 + 2 + 3 +... +n, = n(n + 1)/2, which
implies that the statement in the inner loop contributes O(n?) time. A similar
argument can be done for the primitive operations associated with the
incrementing and testing counter j, which also take O(n?)time.

The running time of algorithm prefixAveragesl is given by the sum of three
terms. The first and the second term are O(n), and the third term is O(n®). By a
simple application of Proposition 4.9, the running time of prefixAveragesl
is O(n?).

A Linear-Time Algorithm

In order to compute prefix averages more efficiently, we can observe that two
consecutive averages A[i — 1] and A[i] are similar:

Al — 1] = (X[0] + X[1] + ... + X[i — 1])/i

A[i] = (X[0] + X[1] + ... + X[i — 1] + X[i])/(i +
1),

If we denote with S; the prefix sum X[0] + X[1] + ... + X]i], we can compute the
prefix averages as A[i] = Si/(i + 1). It is easy to keep track of the current prefix
sum while scanning array X with a loop. We are now ready to present Algorithm
prefixAverages?2 in Code Fragment 4.2.

Code Fragment 4.2: Algorithmprefix Averages?2.

241

The analysis of the running time of algorithm prefixAverages2 follows:

. Initializing and returning array A at the beginning and end can be done
with a constant number of primitive operations per element, and takes O(n)
time.

. Initializing variable s at the beginning takes O(1) time.

. There is a single for loop, which is controlled by counter i. The body of
the loop is executed n times, for i =0,... ,n — 1. Thus, statements s = s + X[i]
and A[i] = s/(i+ 1) are executed n times each. This implies that these two
statements plus the incrementing and testing of counter i contribute a number of
primitive operations proportional to n, that is, O(n) time.

The running time of algorithm prefixAverages?2 is given by the sum of three
terms. The first and the third term are O(n), and the second term is O(1). By a
simple application of Proposition 4.9, the running time of prefixAverages?2
is O(n), which is much better than the quadratic-time algorithm
prefixAveragesl.

4.2.6 A Recursive Algorithm for Computing Powers

As a more interesting example of algorithm analysis, let us consider the problem of
raising a number x to an arbitrary nonnegative integer, n. That is, we wish to
compute the power function p(x,n), defined as p(x,n) = x". This function has an
immediate recursive definition based on linear recursion:

1 if»m =0
plx,n) =
x -plx,n - 1) otherwise

242

This definition leads immediately to a recursive algorithm that uses O(n) method
calls to compute p(x,n). We can compute the power function much faster than this,
however, by using the following alternative definition, also based on linear
recursion, which employs a squaring technique:

(1 fn=0

pix,n) =¢ x plx, (7 - 1);2)2 if 7 =0 15 odd
P (xjn-fjjz if 7 =0 1z even .

To illustrate how this definition works, consider the following examples:
o4 — o(412)2 (24/2)2 — (22)2 - 42=16
25 = QL+ (22 = (9422 = p(92)2 = D(42) = 32
26 — (622 — (26/2)2 — (23)2 - 82=64
07 = QL+ (6122 = (9622 = 9932 = 9(g?) = 128,

This definition suggests the algorithm of Code Fragment 4.3.
Code Fragment 4.3: Computing the power function
using linear recursion.

To analyze the running time of the algorithm, we observe that each recursive call of
method Power(x, n) divides the exponent, n, by two. Thus, there are O(logn)
recursive calls, not O(n). That is, by using linear recursion and the squaring

243

technique, we reduce the running time for the computation of the power function
from O(n) to O(logn), which is a big improvement.

4.3. Simple Justification Techniques

Sometimes, we will want to make claims about an algorithm, such as showing that it
is correct or that it runs fast. In order to rigorously make such claims, we must use
mathematical language, and in order to back up such claims, we must justify or prove
our statements. Fortunately, there are several simple ways to do this.

4.3.1 By Example

Some claims are of the generic form, "There is an element x in a set S that has
property P." To justify such a claim, we only need to produce a particular x in S that
has property P. Likewise, some hard-to-believe claims are of the generic form,
"Every element x in a set S has property P." To justify that such a claim is false, we
need to only produce a particular x from S that does not have property P. Such an
instance is called a counterexample.

Example 4.17: Professor Amongus claims that every number of the form 2' — 1
is a prime, when i is an integer greater than 1. Professor Amongus is wrong.

Justification: To prove Professor Amongus is wrong, we find a counter-
example. Fortunately, we need not look too far, for 2* —1=15=3- 5.

4.3.2 The "Contra" Attack

Another set of justification techniques involves the use of the negative. The two
primary such methods are the use of the contrapositive and the contradiction. The
use of the contrapositive method is like looking through a negative mirror. To
justify the statement "if p is true, then q is true™ we establish that "if q is not true,
then p is not true" instead. Logically, these two statements are the same, but the
latter, which is called the contrapositive of the first, may be easier to think about.

Example 4.18: Letaand b be integers. If ab is even, then a is even or b is even.
Justification: To justify this cxlaim, consider the contrapositive, "If a is odd
and b is odd, then ab is odd." So, suppose a = 2i + 1 and b = 2j+1, for some integers

iand j. Then ab = 4ij + 2i + 2j + 1 = 2(2ij plus; i + j) + 1; hence, ab is odd.

244

Besides showing a use of the contrapositive justification technique, the previous
example also contains an application of DeMorgan's Law. This law helps us deal
with negations, for it states that the negation of a statement of the form "p or q" is
"not p and not g." Likewise, it states that the negation of a statement of the form "p
and g" is "not p or not "

Contradiction

Another negative justification technique is justification by contradiction, which
also often involves using DeMorgan's Law. In applying the justification by
contradicti on technique, we establish that a statement q is true by first supposing
that g is false and then showing that this assumption leads to a contradiction (such
as 2 #2 or 1 > 3). By reaching such a contradiction, we show that no consistent
situation exists with g being false, so q must be true. Of course, in order to reach
this conclusion, we must be sure our situation is consistent before we assume q is
false.

Example 4.19: Letaand b be integers. If ab is odd, then a is odd and b is
odd.

Justification: Let ab be odd. We wish to show that a is odd and b is odd.
So, with the hope of leading to a contradiction, let us assume the opposite,
namely, suppose a is even or b is even. In fact, without loss of generality, we can
assume that a is even (since the case for b is symmetric). Then a = 2i for some
integer i. Hence, ab = (2i)b = 2(ib), that is, ab is even. But this is a contradiction:
ab cannot simultaneously be odd and even. Therefore a is odd and b is odd.

4.3.3 Induction and Loop Invariants

Most of the claims we make about a running time or a space bound involve an
integer parameter n (usually denoting an intuitive notion of the "size" of the
problem). Moreover, most of these claims are equivalent to saying some statement
q(n) is true "for all n> 1." Since this is making a claim about an infinite set of
numbers, we cannot justify this exhaustively in a direct fashion.

Induction

We can often justify claims such as those above as true, however, by using the
technique of induction. This technique amounts to showing that, for any
particular n > 1, there is a finite sequence of implications that starts with
something known to be true and ultimately leads to showing that g(n) is true.
Specifically, we begin a justification by induction by showing that q(n) is true for
n =1 (and possibly some other values n = 2,3,..., k, for some constant k). Then

245

we justify that the inductive "step” is true for n> k, namely, we show "if q(i) is
true for i > n, then q(n) is true." The combination of these two pieces completes
the justification by induction.

Proposition 4.20: Consider the Fibonacci function F(n), where we define
F()=1,F@2)=2,and F(n) =F(n — 1) + F(n — 2) for n > 2. (See Section 2.2.3.)
We claim thatF(n) < 2",

Justification: We will show our claim is right by induction.

Base cases: (N<2). F(1)=1<2=2'and F(2) =2< 4 =22

Induction step: (n > 2). Suppose our claim is true for n ' < n. Consider F(n). Since
n>2, F(n) = F(n—1)+ F(n— 2). Moreover, since n — 1<n and n — 2 < n, we can
apply the inductive assumption (sometimes called the "inductive hypothesis™) to
imply that F(n) < 2"~ + 2" since

2“*1 + 2“*2 < 2ﬂ*1 + 2n71 - 2 . 2n71 - 2n

|

Let us do another inductive argument, this time for a fact we have seen before.

Proposition 4.21: (which is the same as Proposition 4.3)

" onmiln +1)
z'z=.1I) 2

Justification: We will justify this equality by induction.
Base case: n = 1. Trivial, for 1 =n(n + 1)/2, if n = 1.

Induction step: n > 2. Assume the claim is true for n ' < n. Consider n.

n-—1
P=n+ i
i r=1

||[‘*"]3

By the induction hypothesis, then

+(n -Lin

E,lz =n ;

which we can simplify as
n+(n—1)n2=2n+n*-n/2=n?+n/2=n(n + 1)/2

246

We may sometimes feel overwhelmed by the task of justifying something true for
all n>1. We should remember, however, the concreteness of the inductive
technique.It shows that, for any particular n, there is a finite step-by-step sequence
of implications that starts with something true and leads to the truth about n. In
short, the inductive argument is a formula for building a sequence of direct
justifications.

Loop Invariants

The final justification technique we discuss in this section is the loop invariant.
To prove some statement S about a loop is correct, define S in terms of a series of
smaller statements Sy,S1, ..., Sk, where:

1. The initial claim, Sy, is true before the loop begins.
2. if Si is true before iteration i, then S; will be true after iteration i.
3. The final statement, S, implies the statement S that we wish to be true.

We have, in fact, seen a loop-invariant argument in Section 1.9.2 (for the
correctness of Algorithm arrayMax), but let us give one more example here. In
particular, let us consider using a loop invariant to justify the correctness of
arrayFind, shown in Code Fragment 4.4, for finding an element x in an array
A

Code Fragment 4.4: Algorithm arrayFind for
finding a given element in an array.

To show that arrayFind is correct, we inductively define a series of
statements, S;, that lead to the correctness of our algorithm. Specifically, we claim
the following is true at the beginning of iteration i of the while loop:

Si: x is not equal to any of the first i elements of A.

247

This claim is true at the beginning of the first iteration of the loop, since there are
no elements among the first 0 in A (this kind of a trivially true claim is said to
hold vacuously). In iteration i, we compare element x to element A[i] and return
the index i if these two elements are equal, which is clearly correct and completes
the algorithm in this case. If the two elements x and A[i] are not equal, then we
have found one more element not equal to x and we increment the index i. Thus,
the claim S; will be true for this new value of i; hence, it is true at the beginning
of the next iteration. If the while-loop terminates without ever returning an index
in A, then we have i = n. That is, Sy, is true—there are no elements of A equal to x.
Therefore, the algorithm correctly returns —1 to indicate that x is not in A.

4.4. Exercises

For source code and help with exercises, please visit
jJava.datastructures.net.

Reinforcement
R-4.1

Give a pseudo-code description of the O(n)-time algorithm for computing the
power function p(x, n). Also, draw the recursion trace of this algorithm for the
computation of p(2,5).

R-4.2

Give a Java description of Algorithm Power for computing the power function
p(x, n) (Code Fragment 4.3).

R-4.3

Draw the recursion trace of the Power algorithm (Code Fragment 4.3, which
computes the power function p(x,n)) for computing p(2,9).

R-4.4

Analyze the running time of Algorithm BinarySum (Code Fragment 3.34) for
arbitrary values of the input parameter n.

R-4.5

Graph the functions 8n, 4nlogn, 2n?, n®, and 2" using a logarithmic scale for the
X- and y-axes , that is, if the function value f(n) is y, plot this as a point with x-
coordinate at log n and y-coordinate at log y.

R-4.6

248

The number of operations executed by algorithms Aand B is 8nlogn and 2n?,
respectively. Determine ng such that A is better than B for n > nj.

R-4.7

The number of operations executed by algorithms A and B is 40n? and 2n°,
respectively. Determine ng such that A is better than B for n > ny.

R-4.8

Give an example of a function that is plotted the same on a log-log scale as it is
on a standard scale.

R-4.9

Explain why the plot of the function n® is a straight line with slope ¢ on a log-
log scale.

R-4.10

What is the sum of all the even numbers from 0 to 2n, for any positive integer
n?

R-4.11
Show that the following two statements are equivalent:
(a)
The running time of algorithm A is O(f(n)).
(b)
In the worst case, the running time of algorithm A is O(f(n)).
R-4.12
Order the following functions by asymptotic growth rate.
dnlogn+2n 2% plon
3n+100 log n 4n 2"
n“+10n n* nlogn
R-4.13

Show that if d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a>0.

249

R-4.14

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product d(n)e(n) is
O(f(n)g(n)).

R-4.15

Give a big-Oh characterization, in terms of n, of the running time of the Ex1
method shown in Code Fragment 4.5.

R-4.16

Give a big-Oh characterization, in terms of n, of the running time of the Ex2
method shown in Code Fragment 4.5.

R-4.17

Give a big-Oh characterization, in terms of n, of the running time of the Ex3
method shown in Code Fragment 4.5.

R-4.18

Give a big-Oh characterization, in terms of n, of the running time of the Ex4
method shown in Code Fragment 4.5.

R-4.19

Give a big-Oh characterization, in terms of n, of the running time of the Ex5
method shown in Code Fragment 4.5.

R-4.20

Bill has an algorithm, ¥1nd2D, to find an element x inan n x n array A. The
algorithm ¥i1nd2D iterates over the rows of A, and calls the algorithm array
Find, of Code Fragment 4.4, on each row, until x is found or it has searched all
rows of A. What is the worst-case running time of find2D in terms of n? What
is the worst-case running time of ¥ind2D in terms of N, where N is the total
size of A? Would it be correct to say that Find2D is a linear-time algorithm?
Why or why not?

R-4.21
For each function f(n) and time t in the following table, determine the largest

size n of a problem P that can be solved in time t if the algorithm for solving P
takes f(n) microseconds (one entry is already completed).

250

R-4.22

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) +
g(n)).

R-4.23

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) — e(n) is not
necessarily O(f(n) — g(n)).

R-4.24

Show that if d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)).
R-4.25

Show that O(max{f(n),g(n)}) = O(f(n) + g(n)).

R-4.26

Show that f(n) is O(g(n)) if and only if g(n) is Q(f(n)).

R-4.27

Show that if p(n) is a polynomial in n, then log p(n) is O(logn).
R-4.28

Show that (n + 1)° is O(n°).
Code Fragment 4.5: Some algorithms.

251

252

R-4.29

Show that 2™ is O(2").
R-4.30

Show that n is O(nlogn).
R-4.31

Show that n? is Q(n log n).
R-4.32

Show that nlogn is Q(n).
R-4.33

Show that [f(n)] is O(f(n)), if f(n) is a positive nondecreasing function that is
always greater than 1.

R-4.34

Algorithm A executes an O(logn)-time computation for each entry of an n-
element array. What is the worst-case running time of Algorithm A?

R-4.35

Given an n-element array X, Algorithm B chooses logn elements in X at random
and executes an O(n)-time calculation for each. What is the worst-case running
time of Algorithm B?

R-4.36

Given an n-element array X of integers, Algorithm C executes an O(n)-time
computation for each even number in X, and an O(logn)-time computation for
each odd number in X. What are the best-case and worst-case running times of
Algorithm C?

R-4.37

Given an n-element array X, Algorithm D calls Algorithm E on each element
X[i]. Algorithm E runs in O(i) time when it is called on element X[i]. What is
the worst-case running time of Algorithm D?

R-4.38

Al and Bob are arguing about their algorithms. Al claims his O(nlogn)-time
method is always faster than Bob's O(n?)-time method. To settle the issue, they

253

perform a set of experiments. To Al's dismay, they find that if n <100, the
O(n%)-time algorithm runs faster, and only when n > 100 is the O(n log n) -time
one better. Explain how this is possible.

Creativity
C-4.1

Describe a recursive algorithm to compute the integer part of the base-two
logarithm of n using only addition and integer division.

C-4.2

Describe how to implement the queue ADT using two stacks. What is the
running time of the enqueue () and dequeue () methods in this case?

C-4.3

Suppose you are given an n-element array A containing distinct integers that are
listed in increasing order. Given a number Kk, describe a recursive algorithm to
find two integers in A that sum to k, if such a pair exists. What is the running
time of your algorithm?

C-4.4

Given an n-element unsorted array A of n integers and an integer k, describe a
recursive algorithm for rearranging the elements in A so that all elements less

than or equal to k come before any elements larger than k. What is the running
time of your algorithm?

C-4.5

kol 2

Show that % =1 is ond).
C-4.6

= i]at «a

Show that ~#=1"" (Hint: Try to bound this sum term by term with a
geometric progression.)

C-4.7

Show that logy, f(n) is 6(logf(n)) if b > 1 is a constant.

C-4.8

254

Describe a method for finding both the minimum and maximum of n numbers
using fewer than 3n/2 comparisons. (Hint: First construct a group of candidate
minimums and a group of candidate maximums.)

C-4.9

Bob built a Web site and gave the URL only to his n friends, which he
numbered from 1 to n. He told friend number i that he/she can visit the Web site
at most i times. Now Bob has a counter, C, keeping track of the total number of
visits to the site (but not the identities of who visits). What is the minimum
value for C such that Bob should know that one of his friends has visited his/her
maximum allowed number of times?

C-4.10

Consider the following "justification” that the Fibonacci function, F(n) (see
Proposition 4.20) is O(n):Base case (n < 2): F(1) = 1 and F(2) = 2. Induction
step (n > 2): Assume claim true for n’ < n. Consider n. F(n) = F(n—1) + F(n —
2). By induction, F(n — 1) is O(n — 1) and F(n — 2) is O(n — 2). Then, F(n) is
O((n—1) + (n — 2)), by the identity presented in Exercise R-4.22. Therefore,
F(n) is O(n). What is wrong with this "justification"?

C-4.11

Let p(x) be a polynomial of degree n, that is,p(x) :‘E: =of =’x:.
(@)
Describe a simple O(n?) time method for computing p(x).
(b)

Now consider a rewriting of p(x) as
p(x) =aop + x(a; +x(az + x(az + ...+ x(ap-1 txay) ...))),

which is known as Horner's method. Using the big-Oh notation, characterize
the number of arithmetic operations this method executes.

C-4.12

Consider the Fibonacci function, F(n) (see Proposition 4.20). Show by induction
that F(n) is Q((3/2)").

C-4.13

255

Given a set A ={a;,ay, ...an} of n integers, describe, in pseudo-code, an

efficient method for computing each of partial sums sy = "¢ = 1% for k= 1,2,...,
n. What is the running time of this method?

C-4.14

Draw a visual justification of Proposition 4.3 analogous to that of Figure 4.1(b)
for the case when n is odd.

C-4.15

An array A contains n — 1 unique integers in the range [0,n — 1], that is, there is
one number from this range that is not in A. Design an O(n)-time algorithm for

finding that number. You are only allowed to use O(1) additional space besides
the array A itself.

C-4.16

Let s be a set of n lines in the plane such that no two are parallel and no three
meet in the same point. Show, by induction, that the lines in s determine ®(n?)
intersection points.

C-4.17

E!_=1|—log2f iz Oin log m)

Show that the summation is O(nlogn).

C-4.18

An evil king has n bottles of wine, and a spy has just poisoned one of them.
Unfortunately, they don't know which one it is. The poison is very deadly; just
one drop diluted even a billion to one will still kill. Even so, it takes a full
month for the poison to take effect. Design a scheme for determining exactly
which one of the wine bottles was poisoned in just one month's time while
expending O(logn) taste testers.

C-4.19

Suppose that each row of an n x n array A consists of 1's and 0's such that, in
any row of A all the 1's come before any 0's in that row. Assuming A is already
in memory, describe a method running in O(n) time (not O(n?) time) for finding
the row of A that contains the most 1's.

C-4.20

256

Describe, in pseudo-code a method for multiplying an n x m matrix A and an m
x p matrix B. Recall that the product C = AB is defined so that CJi] [j] =

Z_ ALK] - BLEI]

k=1 What is the running time of your method?

C-4.21

Suppose each row of an n x n array A consists of 1's and 0's such that, in any
row i of A all the 1's come before any 0's. Also suppose that the number of 1's in
row i is at least the number inrow i+ 1, fori =0,1,..., n — 2. Assuming A is
already in memory, describe a method running in O(n) time (not O(n?)) for
counting the number of 1's in A.

C-4.22
Describe a recursive method for computing the nth Harmonic number,
H o=z 1/
Projects
P-4.1

Implement prefixAveragesl and prefixAverages?2 from Section
4.2.5, and perform an experimental analysis of their running times. Visualize
their running times as a function of the input size with a log-log chart.

P-4.2

Perform a careful experimental analysis that compares the relative running
times of the methods shown in Code Fragments 4.5.

Chapter Notes

The big-Oh notation has prompted several comments about its proper use [16, 47,
61]. Knuth [62, 61] defines it using the notation f(n) = O(g(n)), but says this
"equality™ is only "one way." We have chosen to take a more standard view of
equality and view the big-Oh notation as a set, following Brassard [16]. The reader
interested in studying average-case analysis is referred to the book chapter by Vitter
and Flajolet [97]. We found the story about Archimedes in [77]. For some additional
mathematical tools, please refer to Appendix A.

257

Chapter 5 Stacks and Queues

Contents

5.1

258

StaACKS . - o e a e
188

5.1.1

The Stack Abstract Data Type.o aaaaans
189

5.1.2

A Simple Array-Based Stack Implementation..........
192

5.1.3

Implementing a Stack with a Generic Linked List....
197

5.1.4

Reversing an Array Using a Stack...................
199

5.1.5

Matching Parentheses and HTML TagsS........o.o......

200

5.2.1

The Queue Abstract Data Type.. ..o aiaaaaaanann
204

5.2.2

ASimple Array-Based Queue Implementation...........

259

206

5.2.3

Implementing a Queue with a Generic Linked List....

210

5.2.4

Round Robin Schedulers.o

211

5.3

Double-Ended Queues.o i e eeaaaan
213

5.3.1

The Deque Abstract Data Type.o ccaaaaaanann

213

5.3.2

Implementing a Deque.o i

214

5.4

EXErCISeS . . e e e
217

Java.datastructures.net

5.1 Stacks

A stack is a collection of objects that are inserted and removed according to the last-
in first-out (L1FO) principle. Objects can be inserted into a stack at any time, but
only the most recently inserted (that is, "last™) object can be removed at any time. The
name "stack" is derived from the metaphor of a stack of plates in a spring-loaded,
cafeteria plate dispenser. In this case, the fundamental operations involve the
"pushing” and "popping" of plates on the stack. When we need a new plate from the
dispenser, we "pop" the top plate off the stack, and when we add a plate, we "push” it

260

down on the stack to become the new top plate. Perhaps an even more amusing
metaphor would be a PEZ® candy dispenser, which stores mint candies in a spring-
loaded container that "pops" out the top-most candy in the stack when the top of the
dispenser is lifted. (See Figure 5.1.) Stacks are a fundamental data structure. They are
used in many applications, including the following.

Figure 5.1: A schematic drawing of a PEZ®
dispenser; a physical implementation of the stack ADT.
(PEZ® is a registered trademark of PEZ Candy, Inc.)

Example 5.1: Internet Web browsers store the addresses of recently visited sites
on a stack. Each time a user visits a new site, that site's address is "pushed" onto the
stack of addresses. The browser then allows the user to "pop" back to previously
visited sites using the "back™ button.

Example 5.2: Text editors usually provide an "undo” mechanism that cancels
recent editing operations and reverts to former states of a document. This undo
operation can be accomplished by keeping text changes in a stack.

5.1.1 The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the most
important, as they are used in a host of different applications that include many
more sophisticated data structures. Formally, a stack is an abstract data type (ADT)
that supports the following two methods:

261

push(e) : Insert element e, to be the top of the stack.

pop () : Remove from the stack and return the top element on the
stack; an error occurs if the stack is empty.

Additionally, let us also define the following methods:
size(): Return the number of elements in the stack.
1sEmpty () : Return a Boolean indicating if the stack is empty.

top () : Return the top element in the stack, without removing it; an
error occurs if the stack is empty.

Example 5.3: The following table shows a series of stack operations and their
effects on an initially empty stack S of integers.

Operation
Output
Stack Contents
push(5)
()
push(3)
(5,3)
popQ)

3

()
push(7)
(5.7)

popQ)

262

(5)
topO

(5)
popQ

0
popQ)

"error"

0
1ISEmpty ()

true

0
push(9)

(9)
push(7)

9,7)
push(3)

(9,7,3)

push(5)

263

(9,7,3,5)
size()
4
(9,7,3,5)
pop Q)

5
9,7,3)
push(8)
9,7,3,8)
pop)

8
(9,7,3)
pop)

3

9.7)

A Stack Interface in Java

Because of its importance, the stack data structure is included as a "built-in" class
in the Java.util package of Java. Class Jjava.util .Stack is a data
structure that stores generic Java objects and includes, among others, the methods
push(), pop(), peek() (equivalent to top()), size(), and empty ()
(equivalent to isEmpty()). Methods pop () and peek() throw exception
EmptyStackException if they are called on an empty stack. While it is
convenient to just use the built-in class Java.util _Stack, it is instructive to
learn how to design and implement a stack "from scratch."

Implementing an abstract data type in Java involves two steps. The first step is the
definition of a Java Application Programming Interface (API), or simply
interface, which describes the names of the methods that the ADT supports and
how they are to be declared and used.

264

In addition, we must define exceptions for any error conditions that can arise. For
instance, the error condition that occurs when calling method pop () or top()
on an empty stack is signaled by throwing an exception of type
EmptyStackException, which is defined in Code Fragment 5.1.

Code Fragment 5.1: Exception thrown by methods
pop() and top() of the Stack interface when called
on an empty stack.

A complete Java interface for the stack ADT is given in Code Fragment 5.2. Note
that this interface is very general since it specifies that elements of any given class
(and its subclasses) can be inserted into the stack. It achieves this generality by
using the concept of generics (Section 2.5.2).

For a given ADT to be of any use, we need to provide a concrete class that
implements the methods of the interface associated with that ADT. We give a
simple implementation of the Stack interface in the following subsection.

Code Fragment 5.2: Interface Stack documented
with comments in Javadoc style (Section 1.9.3). Note
also the use of the generic parameterized type, E,
which implies that a stack can contain elements of any
specified class.

265

266

5.1.2 A Simple Array-Based Stack Implementation

We can implement a stack by storing its elements in an array. Specifically, the stack
in this implementation consists of an N-element array S plus an integer variable t
that gives the the index of the top element in array S. (See Figure 5.2.)

Figure 5.2: Implementing a stack with an array S.
The top element in the stack is stored in the cell S[t].

Recalling that arrays start at index 0 in Java, we initialize t to —1, and we use this
value for t to identify an empty stack. Likewise, we can use t to determine the
number of elements (t + 1). We also introduce a new exception, called

Ful IStackException, to signal the error that arises if we try to insert a new
element into a full array. Exception Ful IStackException is specific to this
implementation and is not defined in the stack ADT, however. We give the details
of the array-based stack implementation in Code Fragment 5.3.

Code Fragment 5.3: Implementing a stack using an
array of a given size, N.

267

Analyzing the Array-Based Stack Implementation

The correctness of the methods in the array-based implementation follows
immediately from the definition of the methods themselves. There is,
nevertheless, a mildly interesting point here involving the implementation of the
pop method.

Note that we could have avoided resetting the old S[t] to null 1 and we would still
have a correct method. There is a trade-off in being able to avoid this assignment
should we be thinking about implementing these algorithms in Java, however.
The trade-off involves the Java garbage collection mechanism that searches
memory for objects that are no longer referenced by active objects, and reclaims
their space for future use. (For more details, see Section 14.1.3.) Let e = S[t] be
the top element before the pop method is called. By making S[t] a null reference,

268

we indicate that the stack no longer needs to hold a reference to object e. Indeed,
if there are no other active references to e, then the memory space taken by e will
be reclaimed by the garbage collector.

Table 5.1 shows the running times for methods in a realization of a stack by an
array. Each of the stack methods in the array realization executes a constant
number of statements involving arithmetic operations, comparisons, and
assignments. In addition, pop also calls 1SEmpty, which itself runs in constant
time. Thus, in this implementation of the Stack ADT, each method runs in
constant time, that is, they each run in O(1) time.

Table 5.1: Performance of a stack realized by an
array. The space usage is O(N), where N is the size of
the array, determined at the time the stack is
instantiated. Note that the space usage is independent
from the number n < N of elements that are actually
in the stack.

Method

Time

size
0(1)
is Empty
O()
top
0(1)
push
O(1)
pop
0(1)

A concrete Java implementation of the pseudo-code of Code Fragment 5.3, with
Java class ArrayStack implementing the Stack interface, is given in Code
Fragments 5.4 and 5.5. Unfortunately, due to space considerations, we omit most

269

javadoc comments for this and most other Java code fragments presented in the
remainder of this book. Note that we use a symbolic name, CAPACITY, to

specify the capacity of the array. This allows us to specify the capacity of the
array in one place in our code and have that value reflected throughout.

Code Fragment 5.4: Array-based Java
implementation of the Stack interface. (Continues in
Code Fragment 5.5))

270

271

Code Fragment 5.5: Array-based Stack. (Continued
from Code Fragment 5.4.)

272

273

Example Output

Below, we show the output from the above ArrayStack program. Note that,
through the use of generic types, we are able to create an ArrayStack A for
storing integers and another ArrayStack B that stores character strings.

------ > new ArrayStack<Integer> A, returns null
result: size = 0, iskEmpty = true, stack: []

...... > A.push(7), returns null

result: size = 1, i1sEmpty = false, stack: [7]

------ > A.pop(), returns 7

result: size = 0, i1sEmpty = true, stack: []

...... > A_push(9), returns null

result: size = 1, isEmpty = false, stack: [9]
______ > A.pop(), returns 9

result: size = 0, 1sEmpty = true, stack: []
------ > new ArrayStack<String> B, returns null
result: size = 0, iIsEmpty = true, stack: []
------ > B.push('Bob™), returns null

result: size = 1, iskEmpty = false, stack: [Bob]
------ > B.push("Alice'), returns null

result: size = 2, i1sEmpty = false, stack: [Bob, Alice]
------ > B.pop(), returns Alice

result: size = 1, iskEmpty = false, stack: [Bob]
------ > B.push('Eve'), returns null

result: size = 2, iskEmpty = false, stack: [Bob, Eve]

A Drawback with the Array-Based Stack Implementation

274

The array implementation of a stack is simple and efficient. Nevertheless, this
implementation has one negative aspect—it must assume a fixed upper bound,
CAPACITY, on the ultimate size of the stack. In Code Fragment 5.4, we chose the
capacity value 1,000 more or less arbitrarily. An application may actually need
much less space than this, which would waste memory. Alternatively, an
application may need more space than this, which would cause our stack
implementation to generate an exception as soon as a client program tries to push
its 1,001st object on the stack. Thus, even with its simplicity and efficiency, the
array-based stack implementation is not necessarily ideal.

Fortunately, there is another implementation, which we discuss next, that does not
have a size limitation and use space proportional to the actual number of elements
stored in the stack. Still, in cases where we have a good estimate on the number of
items needing to go in the stack, the array-based implementation is hard to beat.
Stacks serve a vital role in a number of computing applications, so it is helpful to
have a fast stack ADT implementation such as the simple array-based
implementation.

5.1.3 Implementing a Stack with a Generic Linked List

In this section, we explore using a singly linked list to implement the stack ADT. In
designing such an implementation, we need to decide if the top of the stack is at the
head or at the tail of the list. There is clearly a best choice here, however, since we
can insert and delete elements in constant time only at the head. Thus, it is more
efficient to have the top of the stack at the head of our list. Also, in order to perform
operation size in constant time, we keep track of the current number of elements in
an instance variable.

Rather than use a linked list that can only store objects of a certain type, as we
showed in Section 3.2, we would like, in this case, to implement a generic stack
using a generic linked list. Thus, we need to use a generic kind of node to
implement this linked list. We show such a Node class in Code Fragment 5.6.

Code Fragment 5.6: Class Node, which implements
a generic node for a singly linked list.

275

A Generic NodeStack Class

A Java implementation of a stack, by means of a generic singly linked list, is
given in Code Fragment 5.7. All the methods of the Stack interface are executed
in constant time. In addition to being time efficient, this linked list
implementation has a space requirement that is O(n), where n is the current
number of elements in the stack. Thus, this implementation does not require that a
new exception be created to handle size overflow problems. We use an instance
variable top to refer to the head of the list (which points to the null I object if the
list is empty). When we push a new element e on the stack, we simply create a
new node v for e, reference e from v, and insert v at the head of the list. Likewise,
when we pop an element from the stack, we simply remove the node at the head

276

of the list and return its element. Thus, we perform all insertions and removals of
elements at the head of the list.

Code Fragment 5.7: Class NodeStack, which

implements the Stack interface using a singly linked
list, whose nodes are objects of class Node from Code

Fragment 5.6.

5.1.4 Reversing an Array Using a Stack
We can use a stack to reverse the elements in an array, thereby producing a

nonrecursive algorithm for the array-reversal problem introduced in Section 3.5.1.
The basic idea is simply to push all the elements of the array in order into a stack

277

and then fill the array back up again by popping the elements off of the stack. In
Code Fragment 5.8, we give a Java implementation of this algorithm. Incidentally,
this method also illustrates how we can use generic types in a simple application
that uses a generic stack. In particular, when the elements are popped off the stack
in this example, they are automatically returned as elements of the E type; hence,
they can be immediately returned to the input array. We show an example use of
this method in Code Fragment 5.9.

Code Fragment 5.8: A generic method that
reverses the elements in an array of type E objects,

using a stack declared using the Stack<E> interface.

Code Fragment 5.9: A test of the reverse
method using two arrays.

278

5.1.5 Matching Parentheses and HTML Tags

In this subsection, we explore two related applications of stacks, the first of which
is for matching parentheses and grouping symbols in arithmetic expressions.

Arithmetic expressions can contain various pairs of grouping symbols, such as

Parentheses: "(" and)"
Braces: "{" and "}"
Brackets: "[" and "]"

Floor function symbols: ™ "and ™ ™

Ceiling function symbols: and "

and each opening symbol must match with its corresponding closing symbol. For
example, a left bracket, "[," must match with a corresponding right bracket, "]," as
in the following expression:

[G+x) - +2)]

279

The following examples further illustrate this concept:

. Correct: ()((O){(LOD>

. Correct: (W(OXIODH)
. Incorrect:)()A(I()D}

. Incorrect: ({[1)}

. Incorrect: (.

We leave the precise definition of matching of grouping symbols to Exercise R-5.5.

An Algorithm for Parentheses Matching

An important problem in processing arithmetic expressions is to make sure their
grouping symbols match up correctly. We can use a stack S to perform the
matching of grouping symbols in an arithmetic expression with a single left-to-
right scan. The algorithm tests that left and right symbols match up and also that
the left and right symbols are both of the same type.

Suppose we are given a sequence X = XoX1X2...Xn-1, Where each X; is a token that
can be a grouping symbol, a variable name, an arithmetic operator, or a number.
The basic idea behind checking that the grouping symbols in S match correctly, is
to process the tokens in X in order. Each time we encounter an opening symbol,
we push that symbol onto S, and each time we encounter a closing symbol, we
pop the top symbol from the stack S (assuming S is not empty) and we check that
these two symbols are of the same type. If the stack is empty after we have
processed the whole sequence, then the symbols in X match. Assuming that the
push and pop operations are implemented to run in constant time, this algorithm
runs in O(n), that is linear, time. We give a pseudo-code description of this
algorithm in Code Fragment 5.10.

Code Fragment 5.10: Algorithm for matching
grouping symbols in an arithmetic expression.

280

Matching Tags in an HTML Document

Another application in which matching is important is in the validation of HTML
documents. HTML is the standard format for hyperlinked documents on the
Internet. In an HTML document, portions of text are delimited by HTML tags. A
simple opening HTML tag has the form “<name>" and the corresponding closing
tag has the form "</name>." Commonly used HTML tags include

body: document body

h1: section header
center: center justify

p: paragraph

ol: numbered (ordered) list

Li: listitem.

Ideally, an HTML document should have matching tags, although most browsers
tolerate a certain number of mismatching tags.

We show a sample HTML document and a possible rendering in Figure 5.3.

281

Figure 5.3: Illustrating HTML tags. (a) An HTML
document; (b) its rendering.

Fortunately, more or less the same algorithm as in Code Fragment 5.10 can be
used to match the tags in an HTML document. In Code Fragments 5.11 and 5.12,
we give a Java program for matching tags in an HTML document read from
standard input. For simplicity, we assume that all tags are the simple opening or
closing tags defined above and that no tags are formed incorrectly.

Code Fragment 5.11: A complete Java program for
testing if an HTML document has fully matching tags.
(Continues in Code Fragment 5.12.)

282

Code Fragment 5.12: Java program for testing for
matching tags in an HTML document. (Continued from
5.11.) Method 1isHTMLMatched uses a stack to store
the names of the opening tags seen so far, similar to
how the stack was used in Code Fragment 5.10.
Method parseHTML uses a Scanner s to extract the
tags from the HTML document, using the pattern
"<[A>]*>," which denotes a string that starts with '<’,
followed by zero or more characters that are not '>',
followed by a '>".

283

5.2 Queues

284

Another fundamental data structure is the queue. It is a close "cousin” of the stack, as
a queue is a collection of objects that are inserted and removed according to the first-
in first-out (FIFO) principle. That is, elements can be inserted at any time, but only
the element that has been in the queue the longest can be removed at any time.

We usually say that elements enter a queue at the rear and are removed from the
front. The metaphor for this terminology is a line of people waiting to get on an
amusement park ride. People waiting for such a ride enter at the rear of the line and
get on the ride from the front of the line.

5.2.1 The Queue Abstract Data Type

Formally, the queue abstract data type defines a collection that keeps objects in a
sequence, where element access and deletion are restricted to the first element in the
sequence, which is called the front of the queue, and element insertion is restricted
to the end of the sequence, which is called the rear of the queue. This restriction
enforces the rule that items are inserted and deleted in a queue according to the
first-in first-out (FIFO) principle.

The queue abstract data type (ADT) supports the following two fundamental
methods:

enqueue(e) : Insert element e at the rear of the queue.

dequeue () : Remove and return from the queue the object at the front;
an error occurs if the queue is empty.

Additionally, similar to the case with the Stack ADT, the queue ADT includes the
following supporting methods:

size() : Return the number of objects in the queue.

1SsEmpty () : Return a Boolean value that indicates whether the queue is
empty.

Tront() : Return, but do not remove, the front object in the queue; an
error occurs if the queue is empty.

Example 5.4: The following table shows a series of queue operations and their
effects on an initially empty queue Q of integer objects. For simplicity, we use
integers instead of integer objects as arguments of the operations.

Operation
Output

front —« Q « rear

285

enqueue(b)

()

enqueue(3)

(5,3)
dequeue()
5

3)

enqueue(7)

3.7)
dequeue()
3

)
front()

7

(7)
dequeue()
7

0
dequeue()
“error"

0
ISEmpty()

286

true

()
enqueue(9)
(9)
enqueue(7)
9. 7)
size()

2

9. 7)
enqueue(3)
9,7,3)
enqueue(b)
(9,7, 3,5)
dequeue()
9

(7,3,5)

Example Applications

There are several possible applications for queues. Stores, theaters, reservation
centers, and other similar services typically process customer requests according
to the FIFO principle. A queue would therefore be a logical choice for a data
structure to handle transaction processing for such applications. For example, it
would be a natural choice for handling calls to the reservation center of an airline
or to the box office of a theater.

287

A Queue Interface in Java

A Java interface for the queue ADT is given in Code Fragment 5.13. This generic
interface specifies that objects of arbitrary object types can be inserted into the
queue. Thus, we don't have to use explicit casting when removing elements.

Note that the size and isEmpty methods have the same meaning as their
counterparts in the Stack ADT. These two methods, as well as the front method,
are known as accessor methods, for they return a value and do not change the
contents of the data structure.

Code Fragment 5.13: Interface Queue documented
with comments in Javadoc style.

288

5.2.2 A Simple Array-Based Queue Implementation

We present a simple realization of a queue by means of an array, Q, of fixed
capacity, storing its elements. Since the main rule with the queue ADT is that we
insert and delete objects according to the FIFO principle, we must decide how we
are going to keep track of the front and rear of the queue.

289

One possibility is to adapt the approach we used for the stack implementation,
letting Q[O] be the front of the queue and then letting the queue grow from there.
This is not an efficient solution, however, for it requires that we move all the

elements forward one array cell each time we perform a dequeue operation. Such an

implementation would therefore take O(n) time to perform the dequeue method,
where n is the current number of objects in the queue. If we want to achieve
constant time for each queue method, we need a different approach.

Using an Array in a Circular Way

To avoid moving objects once they are placed in Q, we define two variables f and

r, which have the following meanings:

. fis an index to the cell of Q storing the first element of the queue (which
is the next candidate to be removed by a dequeue operation), unless the queue is

empty (in which case f =r).

. r is an index to the next available array cell in Q.

Initially, we assign f = r = 0, which indicates that the queue is empty. Now, when

we remove an element from the front of the queue, we increment f to index the

next cell. Likewise, when we add an element, we store it in cell Q[r] and
increment r to index the next available cell in Q. This scheme allows us to

implement methods Front, enqueue, and dequeue in constant time, that is,

O(1) time. However, there is still a problem with this approach.

Consider, for example, what happens if we repeatedly enqueue and dequeue a

single element N different times. We would have f = r = N. If we were then to try

to insert the element just one more time, we would get an array-out-of-bounds

error (since the N valid locations in Q are from Q[0] to Q[N — 1]), even though

there is plenty of room in the queue in this case. To avoid this problem and be

able to utilize all of the array Q, we let the f and r indices "wrap around" the end
of Q. That is, we now view Q as a “circular array" that goes from Q[0] to Q[N —

1] and then immediately back to Q[0] again. (See Figure 5.4.)
Figure 5.4: Using array Q in a circular fashion: (a)

the "normal" configuration with f < r; (b) the "wrapped

around" configuration with r < f. The cells storing
queue elements are highlighted.

290

Using the Modulo Operator to Implement a Circular
Array

Implementing this circular view of Q is actually pretty easy. Each time we
increment f or r, we compute this increment as "(f + 1) mod N" or "(r + 1) mod
N," respectively.

Recall that operator "mod" is the modulo operator, which is computed by taking
the remainder after an integral division. For example, 14 divided by 4 is 3 with
remainder 2, so 14 mod 4 = 2. Specifically, given integers x and y such that x >0
andy>0,wehavexmody=x— x/ly y.Thatis, if r =x mody, then there is a
nonnegative integer , such that x = qy + r. Java uses "%" to denote the modulo
operator. By using the modulo operator, we can view Q as a circular array and
implement each queue method in a constant amount of time (that is, O(1) time).
We describe how to use this approach to implement a queue in Code Fragment
5.14.

Code Fragment 5.14: Implementation of a queue
using a circular array. The implementation uses the
modulo operator to "wrap" indices around the end of
the array and it also includes two instance variables, f
and r, which index the front of the queue and first
empty cell after the rear of the queue respectively.

291

The implementation above contains an important detail, which might be missed at
first. Consider the situation that occurs if we enqueue N objects into Q without
dequeuing any of them. We would have f = r, which is the same condition that
occurs when the queue is empty. Hence, we would not be able to tell the
difference between a full queue and an empty one in this case. Fortunately, this is
not a big problem, and a number of ways for dealing with it exist.

The solution we describe here is to insist that Q can never hold more than N — 1
objects. This simple rule for handling a full queue takes care of the final problem
with our implementation, and leads to the pseudo-coded descriptions of the queue
methods given in Code Fragment 5.14. Note our introduction of an
implementation-specific exception, called Ful IQueueException, to signal
that no more elements can be inserted in the queue. Also note the way we
compute the size of the queue by means of the expression (N —f + r) mod N,

292

which gives the correct result both in the "normal™ configuration (when f <r) and
in the "wrapped around" configuration (when r <f). The Java implementation of a
queue by means of an array is similar to that of a stack, and is left as an exercise

(P-5.4).

Table 5.2 shows the running times of methods in a realization of a queue by an
array. As with our array-based stack implementation, each of the queue methods
in the array realization executes a constant number of statements involving
arithmetic operations, comparisons, and assignments. Thus, each method in this
implementation runs in O(1) time.

Table 5.2: Performance of a queue realized by an
array. The space usage is O(N), where N is the size of
the array, determined at the time the queue is created.
Note that the space usage is independent from the
number n < N of elements that are actually in the
queue.

Method

Time
size
0(1)
iSEmpty
O(1)
front
O(1)
enqueue
0(1)
dequeue
O(1)

As with the array-based stack implementation, the only real disadvantage of the
array-based queue implementation is that we artificially set the capacity of the
queue to be some fixed value. In a real application, we may actually need more or

293

less queue capacity than this, but if we have a good capacity estimate, then the
array-based implementation is quite efficient.

5.2.3 Implementing a Queue with a Generic Linked List

We can efficiently implement the queue ADT using a generic singly linked list. For
efficiency reasons, we choose the front of the queue to be at the head of the list, and
the rear of the queue to be at the tail of the list. In this way, we remove from the
head and insert at the tail. (Why would it be bad to insert at the head and remove at
the tail?) Note that we need to maintain references to both the head and tail nodes of
the list. Rather than go into every detail of this implementation, we simply give a
Java implementation for the fundamental queue methods in Code Fragment 5.15.

Code Fragment 5.15: Methods enqueue and
dequeue in the implementation of the queue ADT by
means of a singly linked list, using nodes from class
Node of Code Fragment 5.6.

294

Each of the methods of the singly linked list implementation of the queue ADT runs
in O(1) time. We also avoid the need to specify a maximum size for the queue, as
was done in the array-based queue implementation, but this benefit comes at the
expense of increasing the amount of space used per element. Still, the methods in
the singly linked list queue implementation are more complicated than we might
like, for we must take extra care in how we deal with special cases where the queue
is empty before an enqueue or where the queue becomes empty after a dequeue.

5.2.4 Round Robin Schedulers

A popular use of the queue data structure is to implement a round robin scheduler,
where we iterate through a collection of elements in a circular fashion and "service"
each element by performing a given action on it. Such a schedule is used, for
example, to fairly allocate a resource that must be shared by a collection of clients.

295

For instance, we can use a round robin scheduler to allocate a slice of CPU time to
various applications running concurrently on a computer.

We can implement a round robin scheduler using a queue, Q, by repeatedly
performing the following steps (see Figure 5.5):

1. e «— Q.dequeue()
2. Service element e

3. Q.enqueue(e)
Figure 5.5: The three iterative steps for using a
queue to implement a round robin scheduler.

The Josephus Problem

In the children's game "hot potato," a group of n children sit in a circle passing an
object, called the "potato,” around the circle. The potato begins with a starting
child in the circle, and the children continue passing the potato until a leader rings
a bell, at which point the child holding the potato must leave the game after
handing the potato to the next child in the circle. After the selected child leaves,
the other children close up the circle. This process is then continued until there is
only one child remaining, who is declared the winner. If the leader always uses
the strategy of ringing the bell after the potato has been passed k times, for some
fixed value k, then determining the winner for a given list of children is known as
the Josephus problem.

Solving the Josephus Problem Using a Queue
We can solve the Josephus problem for a collection of n elements using a queue,

by associating the potato with the element at the front of the queue and storing
elements in the queue according to their order around the circle. Thus, passing the

296

potato is equivalent to dequeuing an element and immediately enqueuing it again.
After this process has been performed k times, we remove the front element by
dequeuing it from the queue and discarding it. We show a complete Java program
for solving the Josephus problem using this approach in Code Fragment 5.16,
which describes a solution that runs in O(nk) time. (We can solve this problem
faster using techniques beyond the scope of this book.)

Code Fragment 5.16: A complete Java program for
solving the Josephus problem using a queue. Class
NodeQueue is shown in Code Fragment 5.15.

297

5.3 Double-Ended Queues

Consider now a queue-like data structure that supports insertion and deletion at both
the front and the rear of the queue. Such an extension of a queue is called a double-
ended queue, or deque, which is usually pronounced "deck" to avoid confusion with
the dequeue method of the regular queue ADT, which is pronounced like the
abbreviation "D.Q."

5.3.1 The Deque Abstract Data Type

The deque abstract data type is richer than both the stack and the queue ADTSs. The
fundamental methods of the deque ADT are as follows:

addFirst(e): Insert a new element e at the beginning of the deque.
addLast(e): Insert a new element e at the end of the deque.

removeFi1rst(): Remove and return the first element of the deque; an
error occurs if the deque is empty.

removelLast() : Remove and return the last element of the deque; an
error occurs if the deque is empty.

Additionally, the deque ADT may also include the following support methods:

getFirst(): Return the first element of the deque; an error occurs if
the deque is empty.

getLast() : Return the last element of the deque; an error occurs if the
deque is empty.

size() : Return the number of elements of the deque.
1SEmpty () : Determine if the deque is empty.

Example 5.5: The following table shows a series of operations and their effects
on an initially empty deque D of integer objects. For simplicity, we use integers
instead of integer objects as arguments of the operations.

Operation
Output

D
addFirst(3)

298

(©))
addFirst(b)
(5.3)
removeFirst()
5

3
addLast(7)
3.7)
removeFirst()
3

€
removeLast()

.
O

removeFirst()

"error"

O
1ISEmpty ()
true

O

5.3.2 Implementing a Deque

299

Since the deque requires insertion and removal at both ends of a list, using a singly
linked list to implement a deque would be inefficient. We can use a doubly linked
list, however, to implement a deque efficiently. As discussed in Section 3.3,
inserting or removing elements at either end of a doubly linked list is
straightforward to do in O(1) time, if we use sentinel nodes for the header and
trailer.

For an insertion of a new element e, we can have access to the node p before the
place e should go and the node q after the place e should go. To insert a new
element between the two nodes p and q (either or both of which could be sentinels),
we create a new node t, have t's prev and next links respectively refer to p and g,
and then have p's next link refer to t, and have g's prev link refer to t.

Likewise, to remove an element stored at a node t, we can access the nodes p and q
on either side of t (and these nodes must exist, since we are using sentinels). To
remove node t between nodes p and g, we simply have p and g point to each other
instead of t. We need not change any of the fields in t, for now t can be reclaimed
by the garbage collector, since no one is pointing to t.

Table 5.3 shows the running times of methods for a deque implemented with a
doubly linked list. Note that every method runs in O(1) time.

Table 5.3: Performance of a deque realized by a
doubly linked list.

Method

Time

size, IsSEmpty

0(1)

getFirst, getLast

0(1)

add First, addLast

O(1)

removeFirst, removelLast

0(1)

300

Thus, a doubly linked list can be used to implement each method of the deque ADT
in constant time. We leave the details of implementing the deque ADT efficiently in
Java as an exercise (P-5.7).

Incidentally, all of the methods of the deque ADT, as described above, are included
inthe Java.util.LinkedList<E> class. So, if we need to use a deque and
would rather not implement one from scratch, we can simply use the built-in
jJava.util_LinkedList<E> class.

In any case, we show a Deque interface in Code Fragment 5.17 and an
implementation of this interface in Code Fragment 5.18.

Code Fragment 5.17: Interface Deque documented
with comments in Javadoc style (Section 1.9.3). Note
also the use of the generic parameterized type, E, which
implies that a deque can contain elements of any
specified class.

301

302

Code Fragment 5.18: Class NodeDeque
implementing the Deque interface, except that we have
not shown the class DLNode, which is a generic doubly

linked list node, nor have we shown methods getLast,
addLast, and removeFirst.

303

304

5.4 Exercises

For source code and help with exercises, please visit
jJava.datastructures.net.

Reinforcement
R-5.1

Suppose an initially empty stack S has performed a total of 25 push operations,
12 top operations, and 10 pop operations, 3 of which generated
StackEmptyExceptions, which were caught and ignored. What is the current
size of S?

R-5.2

If we implemented the stack S from the previous problem with an array, as
described in this chapter, then what is the current value of the top instance
variable?

R-5.3

Describe the output of the following series of stack operations: push(5),
push(3), pop(), push(2), push(8), pop(), popQ),
push(9), push(1), pop(), push(7), push(6), popQ,
pop(), push(4), pop(), popQ).

R-5.4
Give a recursive method for removing all the elements in a stack.
R-5.5

Give a precise and complete definition of the concept of matching for grouping
symbols in an arithmetic expression.

R-5.6

Describe the output for the following sequence of queue operations:
enqueue(5), enqueue(3), dequeue(), enqueue(2),
enqueue(8), dequeue(), dequeue(), enqueue(9),
enqueue(l), dequeue(), enqueue(7), enqueue(6),
dequeue(), dequeue(), enqueue(4), dequeue(),
dequeue().

R-5.7

305

Suppose an initially-empty queue Q has performed a total of 32 enqueue
operations, 10 front operations, and 15 dequeue operations, 5 of which
generated QueueEmptyExceptions, which were caught and ignored. What is the
current size of Q?

R-5.8

If the queue of the previous problem was implemented with an array of capacity
N = 30, as described in the chapter, and it never generated a
FullQueueException, what would be the current values of f and r?

R-5.9

Describe the output for the following sequence of deque ADT operations:
addFirst(3), addLast(8), addLast(9), addFirst(b5),
removeFirst(), remove-Last(), first(), addLast(7),
removeFirst(), last(), removeLast().

R-5.10

Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8), in this
order. Suppose further that you have an initially empty queue Q. Give a pseudo-
code description of a method that uses only D and Q (and no other variables or
objects) and results in D storing the elements (1,2,3,5,4,6,7,8), in this order.

R-5.11

Repeat the previous problem using the deque D and an initially empty stack S.

Creativity
C-5.1

Suppose you have a stack S containing n elements and a queue Q that is initially
empty. Describe how you can use Q to scan S to see if it contains a certain
element x, with the additional constraint that your algorithm must return the
elements back to S in their original order. You may not use an array or linked
list—only S and Q and a constant number of reference variables.

C-5.2

Give a pseudo-code description for an array-based implementation of the
double-ended queue ADT. What is the running time for each operation?

C-5.3

306

Suppose Alice has picked three distinct integers and placed them into a stack S
in random order. Write a short, straightline piece of pseudo-code (with no loops
or recursion) that uses only one comparison and only one variable x, yet
guarantees with probability 2/3 that at the end of this code the variable x will
store the largest of Alice's three integers. Argue why your method is correct.

C-54

Describe how to implement the stack ADT using two queues. What is the
running time of the push() and pop() methods in this case?

C-5.5

Show how to use a stack S and a queue Q to generate all possible subsets of an
n-element set T nonrecursively.

C-5.6

Suppose we have an n x n two-dimensional array A that we want to use to store
integers, but we don't want to spend the O(n?) work to initialize it to all 0's (the
way Java does), because we know in advance that we are only going to use up
to n of these cells in our algorithm, which itself runs in O(n) time (not counting
the time to initialize A). Show how to use an array-based stack S storing (i, j, k)
integer triples to allow us to use the array A without initializing it and still
implement our algorithm in O(n) time, even though the initial values in the cells
of A might be total garbage.

C-5.7

Describe a nonrecursive algorithm for enumerating all permutations of the
numbers {1,2,...,n}.

C-5.8

Postfix notation is an unambiguous way of writing an arithmetic expression
without parentheses. It is defined so that if "(exp;)op(expz2)" is a normal fully
parenthesized expression whose operation is op, then the postfix version of this
IS "pexp1 pexp, op", where pexps is the postfix version of exp; and pexp, is the
postfix version of exp,. The postfix version of a single number or variable is
just that number or variable. So, for example, the postfix version of "((5 + 2) *
(8—3))/4"is"52+83—*4/" Describe a nonrecursive way of evaluating an
expression in postfix notation.

C-5.9

Suppose you have two nonempty stacks S and T and a deque D. Describe how
to use D so that S stores all the elements of T below all of its original elements,
with both sets of elements still in their original order.

307

C-5.10

Alice has three array-based stacks, A, B, and C, such that A has capacity 100, B
has capacity 5, and C has capacity 3. Initially, A is full, and B and C are empty.
Unfortunately, the person who programmed the class for these stacks made the
push and pop methods private. The only method Alice can use is a static
method, transfer(S,T), which transfers (by itera-tively applying the private pop
and push methods) elements from stack S to stack T until either S becomes
empty or T becomes full. So, for example, starting from our initial configuration
and performing transfer(A, C) results in A now holding 97 elements and C
holding 3. Describe a sequence of transfer operations that starts from the
initial configuration and results in B holding 4 elements at the end.

C-5.11

Alice has two queues, S and T, which can store integers. Bob gives Alice 50 odd
integers and 50 even integers and insists that she stores all 100 integers in S and
T. They then play a game where Bob picks S or T at random and then applies
the round-robin scheduler, described in the chapter, to the chosen queue a
random number of times. If the number left out of the queue at the end of this
game is odd, Bob wins. Otherwise, Alice wins. How can Alice allocate integers
to queues to optimize her chances of winning? What is her chance of winning?

C-5.12

Suppose Bob has four cows that he wants to take across a bridge, but only one
yoke, which can hold up to two cows, side by side, tied to the yoke. The yoke is
too heavy for him to carry across the bridge, but he can tie (and untie) cows to it
in no time at all. Of his four cows, Mazie can cross the bridge in 2 minutes,
Daisy can cross it in 4 minutes, Crazy can cross it in 10 minutes, and Lazy can
cross it in 20 minutes. Of course, when two cows are tied to the yoke, they must
go at the speed of the slower cow. Describe how Bob can get all his cows across
the bridge in 34 minutes.

Projects
P-5.1
Implement the stack ADT with a doubly linked list.
P-5.2

Implement the stack ADT using the Java ArrayL i st class (without using the
built-in Java Stack class).

P-5.3

308

Implement a program that can input an expression in postfix notation (see
Exercise C-5.8) and output its value.

P-5.4
Implement the queue ADT using an array.

P-5.5

Implement the entire queue ADT using a singly linked list.
P-5.6

Design an ADT for a two-color, double-stack ADT that consists of two stacks—
one "red" and one "blue"—and has as its operations color-coded versions of the
regular stack ADT operations. For example, this ADT should allow for both a
red push operation and a blue push operation. Give an efficient implementation
of this ADT using a single array whose capacity is set at some value N that is
assumed to always be larger than the sizes of the red and blue stacks combined.

P-5.7

Implement the deque ADT with a doubly linked list.

P-5.8

Implement the deque ADT with an array used in a circular fashion.
P-5.9

Implement the Stack and Queue interfaces with a unique class that extends
class NodeDeque (Code Fragment 5.18).

P-5.10

When a share of common stock of some company is sold, the capital gain (or,
sometimes, loss) is the difference between the share's selling price and the price
originally paid to buy it. This rule is easy to understand for a single share, but if
we sell multiple shares of stock bought over a long period of time, then we must
identify the shares actually being sold. A standard accounting principle for
identifying which shares of a stock were sold in such a case is to use a FIFO
protocol—the shares sold are the ones that have been held the longest (indeed,
this is the default method built into several personal finance software packages).
For example, suppose we buy 100 shares at $20 each on day 1, 20 shares at $24
on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day 4 at $30
each. Then applying the FIFO protocol means that of the 150 shares sold, 100
were bought on day 1, 20 were bought on day 2, and 30 were bought on day 3.
The capital gain in this case would therefore be 100 - 10 + 20 - 6 + 30 - (=6), or

309

$940. Write a program that takes as input a sequence of transactions of the form
"buy X; share(s) at $y each"or"sell x share(s) at $y
each, " assuming that the transactions occur on consecutive days and the
values x and y are integers. Given this input sequence, the output should be the
total capital gain (or loss) for the entire sequence, using the FIFO protocol to
identify shares.

Chapter Notes

We were introduced to the approach of defining data structures first in terms of their
ADTs and then in terms of concrete implementations by the classic books by Aho,
Hopcroft, and Ullman [4, 5], which incidentally is where we first saw aproblem
similar to Exercise C-5.6. Exercises C-5.10, C-5.11, and C-5.12 are similar to
interview questions said to be from a well-known software company. For further
study of abstract data types, see Liskov and Guttag [69], Cardelli and Wegner [20], or
Demurjian [28].

Chapter 6 Lists and Iterators

Contents
6.1
Array Lists oo ai...
222
6.1.1
The Array List Abstract Data Type..........
222
6.1.2

The Adapter Pattern.................

310

223

6.1.3

A Simple Array-Based Implementation........
224

6.1.4

A Simple Interface and the java.util_ArrayList
Class.

226

6.1.5

Implementing an Array List Using Extendable Arrays
227

6.2

Node Listso ao--.-

231

6.2.1

Node-Based Operations................

231

6.2.2

Positions. ioio-..

232

6.2.3

The Node List Abstract Data Type..........
232

6.2.4

Doubly Linked List Implementation..........
236

311

6.3

Iterators oo

242

6.3.1

The Iterator and lIterable Abstract Data Types....
242

6.3.2

The Java For-Each Loop...............
244

6.3.3

Implementing lIterators................
245

6.3.4

List Iterators in Java.................
247

6.4

List ADTs and the Collections Framework

6.4.1

The Java Collections Framework...........
249

6.4.2

The java.util.LinkedList Class.............
250

6.4.3

312

Sequences.
251
6.5

Case Study: The Move-to-Front Heuristic

6.5.1

Using a Sorted List and a Nested Class.......
253

6.5.2

Using a List with the Move-to-Front Heuristic....
256

6.5.3

Possible Uses of a Favorites List..._........
257

6.6

Exercises iioo-..

260

jJava.datastructures.net

6.1 Array Lists

Suppose we have a collection S of n elements stored in a certain linear order, so that
we can refer to the elements in S as first, second, third, and so on. Such a collection is
generically referred to as a list or sequence. We can uniquely refer to each element e
in S using an integer in the range [0,n — 1] that is equal to the number of elements of S
that precede e in S. The index of an element e in S is the number of elements that are
before e in S. Hence, the first element in S has index 0 and the last element has index
n — 1. Also, if an element of S has index i, its previous element (if it exists) has index
i — 1, and its next element (if it exists) has index i + 1. This concept of index is related

313

to that of the rank of an element in a list, which is usually defined to be one more
than its index; so the first element is at rank 1, the second is at rank 2, and so on.

A sequence that supports access to its elements by their indices is called an array list
(or vector, using an older term). Since our index definition is more consistent with the
way arrays are indexed in Java and other programming languages (such as C and
C++), we will be referring to the place where an element is stored in an array list as
its "index," not its "rank" (although we may use r to denote this index, if the letter "i"
is being used as a For-loop counter).

This index concept is a simple yet powerful notion, since it can be used to specify
where to insert a new element into a list or where to remove an old element.

6.1.1 The Array List Abstract Data Type

As an ADT, an array list S has the following methods (besides the standard
size() and 1sEmpty () methods):

get(1): Return the element of S with index i; an error condition
occursifi < 0 or 1 > size() - 1.

set(1, e): Replace with e and return the element at index i; an error
conditionoccursif1 < O or 1 > size() - 1.

add(i, e): Insertanew element e into S to have index i; an error
condition occursifi < 0 or 1 > size().

remove (1) : Remove from S the element at index i; an error condition
occursifi < 0 or 1 > size() - 1

We do not insist that an array should be used to implement an array list, so that the
element at index O is stored at index O in the array, although that is one (very
natural) possibility. The index definition offers us a way to refer to the "place™
where an element is stored in a sequence without having to worry about the exact
implementation of that sequence. The index of an element may change whenever
the sequence is updated, however, as we illustrate in the following example.

Example 6.1: We show below some operations on an initially empty array list
S.

Operation
Output

S
add(0,7)

314

€P)

add(0,4)

4.7
get(1)

.

4.7)

add(2,2)

(4,7,2)
get(3)
“error”
(4,7,2)
remove(1)
-
(4.2)
add(1,5)
(4,5,2)
add(1,3)
(4,3,5,2)
add(4,9)

315

(4,3,5,2,9)
get(2)

)

(4,3,5,2,9)

set(3,8)

2

(4,3,5,8,9)

6.1.2 The Adapter Pattern

Classes are often written to provide similar functionality to other classes. The
adapter design pattern applies to any context where we want to modify an existing
class so that its methods match those of a related, but different, class or interface.
One general way for applying the adapter pattern is to define the new class in such a
way that it contains an instance of the old class as a hidden field, and implement
each method of the new class using methods of this hidden instance variable. The
result of applying the adapter pattern is that a new class that performs almost the
same functions as a previous class, but in a more convenient way, has been created.

With respect to our discussion of the array list ADT, we note that this ADT is

sufficient to define an adapter class for the deque ADT, as shown in Table 6.1. (See
also Exercise C-6.8.)

Table 6.1: Realization of a deque by means of an
array list.

Deque Method
Realization with Array-List Methods
size(), isEmpty(Q

size(), isEmpty(Q
getFirst()

get(0)

getLast()

316

get(size() -1)
addFirst(e)
add(0,e)
addLast(e)
add(size(),e)
removeFirst()
remove(0)
removelLast()

remove(size() - 1)

6.1.3 A Simple Array-Based Implementation

An obvious choice for implementing the array list ADT is to use an array A, where
A[i] stores (a reference to) the element with index i. We choose the size N of array
A sufficiently large, and we maintain the number of elements in an instance
variable, n < N.

The details of this implementation of the array list ADT are simple. To implement
the get (1) operation, for example, we just return A[i]. Implementations of
methods add (i, e) and remove (1) are given in Code Fragment 6.1. An
important (and time-consuming) part of this implementation involves the shifting of
elements up or down to keep the occupied cells in the array contiguous. These
shifting operations are required to maintain our rule of always storing an element

whose list index is i at index i in the array A. (See Figure 6.1 and also Exercise R-
6.12.)

Code Fragment 6.1: Methods add(1, e) and
remove (1) in the array implementation of the array
list ADT. We denote, with n, the instance variable
storing the number of elements in the array list.

317

Figure 6.1: Array-based implementation of an array
list S that is storing n elements: (a) shifting up for an
insertion at index i(b); shifting down for a removal at
index (

The Performance of a Simple Array-Based
Implementation

Table 6.2 shows the worst-case running times of the methods of an array list with
n elements realized by means of an array. Methods 1SEmpty, size, get and
set clearly run in O(1) time, but the insertion and removal methods can take
much longer than this. In particular, add (i, €) runs intime O(n). Indeed, the
worst case for this operation occurs when i = 0, since all the existing n elements

318

have to be shifted forward. A similar argument applies to method remove (1),
which runs in O(n) time, because we have to shift backward n — 1 elements in the
worst case (i = 0). In fact, assuming that each possible index is equally likely to be
passed as an argument to these operations, their average running time is O(n), for
we will have to shift n/2 elements on average.

Table 6.2: Performance of an array list with n
elements realized by an array. The space usage is O(N),
where N is the size of the array.

Method
Time
size()
0(1)
ISsEmpty ()
O()
get(i)
0(1)
set(i, e)
0(1)
add(i, e)
o(n)
remove(i)
o(n)

Looking more closely at add (i, e) and remove(i), we note that they each run
in time O(n — i + 1), for only those elements at index i and higher have to be
shifted up or down. Thus, inserting or removing an item at the end of an array list,
using the methods add(n, e) and remove(n - 1), respectively take O(1)
time each. Moreover, this observation has an interesting consequence for the
adaptation of the array list ADT to the deque ADT given in Section 6.1.1. If the
array list ADT in this case is implemented by means of an array as described
above, then methods addLast and removeLast of the deque each run in O(1)

319

time. However, methods addFirst and removeFirst of the deque each run
in O(n) time.

Actually, with a little effort, we can produce an array-based implementation of the
array list ADT that achieves O(1) time for insertions and removals at index 0, as
well as insertions and removals at the end of the array list. Achieving this requires
that we give up on our rule that an element at index i is stored in the array at index
i, however, as we would have to use a circular array approach like the one we
used in Section 5.2 to implement a queue. We leave the details of this
implementation for an exercise (C-6.9).

6.1.4 A Simple Interface and the java. util. ArrayList Class

To prepare for constructing a Java implementation of the array list ADT, we show,
in Code Fragment 6.2, a Java interface, IndexL i st, that captures the main
methods from the array list ADT. In this case, we use a
IndexOutOfBoundsException to signal an invalid index argument.

Code Fragment 6.2: The IndexList interface for
the array list ADT.

The java.util.ArrayList Class

Java provides a class, Java.util _ArrayList, that implements all the
methods that we give above for our array list ADT. That is, it includes all of the
methods included in Code Fragment 6.2 for the IndexL st interface.

320

Moreover, the Java.util _.ArrayList class has features in addition to those
of our simplified array list ADT. For example, the class

jJava.util _ArrayList also includes a method, clear (), which removes
all the elements from the array list, and a method, toArray(), which returns an
array containing all the elements of the array list in the same order. In addition,
the class Java.util .ArrayList also has methods for searching the list,
including a method 1ndexOf(e), which returns the index of the first occurrence
of an element equal to e in the array list, and a method lastIndexOf(e),
which returns the index of the last occurrence of an element equal to e in the array
list. Both of these methods return the (invalid) index value — 1 if an element equal
to e is not found.

6.1.5 Implementing an Array List Using Extendable
Arrays

In addition to implementing the methods of the IndexL ist interface (and some
other useful methods), the class Jjava.util _.ArrayList provides an an
interesting feature that overcomes a weakness in the simple array implementation.

Specifically, a major weakness of the simple array implementation for the array list
ADT given in Section 6.1.3, is that it requires advance specification of a fixed
capacity, N, for the total number of elements that may be stored in the array list. If
the actual number of elements, n, of the array list is much smaller than N, then this
implementation will waste space. Worse, if n increases past N, then this
implementation will crash.

Instead, the Java.util .ArrayList uses an interesting extendable-array
technique so that we never have to worry about array overflows when using this
class.

As with the Java.util _ArrayList class, let us provide a means to grow the
array A that stores the elements of an array list S. Of course, in Java (and other
programming languages), we cannot actually grow the array A, its capacity is fixed
at some number N, as we have already observed. Instead, when an overflow occurs,
that is, when n = N and we make a call to the method add, we perform the
following additional steps:

1. Allocate a new array B of capacity 2N
2. Let B[i]— A[i], fori=0,..,N—1
3. Let A — B, that is, we use B as the array supporting S

4, Insert the new element in A.

321

This array replacement strategy is known as an extendable array, for it can be
viewed as extending the end of the underlying array to make room for more
elements. (See Figure 6.2.) Intuitively, this strategy is much like that of the hermit
crab, which moves into a larger shell when it outgrows its previous one.

Figure 6.2: An illustration of the three steps for
"growing" an extendable array: (a) create new array B;
(b) copy elements from A to B; (c) reassign reference A
to the new array. Not shown is the future garbage
collection of the old array.

Implementing the IndexList Interface with an
Extendable Array

We give portions of a Java implementation of the array list ADT using an
extendable array in Code Fragment 6.3. This class only provides means for the
array to grow. Exercise C-6.2 explores an implementation that can also shrink.

Code Fragment 6.3: Portions of class
ArraylndexList realizing the array list ADT by
means of an extendable array. Method
checklIndex(r, n) (notshown) checks whether an
index ris in the range [0, n - 1].

322

An Amortized Analysis of Extendable Arrays

This array replacement strategy might at first seem slow, for performing a single
array replacement required by some element insertion can take O(n) time. Still,

323

notice that after we perform an array replacement, our new array allows us to add
n new elements to the array list before the array must be replaced again. This
simple fact allows us to show that performing a series of operations on an initially
empty array list is actually quite efficient. As a shorthand notation, let us refer to
the insertion of an element to be the last element in an array list as a push
operation. (See Figure 6.3.)

Figure 6.3: Running times of a series of push
operations on a jJava.util .ArrayList of initial
size 1.

Using an algorithmic design pattern called amortization, we can show that
performing a sequence of such push operations on an array list implemented with
an extendable array is actually quite efficient. To perform an amortized analysis,
we use an accounting technique where we view the computer as a coin-operated
appliance that requires the payment of one cyber-dollar for a constant amount of
computing time. When an operation is executed, we should have enough cyber-
dollars available in our current "bank account” to pay for that operation's running
time. Thus, the total amount of cyber-dollars spent for any computation will be
proportional to the total time spent on that computation. The beauty of using this
analysis method is that we can overcharge some operations in order to save up
cyber-dollars to pay for others.

324

Proposition 6.2: LetS be an array list implemented by means of an
extendable array with initial length one. The total time to perform a series of n
push operations in S, starting from S being empty is O(n).

Justification: Letus assume that one cyber-dollar is enough to pay for the
execution of each push operation in S, excluding the time spent for growing the
array. Also, let us assume that growing the array from size k to size 2k requires k
cyber-dollars for the time spent copying the elements. We shall charge each push
operation three cyber-dollars. Thus, we overcharge each push operation that does
not cause an overflow by two cyber-dollars. Think of the two cyber-dollars
profited in an insertion that does not grow the array as being "stored" at the
element inserted. An overflow occurs when the array list S has 2' elements, for
some integer i > 0, and the size of the array used by the array list representing S is
2'. Thus, doubling the size of the array will require 2' cyber- dollars Fortunately,
these cyber-dollars can be found at the elements stored in cells 2" through 2' —
(See Figure 6.4.) Note that the previous overflow occurred when the number of
elements became larger than 2" for the first time, and thus the cyber-dollars
stored in cells 2"* through 2' — 1 were not previously spent. Therefore, we have a
valid amortization scheme in which each operation is charged three cyber-dollars
and all the computing time is paid for. That is, we can pay for the execution of n
push operations using 3n cyber-dollars. In other words, the amortized running
time of each push operation is O(1); hence, the total running time of n push
operations is O(n).

0
Figure 6.4: Illustration of a series of push operations
on an array list: (a) an 8-cell array is full, with two
cyber-dollars "stored" at cells 4 through 7; (b) a push
operation causes an overflow and a doubling of
capacity. Copying the eight old elements to the new
array is paid for by the cyber-dollars already stored in
the table. Inserting the new element is paid for by one
of the cyber-dollars charged to the push operation,
and the two cyber-dollars profited are stored at cell 8.

325

6.2 Node Lists

Using an index is not the only means of referring to the place where an element
appears in a sequence. If we have a sequence S implemented with a (singly or doubly)
linked list, then it could possibly be more natural and efficient to use a node instead
of an index as a means of identifying where to access and update S. In this section, we
define the node list ADT, which abstracts the concrete linked list data structure
(Sections 3.2 and 3.3) using a related position ADT that abstracts the notion of
"place™ in a node list.

6.2.1 Node-Based Operations

Let S be a (singly or doubly) linked list. We would like to define methods for S that
take nodes as parameters and provide nodes as return types. Such methods could
provide significant speedups over index-based methods, because finding the index
of an element in a linked list requires searching through the list incrementally from
its beginning or end, counting elements as we go.

For instance, we could define a hypothetical method remove (V) that removes the
element of S stored at node v of the list. Using a node as a parameter allows us to
remove an element in O(1) time by simply going directly to the place where that
node is stored and then "linking out™ this node through an update of the next and
prev links of its neighbors. Similarly, we could insert, in O(1) time, a new element e
into S with an operation such as addAfter (v, e), which specifies the node v
after which the node of the new element should be inserted. In this case, we simply
"link in" the new node.

Defining methods of a list ADT by adding such node-based operations raises the
issue of how much information we should be exposing about the implementation of
our list. Certainly, it is desirable for us to be able to use either a singly or doubly

326

linked list without revealing this detail to a user. Likewise, we do not wish to allow
a user to modify the internal structure of a list without our knowledge. Such
modification would be possible, however, if we provided a reference to a node in
our list in a form that allowed the user to access internal data in that node (such as a
next or prev field).

To abstract and unify the different ways of storing elements in the various
implementations of a list, we introduce the concept of position, which formalizes
the intuitive notion of "place™ of an element relative to others in the list.

6.2.2 Positions

So as to safely expand the set of operations for lists, we abstract a notion of
"position” that allows us to enjoy the efficiency of doubly or singly linked list
implementations without violating object-oriented design principles. In this
framework, we view a list as a collection of elements that stores each element at a
position and that keeps these positions arranged in a linear order. A position is itself
an abstract data type that supports the following simple method:

element() : Return the element stored at this position.

A position is always defined relatively, that is, in terms of its neighbors. In a list, a
position p will always be "after" some position q and "before” some position s
(unless p is the first or last position). A position p, which is associated with some
element e in a list S, does not change, even if the index of e changes in S, unless we
explicitly remove e (and, hence, destroy position p). Moreover, the position p does
not change even if we replace or swap the element e stored at p with another
element. These facts about positions allow us to define a set of position-based list
methods that take position objects as parameters and also provide position objects
as return values.

6.2.3 The Node List Abstract Data Type

Using the concept of position to encapsulate the idea of "node™ in a list, we can
define another type of sequence ADT called the node list ADT. This ADT supports
the following methods for a list S:

first():

Return the position of the first element of S; an error occurs if S is empty.

last():

Return the position of the last element of S; an error occurs if S is empty.

prev(p):

327

Return the position of the element of S preceding the one at position p; an
error occurs if p is the first position.

next(p):

Return the position of the element of S following the one at position p; an
error occurs if p is the last position.

The above methods allow us to refer to relative positions in a list, starting at the
beginning or end, and to move incrementally up or down the list. These positions
can intuitively be thought of as nodes in the list, but note that there are no specific
references to node objects. Moreover, if we provide a position as an argument to a
list method, then that position must represent a valid position in that list.

Node List Update Methods

In addition to the above methods and the generic methods size and iSEmpty,
we also include the following update methods for the node list ADT, which take
position objects as parameters and/or provide position objects as return values.

set(p, e):

Replace the element at position p with e, returning the element formerly
at position p.

addFirst(e):

Insert a new element e into S as the first element.
addLast(e):

Insert a new element e into S as the last element.
addBefore(p, €):

Insert a new element e into S before position p.
addAfter(p, e):

Insert a new element e into S after position p.
remove(p):

Remove and return the element at position p in S, invalidating this
position in S.

328

The node list ADT allows us to view an ordered collection of objects in terms of
their places, without worrying about the exact way those places are
represented.(See Figure 6.5.)

Figure 6.5: A node list. The positions in the current
order are p, g, r, and s.

There may at first seem to be redundancy in the above repertory of operations for
the node list ADT, since we can perform operation addFirst(e) with
addBefore(first(), e),and operation addLast(e) with

addAfter(getLast(), e).Butthese substitutions can only be done for a
nonempty list.

Note that an error condition occurs if a position passed as argument to one of the
list operations is invalid. Reasons for a position p to be invalid include:

. p=null
. p was previously deleted from the list
. p is a position of a different list
. p is the first position of the list and we call prev(p)
. p is the last position of the list and we call next(p) -
We illustrate the operations of the node list ADT in the following example.

Example 6.3: We show below a series of operations for an initially empty list
node S. We use variables p1, p2, and so on, to denote different positions, and we
show the object currently stored at such a position in parentheses.

Operation
Output

S
addFirst(8)

329

@)

first(Q)

p1 (8)

@)
addAfter(pi,5)

(8.5)

next(pi)

p2(5)

(8.5)
addBefore(p2,3)
(8,3,5)
prev(pz)

P3(3)

(8,3,5)
addFirst(9)
(9.8,3,5)
last()

p2(5)

(9.8,3,5)
remove(first())

9

330

(8.3,5)

set(ps,7)
3

(8,7,5)
addAfter(first(),2)

3.,2,7,5)

The node list ADT, with its built-in notion of position, is useful in a number of
settings. For example, a program that simulates a game of cards could model each
person's hand as a node list. Since most people keep cards of the same suit
together, inserting and removing cards from a person's hand could be
implemented using the methods of the node list ADT, with the positions being
determined by a natural ordering of the suits. Likewise, a simple text editor
embeds the notion of positional insertion and removal, since such editors typically
perform all updates relative to a cursor, which represents the current position in
the list of characters of text being edited.

A Java interface representing the position ADT is given in Code Fragment 6.4.
Code Fragment 6.4: Java interface for the position
ADT.

An interface for the node list ADT, called Position List, is given in Code
Fragment 6.5. This interface uses the following exceptions to indicate error
conditions.

BoundaryViolationException: Thrown if an attempt is made at
accessing an element whose position is outside the range of positions of the list
(for example, calling method next on the last position of the sequence).

Invalid Position Exception: Thrown if a position provided as
argument is not valid (for example, it is a null reference or it has no associated
list).

331

Code Fragment 6.5: Java interface for the node list
ADT.

Yet Another Deque Adapter

With respect to our discussion of the node list ADT, we note that this ADT is
sufficient to define an adapter class for the deque ADT, as shown in Table 6.3.

Table 6.3: Realization of a deque by means of a
node list.

332

Deque Method
Realization with Node-List Methods
size(), isEmpty(Q)
size(), isEmpty()
getFirst()
first()-element()
getLast()
last()-element()
addFirst(e)
addFirst(e)
addLast(e)
addLast(e)
removeFirst()
remove(Ffirst())
removelLast()

remove(last())

6.2.4 Doubly Linked List Implementation

Suppose we would like to implement the node list ADT using a doubly linked list
(Section 3.3). We can simply make the nodes of the linked list implement the
position ADT. That is, we have each node implement the Position interface and
therefore define a method, e lement(), which returns the element stored at the
node. Thus, the nodes themselves act as positions. They are viewed internally by
the linked list as nodes, but from the outside, they are viewed only as positions. In
the internal view, we can give each node v instance variables prev and next that
respectively refer to the predecessor and successor nodes of v (which could in fact
be header or trailer sentinel nodes marking the beginning and end of the list).
Instead of using variables prev and next directly, we define methods getPrev,
setPrev, getNext, and setNext of a node to access and modify these
variables.

333

In Code Fragment 6.6, we show a Java class DNode for the nodes of a doubly
linked list implementing the position ADT. This class is similar to class DNode
shown in Code Fragment 3.17, except that now our nodes store a generic element
instead of a character string. Note that the prev and next instance variables in the
DNode class below are private references to other DNode objects.

Code Fragment 6.6: Class DNode realizing a node
of a doubly linked list and implementing the Position
interface (ADT).

Given a position p in S, we can "unwrap" p to reveal the underlying node v. This is
accomplished by casting the position to a node. Once we have node v, we can, for
example, implement method prev(p) with v.getPrev (unless the node
returned by v.getPrev is the header, in which case we signal an error).
Therefore, positions in a doubly linked list implementation can be supported in an
object-oriented way without any additional time or space overhead.

Consider how we might implement the addAfter(p, e) method, for inserting
an element e after position p. Similar to the discussion in Section 3.3.1, we create a

334

new node v to hold the element e, link v into its place in the list, and then update the
next and prev references of v's two new neighbors. This method is given in Code
Fragment 6.7, and is illustrated (again) in Figure 6.6. Recalling the use of sentinels
(Section 3.3), note that this algorithm works even if p is the last real position.

Code Fragment 6.7: Inserting an element e after a
position p in a linked list.

Figure 6.6: Adding anew node after the position for
"JFK": (a) before the insertion; (b) creating node v with
element "BWI" and linking it in; (c) after the insertion.

The algorithms for methods addBefore, addFirst, and addLast are similar
to that for method addAfter. We leave their details as an exercise (R-6.5).

335

Next, consider the remove (p) method, which removes the element e stored at
position p. Similar to the discussion in Section 3.3.2, to perform this operation, we
link the two neighbors of p to refer to one another as new neighbors—Ilinking out p.
Note that after p is linked out, no nodes will be pointing to p; hence, the garbage
collector can reclaim the space for p. This algorithm is given in Code Fragment 6.8
and is illustrated in Figure 6.7. Recalling our use of header and trailer sentinels,
note that this algorithm works even if p is the first, last, or only real position in the
list.

Code Fragment 6.8: Removing an element e stored
at a position p in a linked list.

Figure 6.7: Removing the object stored at the
position for "PVD": (a) before the removal; (b) linking
out the old node; (c) after the removal (and garbage
collection).

336

In conclusion, using a doubly linked list, we can perform all the methods of the list
ADT in O(1) time. Thus, a doubly linked list is an efficient implementation of the
list ADT.

A Node List Implementation in Java

Portions of the Java class NodePositionList, which implements the node list
ADT using a doubly linked list, are shown in Code Fragments 6.9-6.11. Code
Fragment 6.9 shows NodePosition List"s instance variables, its
constructor, and a method, checkPosition, which performs safety checks and
"unwraps" a position, casting it back to a DNode. Code Fragment 6.10 shows
additional accessor and update methods. Code Fragment 6.11 shows additional
update methods.

Code Fragment 6.9: Portions of the
NodePositionList class implementing the node list
ADT with a doubly linked list. (Continues in Code
Fragments 6.10 and 6.11.)

337

Code Fragment 6.10: Portions of the
NodePositionList class implementing the node list

ADT with a doubly linked list. (Continued from Code
Fragment 6.9. Continues in Code Fragment 6.11.)

338

Code Fragment 6.11: Portions of the
NodePositionList class implementing the node list
ADT with a doubly linked list. (Continued from Code
Fragments 6.9 and 6.10.) Note that the mechanism
used to invalidate a position in the remove method is

339

consistent with one of the checks performed in the
checkPosition convenience function.

6.3 Iterators

A typical computation on an array list, list, or sequence is to march through its
elements in order, one at a time, for example, to look for a specific element.

6.3.1 The Iterator and Iterable Abstract Data Types

340

An iterator is a software design pattern that abstracts the process of scanning
through a collection of elements one element at a time. An iterator consists of a
sequence S, a current element in S, and a way of stepping to the next element in S
and making it the current element. Thus, an iterator extends the concept of the
position ADT we introduced in Section 6.2. In fact, a position can be thought of as
an iterator that doesn't go anywhere. An iterator encapsulates the concepts of
"place™ and "next" in a collection of objects.

We define the iterator ADT as supporting the following two methods:
hasNext() : Test whether there are elements left in the iterator.
next() : Return the next element in the iterator.

Note that the iterator ADT has the notion of the "current” element in a traversal of a
sequence. The first element in an iterator is returned by the first call to the method
next, assuming of course that the iterator contains at least one element.

An iterator provides a unified scheme to access all the elements of a collection of
objects in a way that is independent from the specific organization of the collection.
An iterator for an array list, list, or sequence should return the elements according
to their linear ordering.

Simple Iterators in Java

Java provides an iterator through its Java.util . I'terator interface. We
note that the Java.util .Scanner class (Section 1.6) implements this
interface. This interface supports an additional (optional) method to remove the
previously returned element from the collection. This functionality (removing
elements through an iterator) is somewhat controversial from an object-oriented
viewpoint, however, and it is not surprising that its implementation by classes is
optional. Incidentally, Java also provides the Java.util _Enumeration
interface, which is historically older than the iterator interface and uses names
hasMoreElements() and nextElement().

The Iterable Abstract Data Type

In order to provide a unified generic mechanism for scanning through a data
structure, ADTSs storing collections of objects should support the following
method:

iterator(): Return an iterator of the elements in the collection.

This method is supported by the Java.util .ArrayList class. In fact, this
method is so important, that there is a whole interface,

341

jJava. lang. Iterable, which has only this method in it. This method can
make it simple for us to specify computations that need to loop through the
elements of a list. To guarantee that a node list supports the above methods, for
example, we could add this method to the Position List interface, as shown
in Code Fragment 6.12. In this case, we would also want to state that Position
List extends Iterable. Therefore, let us assume that our array lists and
node lists lists support the 1terator () method.

Code Fragment 6.12: Adding the iterator method to
the Position List interface.

Given such a Position List definition, we could use an iterator

returned by the 1terator () method to create a string representation of a node
list, as shown in Code Fragment 6.13.

Code Fragment 6.13: Example of a Java iterator
used to convert a node list to a string.

6.3.2 The Java For-Each Loop

342

Since looping through the elements returned by an iterator is such a common
construct, Java provides a shorthand notation for such loops, called the for-each
loop. The syntax for such a loop is as follows:

Tor (Type name : expression)
loop statement

where expression evaluates to a collection that implements the

Java. lang. I'terable interface, Type is the type of object returned by the
iterator for this class, and name is the name of a variable that will take on the values
of elements from this iterator in the loop_statement. This notation is really just
shorthand for the following:

for (lterator<Type> it = expression.iterator();
it_hasNext();) {

Type name = i1t.next();
loop_statement

}

For example, if we had a list, val ues, of Integer objects, and values implements
Java. lang. Iterable, then we can add up all the integers in values as
follows:

List<Integer> values;

// .. statements that create a new values list and fill
it with Integers..

int sum = 0;
for (Integer 1 : values)
sum += 1; // unboxing allows this

We would read the above loop as, "for each Integer 1 in values, do the loop
body (in this case, add 1 to sum)."”

In addition to the above form of for-each loop, Java also allows a for-each loop to
be defined for the case when expression is an array of type Type, which, in this
case, can be either a base type or an object type. For example, we can total up the
integers in an array, v, which stores the first ten positive integers, as follows:

int[Jv=4{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

343

int total = O;
for (int 1 : v)

total += i;

6.3.3 Implementing Iterators

One way to implement an iterator for a collection of elements is to make a
"snapshot" of it and iterate over that. This approach would involve storing the
collection in a separate data structure that supports sequential access to its elements.
For example, we could insert all the elements of the collection into a queue, in
which case method hasNext () would correspond to ' isEmpty () and next()
would correspond to enqueue (). With this approach, the method 1terator()
takes O(n) time for a collection of size n. Since this copying overhead is relatively
costly, we prefer, in most cases, to have iterators operate on the collection itself, not
a copy.

In implementing this direct approach, we need only to keep track of where in the
collection the iterator's cursor points. Thus, creating a new iterator in this case
simply involves creating an iterator object that represents a cursor placed just before
the first element of the collection. Likewise, performing the next() method
involves returning the next element, if it exists, and moving the cursor just past this
element’s position. Thus, in this approach, creating an iterator takes O(1) time, as do
each of the iterator's methods. We show a class implementing such an iterator in
Code Fragment 6.14, and we show in Code Fragment 6.15 how this iterator could
be used to implement the 1 terator () method in the NodePositionList
class.

Code Fragment 6.14: An element iterator class for a
Position List

344

Code Fragment 6.15: The iterator() method of
class NodePositionList.

Position Iterators

For ADTs that support the notion of position, such as the list and sequence ADTs,
we can also provide the following method:

positions(): Returnan I'terable object (like an array list or node
list) containing the positions in the collection as elements.

An iterator returned by this method allows us to loop through the positions of a
list. To guarantee that a node list supports this method, we could add it to the
PositionList interface, as shown in Code Fragment 6.16. Then we could, for
example, add an implementation of this method to the NodePositionList, as
shown in Code Fragment 6.17. This method uses the NodePositionList
class itself to create a list that contains the positions of the original list as its
elements. Returning this list of positions as our I'terable object allows us to

345

then call 1terator () on this object to get an iterator of positions from the
original list.

Code Fragment 6.16: Adding iterator methods to
the Position List interface.

Code Fragment 6.17: The positions() method of
class NodePositionList.

The iterator () method returned by this and other I'terable objects defines
a restricted type of iterator that allows only one pass through the elements. More
powerful iterators can also be defined, however, which allows us to move forward
and backward over a certain ordering of the elements.

6.3.4 List Iterators in Java

The Java.util .Linked List class does not expose a position concept to
users in its API. Instead, the preferred way to access and update a LinkedList
object in Java, without using indices, is to use a Listlterator that is generated
by the linked list, using a Fistlterator () method. Such an iterator provides
forward and backward traversal methods as well as local update methods. It views
its current position as being before the first element, between two elements, or after

346

the last element. That is, it uses a list cursor, much like a screen cursor is viewed as
being located between two characters on a screen. Specifically, the
Java.util_Listlterator interface includes the following methods:

add(e):
Add the element e at the current position of the iterator.
hasNext():

True if and only if there is an element after the current position of the
iterator.

hasPrevious():

True if and only if there is an element before the current position of the
iterator.

previous():

Return the element e before the current position and sets the current
position to be before e.

next():

Return the element e after the current position and sets the current position
to be after e.

nextindex():

Return the index of the next element.
previousindex():

Return the index of the previous element.
set(e):

Replace the element returned by the previous next or previous operation
with e.

remove():
Remove the element returned by the previous next or previous operation.

It is risky to use multiple iterators over the same list while modifying its contents. If
insertions, deletions, or replacements are required at multiple "places” in a list, it is
safer to use positions to specify these locations. But the
Java.util_LinkedList class does not expose its position objects to the user.

347

So, to avoid the risks of modifying a list that has created multiple iterators (by calls
to its iterator () method), java.util. lterator objects have a "fail-fast"
feature that immediately invalidates such an iterator if its underlying collection is
modified unexpectedly. For example, if a Java.util _LinkedList object L
has returned five different iterators and one of them modifies L, then the other four
all become immediately invalid. That is, Java allows many list iterators to be
traversing a linked list L at the same time, but if one of them modifies L (using an
add, set, or remove method), then all the other iterators for L become invalid.
Likewise, if L is modified by one of its own update methods, then all existing
iterators for L immediately become invalid.

The java.util.List Interface and Its Implementations

Java provides functionality similar to our array list and node lists ADT in the
Java.util _List interface, which is implemented with an array in
Java.util _ArrayList and with a linked list in
jJava.util_LinkedList. There are some trade-offs between these two
implementations, which we explore in more detail in the next section. Moreover,
Java uses iterators to achieve a functionality similar to what our node list ADT
derives from positions. Table 6.4 shows corresponding methods between our
(array and node) list ADTs and the Java.uti |l interfaces List and
Listlterator interfaces, with notes about their implementations in the
Java.util classes ArrayList and LinkedList.

Table 6.4: Correspondences between methods in
the array list and node list ADTs and the java.util
interfaces List and Listlterator. We use Aand L
as abbreviations for java.util .ArrayList and
jJava.util_Linked List (or their running times).

List ADT Method
java.util.List Method
Listlterator Method
Notes

size()

size(Q)

O(2) time

348

isempty()

isEmpty()

O(1) time

get(1)

get(i)

Ais O(1), L is O(min{i,n—i})
first()
listlterator()

first element is next

last()
listlterator(size())
last element is previous
prev(p)

previous()

O(1) time

next(p)

next()

O(1) time

set(p, e)

set(e)

O(1) time

set(i,e)

set(i, e)

AisO(1),Lis O (min{i,n—1i})
add(i,e)

349

add(i,e)

O(n) time

remove(i)

remove(i)

Ais O(1), L is O(min{i, n—i})
addFirst(e)

add(0,e)

Ais O(n),L is O(1)
addFirst(e)
addFirst(e)

only exists in L, O(1)
addLast(e)

add(e)

O(1) time

addLast(e)

addLast(e)

only exists in L, O(1)
addAfter(p, e)

add(e)

insertion is at cursor; A is O(n), L is O(1)
addBefore(p,e)

add(e)

insertion is at cursor; A is O(n),L is O(1)
remove(p)

remove()

350

deletion is at cursor; A is O(n),L is O(1)

6.4 List ADTs and the Collections Framework

In this section, we discuss general list ADTs, which combine methods of the deque,
array list, and/or node list ADTs. Before describing such ADTs, we mention a larger
context in which they exist.

6.4.1 The Java Collections Framework

Java provides a package of data structure interfaces and classes, which together
define the Java Collections Framework. This package, java.util, includes
versions of several of the data structures discussed in this book, some of which we
have already discussed and others of which we discuss in the remainder of this
book. In particular, the yava.uti I package includes the following interfaces:

Collection:

A general interface for any data structure that contains a collection of
elements. It extends Java. lang. I'terable; hence, it includes an

i terator () method, which returns an iterator of the elements in this
collection.

Iterator:
An interface for the simple iterator ADT.
List:

An interface extending Collection to include the array list ADT. It also
includes a method listlterator for returning a Listlterator object for
this list.

Listlterator:

An iterator interface that provides both forward and backward traversal
over a list, as well as cursor-based update methods.

Map:

An interface for mapping keys to values. This concept and interface are
discussed in Section 9.1.

Queue:

351

An interface for a queue ADT, but using different method names. Methods
include peek () (same as front()), offer(e) (same as
enqueue(e)), and pol 1 () (same as dequeue()).

Set:
An interface extending Collection to sets.

The Java Collections Framework also includes several concrete classes
implementing various combinations of the above interfaces. Rather than list each of
these classes here, however, we discuss them at more appropriate places in this
book. One topic we would like to stress now, however, is that any class
implementing the Java.util.Col lection interface also implements the
Java. lang. I'terable interface; hence, it includes an 1terator () method
and can be used in a for-each loop. In addition, any class implementing the
Java.util_List interface also includes a 1 istlterator () method, as well.
As we observed above, such interfaces are useful for looping through the elements
of a collection or list.

6.4.2 The java. util.LinkedList Class

The Java.util.Linked List classcontains a lot of methods, including all of
the methods of the deque ADT (Section 5.3) and all of the methods from the array
list ADT (Section 6.1). In addition, as we mentioned above, it also provides
functionality similar to that of the node list ADT through the use of its list iterator.

Performance of the java.util.LinkedList Class

The documentation for the java.util .LinkedList class makes it clear that
this class is implemented with a doubly linked list. Thus, all of the update
methods of the associated list iterator run in O(1) time each. Likewise, all of the
methods of the deque ADT also run in O(1) time each, since they merely involve
updating or querying the list at its ends. But the methods from the array list ADT
are also included in the yava.util.LinkedList, which are, in general, not
well-suited to an implementation of a doubly linked list.

In particular, since a linked list does not allow for indexed access to its elements,
performing the operation get(i), to return the element at a given index i, requires
that we perform link "hopping" from one of the ends of the list, counting up or
down, until we locate the node storing the element with index i. As a slight
optimization, we observe that we can start this hopping from the closer end of the
list, thus achieving a running time that is

O(min(i +1,n—1)),

352

where n is the number of elements in the list. The worst case for this kind of
search occurs when

r= nl/2
Thus, the running time is still O(n).

Operations add (i1 ,e) and remove (1) also must perform link hopping to
locate the node storing the element with index i, and then insert or delete a node.
The running times of these implementations of add (1, ¢e) and remove (i) are
likewise

O(min(i+ 1, n—i+1)),

which is O(n). One advantage of this approach is that, ifi=0ori=n—1, asis the
case in the adaptation of the array list ADT to the deque ADT given in Section
6.1.1, then add and remove run in O(1) time. But, in general, using array-list
methods with a java.util. LinkedList object is inefficient.

6.4.3 Sequences

A sequence is an ADT that supports all of the methods of the deque ADT (Section
5.3), the array list ADT (Section 6.1), and the node list ADT (Section 6.2). That is,
it provides explicit access to the elements in the list either by their indices or by
their positions. Moreover, since it provides this dual access capability, we also
include, in the sequence ADT, the following two "bridging" methods that provide
connections between indices and positions:

atIndex (1) : Return the position of the element with index i; an error
condition occurs ifi<Qori>size() — 1.

1ndexOT(p) : Return the index of the element at position p.

Multiple Inheritance in the Sequence ADT

The definition of the sequence ADT as including all the methods from three
different ADTs is an example of multiple inheritance (Section 2.4.2). That is, the
sequence ADT inherits methods from three "super" abstract data types. In other
words, its methods include the union of the methods of these super ADTSs. See
Code Fragment 6.18 for a Java specification of the sequence ADT as a Java
interface.

Code Fragment 6.18: The Sequence interface
defined via multiple inheritance. It includes all the
methods of the Deque, IndexList, and

353

PositionList interfaces (defined for any generic
type E), and adds two more methods.

Implementing a Sequence with an Array

If we implement the sequence S ADT with a doubly linked list, we would get
similar performance to that of the Java.util_LinkedList class. So suppose
instead we want to implement a sequence S by storing each element e of Siin a
cell A[i] of an array A. We can define a position object p to hold an index i and a
reference to array A, as instance variables, in this case. We can then implement
method element(p) simply by returning A[i]. A major drawback with this
approach, however, is that the cells in A have no way to reference their
corresponding positions. Thus, after performing an add First operation, we
have no way of informing the existing positions in S that their indices each went
up by 1 (remember that positions in a sequence are always defined relative to their
neighboring positions, not their indices). Hence, if we are going to implement a
general sequence with an array, we need a different approach.

Consider an alternate solution, then, in which, instead of storing the elements of S
in array A, we store a new kind of position object in each cell of A, and we store
elements in positions. The new position object p holds the index i and the element
e associated with p.

With this data structure, illustrated in Figure 6.8, we can easily scan through the
array to update the index variable i for each position whose index changes
because of an insertion or deletion.

Figure 6.8: An array-based implementation of the
sequence ADT.

354

Efficiency Trade-Offs with an Array-Based Sequence

In this array implementation of a sequence, the addFirst, addBefore,
addAfter, and remove methods take O(n) time, because we have to shift
position objects to make room for the new position or to fill in the hole created by
the removal of the old position (just as in the insert and remove methods based on
index). All the other position-based methods take O(1) time.

6.5 Case Study: The Move-to-Front Heuristic

Suppose we would like to maintain a collection of elements while keeping track of
the number of times each element is accessed. Keeping such access counts allows us
to know which elements are among the "top ten™ most popular, for instance.
Examples of such scenarios include a Web browser that keeps track of the most
popular Web addresses (or URLS) a user visits or a photo album program that
maintains a list of the most popular images a user views. In addition, a favorites list
could be used in a graphical user interface (GUI) to keep track of the most popular
buttons used in a pull-down menu, and then present the user with condensed pull-
downs containing the most popular options.

Therefore, in this section, we consider how we can implement a favorite list ADT,
which supports the size () and isempty () methods as well as the following:

access(e):

Access the element e, incrementing its access count, and adding it to the
favorites list if it is not already present.

remove(e):

Remove element e from the favorites list, provided it is already there.

355

top(k):

Return an iterable collection of the k most accessed elements.

6.5.1 Using a Sorted List and a Nested Class

The first implementation of a favorite list that we consider (in Code Fragments
6.19-6.20) is to build a class, Favor i teL ist, storing references to accessed
objects in a linked list ordered by nonincreasing access counts. This class also uses
a feature of Java that allows us to define a related class nested inside an enclosing
class definition. Such a nested class must be declared static, to indicate that this
definition is related to the enclosing class, not any specific instance of that class.
Using nested classes allows us to define "helper™ or "support"” classes that can be
protected from outside use.

In this case, the nested class, Entry, stores, for each element e in our list, a pair
(c,v), where c is the access count for e and v is a value reference to the element e
itself. Each time an element is accessed, we find it in the linked list (adding it if it is
not already there) and increment its access count. Removing an element amounts to
finding it and taking it out of our linked list. Returning the k most accessed
elements simply involves our copying the entry values into an output list according
to their order in the internal linked list.

Code Fragment 6.19: Class FavoritesList.
(Continues in Code Fragment 6.20.)

356

357

Code Fragment 6.20: Class FavoritelList,
including a nested class, Entry, for representing

elements and their access count. (Continued from Code
Fragment 6.19.)

6.5.2 Using a List with the Move-to-Front Heuristic

358

The previous implementation of a favorite list performs the access(e) method in
time proportional to the index of e in the favorite list. That is, if e is the kth most
popular element in the favorite list, then accessing it takes O(k) time. In many real-
life access sequences, including those formed by the visits that users make to Web
pages, it is common that, once an element is accessed, it is likely to be accessed
again in the near future. Such scenarios are said to possess locality of reference.

A heuristic, or rule of thumb, that attempts to take advantage of the locality of
reference that is present in an access sequence is the move-to-front heuristic. To
apply this heuristic, each time we access an element we move it all the way to the
front of the list. Our hope, of course, is that this element will then be accessed again
in the near future. Consider, for example, a scenario in which we have n elements
and the following series of n” accesses:

. element 1 is accessed n times
. element 2 is accessed n times
[]

. element n is accessed n times.

If we store the elements sorted by their access counts, inserting each element the
first time it is accessed, then

. each access to element 1 runs in O(1) time
. each access to element 2 runs in O(2) time
. each access to element n runs in O(n) time.

Thus, the total time for performing the series of accesses is proportional to
n+2n+3n+..nn=n(1+2+3+..+n)=n-(n+1)/2,
which is O(n®).

On the other hand, if we use the move-to-front heuristic, inserting each element the
first time it is accessed, then

. each access to element 1 takes O(1) time
. each access to element 2 takes O(1) time
. each access to element n runs in O(1) time.

359

So the running time for performing all the accesses in this case is O(n?). Thus, the
move-to-front implementation has faster access times for this scenario. This benefit
comes at a cost, however.

Implementing the Move-to-Front Heuristic in Java

In Code Fragment 6.21, we give an implementation of a favorite list using the
move-to-front heuristic. We implement the move-to-front approach in this case by
defining a new class, Favor 1 teListMTF, which extends the FavoriteList
class and then overrides the definitions of the moveUp and top methods. The
moveUp method in this case simply removes the accessed element from its
present position in the linked list and then inserts this element back in this list at
the front. The top method, on the other hand, is more complicated.

The Trade-Offs with the Move-to-Front Heuristic

Now that we are no longer maintaining the favorite list as a list of entries ordered
by their value's access counts, when we are asked to find the k most accessed
elements, we need to search for them. In particular, we can implement method
top(Kk) as follows:

1. We copy the entries of our favorite list into another list, C, and we create
an empty list, T.

2. We scan list C k times. In each scan, we find an entry of C with the largest
access count, remove this entry from C, and insert its value at the end of T.

3. Wereturn list T.

This implementation of method top takes O(kn) time. Thus, when k is a constant,
method top runs in O(n) time. This occurs, for example, when we want to get the
"top ten" list. However, if k is proportional to n, then top runs in O(n2) time. This
occurs, for example, when we want a "top 25%" list.

Still, the move-to-front approach is just a heuristic, or rule of thumb, for there are
access sequences where using the move-to-front approach is slower than simply
keeping the favorite list ordered by access counts. In addition, it trades off the
potential speed of performing accesses that possess locality of reference, for a
slower reporting of the top elements.

6.5.3 Possible Uses of a Favorites List

In Code Fragment 6.22, we use an example application of our favorite list
implementations to solve the problem of maintaining the most popular URLs in a
simulated sequence of Web page accesses. This program accesses a set of URLS in

360

decreasing order and then pops up a window showing the most popular Web page
accessed in the simulation.

Code Fragment 6.21: Class FavoriteListMTF
implementing the move-to-front heuristic. This class
extends FavoriteList (Code Fragments 6.19-6.20)
and overrides methods moveUp and top.

361

Code Fragment 6.22: Illustrating the use of the
FavoritesList and FavoriteListMTF classes for counting
Web page access counts. This simulation randomly

362

accesses several Web pages and then displays the most
popular page.

363

364

6.6 Exercises

For source code and help with exercises, please visit
jJava.datastructures.net.

Reinforcement
R-6.1

Draw a representation of an initially empty array list A after performing the
following sequence of operations: add(0,4), add(0, 3), add(0, 2),
add(2,1),add(1,5), add(1,6), add(3,7), add(0,8).

R-6.2

Give a justification of the running times shown in Table 6.2 for the methods of
an array list implemented with a (nonexpanding) array.

R-6.3

Give an adapter class to support the Stack interface using the methods of the
array list ADT.

R-6.4

Redo the justification of Proposition 6.2 assuming that the the cost of growing
the array from size k to size 2k is 3k cyber-dollars. How much should each push
operation be charged to make the amortization work?

R-6.5

Give pseudo-code descriptions of algorithms for performing the methods
addBefore(p,e), addFirst(e), and addLast(e) of the node list
ADT, assuming the list is implemented using a doubly linked list.

R-6.6

Draw pictures illustrating each of the major steps in the algorithms given in the
previous exercise.

R-6.7

Provide the details of an array implementation of the node list ADT, including
how to perform the methods add Before and addAfter.

R-6.8

365

Provide Java code fragments for the methods of the PositionList interface
of Code Fragment 6.5 that are not included in Code Fragments 6.9-6.11.

R-6.9

Describe a nonrecursive method for reversing a node list represented with a
doubly linked list using a single pass through the list (you may use the internal
node pointers).

R-6.10

Given the set of element {a, b, ¢, d, e, f} stored in a list, show the final state of
the list, assuming we use the move-to-front heuristic and access the elements
according to the following sequence: (a, b, ¢, d, e, f, a, ¢, f,b,d.e).

R-6.11

Suppose we are keeping track of access counts in a list L of n elements. Suppose
further that we have made kn total accesses to the elements in L, for some
integer k > 1. What are the minimum and maximum number of elements that
have been accessed fewer than k times?

R-6.12

Give pseudo-code describing how to implement all the operations in the array
list ADT using an array in a circular fashion. What is the running time for each
of these methods?

R-6.13

Using the Sequence interface methods, describe a recursive method for
determining if a sequence S of n integers contains a given integer k. Your
method should not contain any loops. How much space does your method use in
addition to the space used for S?

R-6.14

Briefly describe how to perform a new sequence method makeFirst(p) that
moves an element of a sequence S at position p to be the first element in S while
keeping the relative ordering of the remaining elements in S unchanged. That is,
makeFirst(p) performs a move-to-front. Your method should run in O(1)
time if S is implemented with a doubly linked list.

R-6.15

Describe how to use an array list and an 1nt field to implement an iterator.
Include pseudo-code fragments describing hasNext () and next().

366

R-6.16

Describe how to create an iterator for a node list that returns every other
element in the list.

R-6.17

Suppose we are maintaining a collection C of elements such that, each time we
add a new element to the collection, we copy the contents of C into a new array
list of just the right size. What is the running time of adding n elements to an
initially empty collection C in this case?

R-6.18

Describe an implementation of the methods addLast and add Before
realized by using only methods in the set {isEmpty, checkPosition,
first, last, prev, next, addAfter, addFirst}.

R-6.19

Let L be maintained to be a list of n items ordered by decreasing access count.
Describe a series of O(n?) accesses that will reverse L.

R-6.20
Let L be a list of n items maintained according to the move-to-front heuristic.

Describe a series of O(n) accesses that will reverse L.

Creativity
C-6.1

Give pseudo-code for the methods of a new class, ShrinkingArrayList,
that extends the class Array IndexList shown in Code Fragment 6.3 and
adds a method, shrinkToF1t(), which replaces the underlying array with an
array whose capacity is exactly equal to the number of elements currently in the
array list.

C-6.2

Describe what changes need to be made to the extendable array implementation
given in Code Fragment 6.3 in order to shrink by half the size N of the array any
time the number of elements in the array list goes below N/4.

C-6.3

367

Show that, using an extendable array that grows and shrinks as described in the
previous exercise, the following series of 2n operations takes O(n) time: (i) n
push operations on an array list with initial capacity N = 1; (ii) n pop (removal
of the last element) operations.

C-6.4

Show how to improve the implementation of method add in Code Fragment 6.3
so that, in case of an overflow, the elements are copied into their final place in
the new array, that is, no shifting should be done in this case.

C-6.5

Consider an implementation of the array list ADT using an extendable array, but
instead of copying the elements of the array list into an array of double the size
(that is, from N to 2N) when its capacity is reached, we copy the elements into
an array with N/4 additional cells, going from capacity Nto N + N/4

Show that performing a sequence of n push operations (that is, insertions at the
end) still runs in O(n) time in this case.

C-6.6

The NodePositionList implementation given in Code Fragments 6.9-6.11
does not do any error checks to test if a given position p is actually a member of
this particular list. For example, if p is a position in list S and we call
T.addAfter(p, e) onadifferent list T, then we actually will add the
element to S just after p. Describe how to change the NodePositionList
implementation in an efficient manner to disallow such misuses.

C-6.7

Suppose we want to extend the Sequence abstract data type with methods
indexOfElement(e) and positionOfElement(e), which respectively
return the index and the position of the (first occurrence of) element e in the
sequence. Show how to implement these methods by expressing them in terms
of other methods of the Sequence interface.

C-6.8

Give an adaptation of the array list ADT to the deque ADT that is different from
that given in Table 6.1.

C-6.9

Describe the structure and pseudo-code for an array-based implementation of
the array list ADT that achieves O(1) time for insertions and removals at index
0, as well as insertions and removals at the end of the array list. Your
implementation should also provide for a constant-time get method. (Hint:

368

Think about how to extend the circular array implementation of the queue ADT
given in the previous chapter.)

C-6.10

Describe an efficient way of putting an array list representing a deck of n cards
into random order. You may use a function, randomlnteger(n), which
returns a random number between 0 and n — 1, inclusive. Your method should
guarantee that every possible ordering is equally likely. What is the running
time of your method?

C-6.11

Describe a method for maintaining a favorites list L such that every element in L
has been accessed at least once in the last n accesses, where n is the size of L.
Your scheme should add only O(1) additional amortized time to each operation.

C-6.12

Suppose we have an n-element list L maintained according to the move-to-front
heuristic. Describe a sequence of n? accesses that is guaranteed to take Q(n®)
time to performon L.

C-6.13

Design a circular node list ADT that abstracts a circularly linked list in the -
same way that the node list ADT abstracts a doubly linked list.

C-6.14

Describe how to implement an iterator for a circularly linked list. Since
hasNext () will always return true in this case, describe how to perform
hasNewNext(), which returns true if and only if the next node in the list
has not previously had its element returned by this iterator.

C-6.15

Describe a scheme for creating list iterators that fail fast, that is, they all
become invalid as soon as the underlying list changes.

C-6.16

An array is sparse if most of its entries are nul 1. A list L can be used to
implement such an array, A, efficiently. In particular, for each nonnull cell A[i],
we can store an entry (i, €) in L, where e is the element stored at A[i]. This
approach allows us to represent A using O(m) storage, where m is the number of
nonnull entries in A. Describe and analyze efficient ways of performing the

369

methods of the array list ADT on such a representation. Is it better to store the
entries in L by increasing indices or not?

C-6.17

There is a simple, but inefficient, algorithm, called bubble-sort, for sorting a
sequence S of n comparable elements. This algorithm scans the sequence n—1
times, where, in each scan, the algorithm compares the current element with the
next one and swaps them if they are out of order. Give a pseudo-code
description of bubble-sort that is as efficient as possible assuming S is
implemented with a doubly linked list. What is the running time of this
algorithm?

C-6.18

Answer Exercise C-6.17 assuming S is implemented with an array list.

C-6.19

A useful operation in databases is the natural join. If we view a database as a
list of ordered pairs of objects, then the natural join of databases A and B is the
list of all ordered triples (x,y,z) such that the pair (x,y) is in A and the pair (y,z) is
in B. Describe and analyze an efficient algorithm for computing the natural join
of a list A of n pairs and a list B of m pairs.

C-6.20

When Bob wants to send Alice a message M on the Internet, he breaks M into n
data packets, numbers the packets consecutively, and injects them into the
network. When the packets arrive at Alice's computer, they may be out of order,
so Alice must assemble the sequence of n packets in order before she can be
sure she has the entire message. Describe an efficient scheme for Alice to do
this. What is the running time of this algorithm?

C-6.21

Given a list L of n positive integers, each represented with k = logn + 1 bits,
describe an O(n)-time method for finding a k-bit integer not in L.

C-6.22
Argue why any solution to the previous problem must run in Q(n) time.
C-6.23

Given a list L of n arbitrary integers, design an O(n)-time method for finding an
integer that cannot be formed as the sum of two integers in L.

370

C-6.24

Isabel has an interesting way of summing up the values in an array A of n
integers, where n is a power of two. She creates an array B of half the size of A
and sets B[i] = A[2i] +A[2i+ 1], for i =0,1,..., (n/2) — 1. If B has size 1, then she
outputs B[0]. Otherwise, she replaces A with B, and repeats the process. What is
the running time of her algorithm?

Projects
P-6.1

Implement the array list ADT by means of an extendable array used in a circular
fashion, so that insertions and deletions at the beginning and end of the array list
run in constant time.

P-6.2

Implement the array list ADT using a doubly linked list. Show experimentally
that this implementation is worse than the array-based approach.

P-6.3

Write a simple text editor, which stores and displays a string of characters using
the list ADT, together with a cursor object that highlights a position in this
string. Your editor should support the following operations:

left: Move cursor left one character (do nothing if at text end).

right: Move cursor right one character (do nothing if at text end).

cut: Delete the character right of the cursor (do nothing at text end).
paste c: Insert the character c just after the cursor.
P-6.4

Implement a phased favorites list. A phase consists of N accesses in the list, for
a given parameter N. During a phase, the list should maintain itself so that
elements are ordered by decreasing access counts during that phase. At the end

371

of a phase, it should clear all the access counts and start the next phase.
Experimentally, determine what are the best values of N for various list sizes.

P-6.5

Write a complete adapter class that implements the sequence ADT using a
Java.util _ArrayList object.

P-6.6

Implement the favorites list application using an array list instead of a list.
Compare it experimentally to the list-based implementation.

Chapter Notes

The concept of viewing data structures as collections (and other principles of object-
oriented design) can be found in object-oriented design books by Booch [14], Budd
[17], Golberg and Robson [40], and Liskov and Guttag [69]. Lists and iterators are
pervasive concepts in the Java Collections Framework. Our node list ADT is derived
from the "position™ abstraction introduced by Aho, Hopcroft, and Ullman [5], and the
list ADT of Wood [100]. Implementations of lists via arrays and linked lists are
discussed by Knuth [62].

372

Chapter 7 Trees

Contents
7.1
General Trees-.
266
7.1.1
Tree Definitions and Properties............
267
7.1.2

The Tree Abstract Data Type

373

270

7.1.3

Implementing a Tree
271

7.2

Tree Traversal Algorithms..._ .. . __.._..._._..
273

7.2.1

Depth and Height.
273

7.2.2

Preorder Traversal _.._......
276

7.2.3

Postorder Traversal
279

7.3

Binary Trees.o aoaaaaann
282

7.3.1

The Binary Tree ADT..
284

7.3.2

A Binary Tree Interface In Java............

284

374

7.3.3

Properties of Binary Trees
285

7.3.4

A Linked Structure for Binary Trees.........
287

7.3.5

An Array-List Representation of a Binary Tree....
296

7.3.6

Traversals of Binary Trees...............
298

7.3.7

The Template Method Pattern............

305

7.4

EXercises.

309

jJava.datastructures.net

7.1 General Trees

Productivity experts say that breakthroughs come by thinking "nonlinearly.” In this
chapter, we discuss one of the most important nonlinear data structures in
computing—trees. Tree structures are indeed a breakthrough in data organization, for
they allow us to implement a host of algorithms much faster than when using linear
data structures, such as list. Trees also provide a natural organization for data, and
consequently have become ubiquitous structures in file systems, graphical user
interfaces, databases, Web sites, and other computer systems.

375

It is not always clear what productivity experts mean by "nonlinear” thinking, but
when we say that trees are "nonlinear," we are referring to an organizational
relationship that is richer than the simple "before” and "after"” relationships between
objects in sequences. The relationships in a tree are hierarchical, with some objects
being "above™ and some "below" others. Actually, the main terminology for tree data
structures comes from family trees, with the terms "parent,” "child,” "ancestor," and
"descendent” being the most common words used to describe relationships. We show
an example of a family tree in Figure 7.1.

Figure 7.1: A family tree showing some
descendents of Abraham, as recorded in Genesis,
chapters 25-36.

7.1.1 Tree Definitions and Properties

A tree is an abstract data type that stores elements hierarchically. With the
exception of the top element, each element in a tree has a parent element and zero
or more children elements. A tree is usually visualized by placing elements inside
ovals or rectangles, and by drawing the connections between parents and children
with straight lines. (See Figure 7.2.) We typically call the top element the root of
the tree, but it is drawn as the highest element, with the other elements being
connected below (just the opposite of a botanical tree).

Figure 7.2: A tree with 17 nodes representing the
organization of a fictitious corporation. The root stores

376

Electronics R'Us. The children of the root store R&D,
Sales, Purchasing, and Manufacturing. The internal
nodes store Sales, International, Overseas, Electronics
R'Us, and Manufacturing.

Formal Tree Definition

Formally, we define a tree T as a set of nodes storing elements such that the nodes
have a parent-child relationship, that satisfies the following properties:

. If T is nonempty, it has a special node, called the root of T, that has no
parent.

. Each node v of T different from the root has a unique parent node w;
every node with parent w is a child of w.

Note that according to our definition, a tree can be empty, meaning that it doesn't
have any nodes. This convention also allows us to define a tree recursively, such
that a tree T is either empty or consists of a node r, called the root of T, and a
(possibly empty) set of trees whose roots are the children of r.

Other Node Relationships

377

Two nodes that are children of the same parent are siblings. A node v is external
if v has no children. A node v is internal if it has one or more children. External
nodes are also known as leaves.

Example 7.1: In most operating systems, files are organized hierarchically
into nested directories (also called folders), which are presented to the user in the
form of a tree. (See Figure 7.3.) More specifically, the internal nodes of the tree
are associated with directories and the external nodes are associated with regular
files. In the UNIX and Linux operating systems, the root of the tree is
appropriately called the "root directory,” and is represented by the symbol "/."

Figure 7.3: Tree representing a portion of a file
system.

A node u is an ancestor of a node v if u = v or u is an ancestor of the parent of v.
Conversely, we say that a node v is a descendent of a node u if u is an ancestor of
v. For example, in Figure 7.3, cs252/ is an ancestor of papers/, and pr3isa
descendent of cs016/. The subtree of T rooted at a node v is the tree consisting
of all the descendents of v in T (including v itself). In Figure 7.3, the subtree
rooted at cs016/ consists of the nodes cs016/, grades, homeworks/,
programs/, hwl, hw2, hw3, prl, pr2,andpr3.

378

Edges and Paths in Trees

An edge of tree T is a pair of nodes (u, v) such that u is the parent of v, or vice
versa. A path of T is a sequence of nodes such that any two consecutive nodes in
the sequence form an edge. For example, the tree in Figure 7.3 contains the path
(cs252/, projects/, demos/, market).

Example 7.2: The inheritance relation between classes in a Java program
forms a tree. The root, Java. lang. Object, is an ancestor of all other
classes. Each class, C, is a descendent of this root and is the root of a subtree of
the classes that extend C. Thus, there is a path from C to the root,

jJava. lang.Object, in this inheritance tree.

Ordered Trees

A tree is ordered if there is a linear ordering defined for the children of each node;
that is, we can identify the children of a node as being the first, second, third, and
so on. Such an ordering is usually visualized by arranging siblings left to right,
according to their ordering. Ordered trees typically indicate the linear order
among siblings by listing them in the correct order.

Example 7.3: The components of a structured document, such as a book, are
hierarchically organized as a tree whose internal nodes are parts, chapters, and
sections, and whose external nodes are paragraphs, tables, figures, and so on.
(See Figure 7.4.) The root of the tree corresponds to the book itself. We could, in
fact, consider expanding the tree further to show paragraphs consisting of
sentences, sentences consisting of words, and words consisting of characters.
Such a tree is an example of an ordered tree, because there is a well-defined
ordering among the children of each node.

Figure 7.4: An ordered tree associated with a book.

379

7.1.2 The Tree Abstract Data Type

The tree ADT stores elements at positions, which, as with positions in a list, are
defined relative to neighboring positions. The positions in a tree are its nodes, and
neighboring positions satisfy the parent-child relationships that define a valid tree.
Therefore, we use the terms "position™ and "node™ interchangeably for trees. As
with a list position, a position object for a tree supports the method:

element(): return the object stored at this position.

The real power of node positions in a tree, however, comes from the accessor
methods of the tree ADT that return and accept positions, such as the following:

root():

return the tree's root; an error occurs if the tree is empty.
parent (v):

return the parent of v; an error occurs if v is the root.
children(v):

return an iterable collection containing the children of node v.

If atree T is ordered, then the iterable collection, children(v), stores the children of
v in order. If v is an external node, then children(v) is empty.

In addition to the above fundamental accessor methods, we also include the
following query methods:

isinternal (v):

Test whether node v is internal.
i1sExternal (v):

Test whether node v is external.
i1sRoot(Vv):

Test whether node v is the root.

These methods make programming with trees easier and more readable, since we
can use them in the conditionals of 1 ¥ statements and whi I e loops, rather than

using a nonintuitive conditional.

380

There are also a number of generic methods a tree should probably support that are
not necessarily related to its tree structure, including the following:

size():

return the number of nodes in the tree.
ISsEmpty():

Test whether the tree has any nodes or not.

iterator():

return an iterator of all the elements stored at nodes of the tree.
positions():

return an iterable collection of all the nodes of the tree.
replace(v,e):

Replace with e and return the element stored at node v.

Any method that takes a position as an argument should generate an error condition
if that position is invalid. We do not define any specialized update methods for trees
here. Instead, we prefer to describe different tree update methods in conjunction
with specific applications of trees in subsequent chapters. In fact, we can imagine
several kinds of tree update operations beyond those given in this book.

7.1.3 Implementing a Tree

The Java interface shown in Code Fragment 7.1 represents the tree ADT. Error
conditions are handled as follows: Each method that can take a position as an
argument, may throw an Inval idPositionException, to indicate that the
position is invalid. Method parent throws a BoundaryViolationException
if it is called on the root. Method root throws an EmptyTreeException ifitis
called on an empty tree.

Code Fragment 7.1: Java interface Tree
representing the tree ADT. Additional update methods
may be added, depending on the application. We do
not include such methods in the interface, however.

381

A Linked Structure for General Trees

A natural way to realize a tree T is to use a linked structure, where we represent
each node v of T by a position object (see Figure 7.5a) with the following fields:
A reference to the element stored at v, a link to the parent of v, and a some kind of
collection (for example, a list or array) to store links to the children of v. If v is the
root of T, then the parent field of v is null. Also, we store a reference to the root of
T and the number of nodes of T in internal variables. This structure is
schematically illustrated in Figure 7.5b.

382

Figure 7.5: The linked structure for a general tree:

(a) the position object associated with a node; (b) the
portion of the data structure associated with a node

and its children.

Table 7.1 summarizes the performance of the implementation of a general tree
using a linked structure. The analysis is left as an exercise (C-7.25), but we note
that, by using a collection to store the children of each node v, we can implement
children(v) simply by returning a reference to this collection.

Table 7.1: Running times of the methods of an n-
node general tree implemented with a linked
structure. We let ¢, denote the number of children of a
node v. The space usage is O(n).

Operation

Time

size, IsEmpty

O(1)

iterator, positions

O(n)

383

replace

O(1)

root, parent

0(1)

children(v)

O(cv)

islnternal, isExternal, isRoot

o(1)

7.2 Tree Traversal Algorithms

In this section, we present algorithms for performing traversal computations on a tree
by accessing it through the tree ADT methods.

7.2.1 Depth and Height

Let v be a node of a tree T. The depth of v is the number of ancestors of v,
excluding v itself. For example, in the tree of Figure 7.2, the node storing
International has depth 2. Note that this definition implies that the depth of the root
of TisO.

The depth of a node v can also be recursively defined as follows:
. If v is the root, then the depth of vis O
. Otherwise, the depth of v is one plus the depth of the parent of v.

Based on this definition, we present a simple, recursive algorithm, depth, in Code
Fragment 7.2, for computing the depth of a node v in T. This method calls itself
recursively on the parent of v, and adds 1 to the value returned. A simple Java
implementation of this algorithm is shown in Code Fragment 7.3.

Code Fragment 7.2: Algorithm for computing the
depth of a node vin a tree T.

384

Code Fragment 7.3: Method depth written in Java.

The running time of algorithm depth(T, v) is O(d,), where d, denotes the depth of
the node v in the tree T, because the algorithm performs a constant-time recursive
step for each ancestor of v. Thus, algorithm depth (T, v) runs in O(n) worst-case
time, where n is the total number of nodes of T, since a node of T may have depth n
— 1 in the worst case. Although such a running time is a function of the input size, it
IS more accurate to characterize the running time in terms of the parameter dy, since
this parameter can be much smaller than n.

Height
The height of a node v in a tree T is also defined recursively:
. If v is an external node, then the height of vis 0
. Otherwise, the height of v is one plus the maximum height of a child of v.

The height of a nonempty tree T is the height of the root of T. For example, the
tree of Figure 7.2 has height 4. In addition, height can also be viewed as follows.

Proposition 7.4: The height of a nonempty tree T is equal to the maximum
depth of an external node of T.

We leave the justification of this fact to an exercise (R-7.6). We present here an
algorithm, heightl, shown in Code Fragment 7.4 and implemented in Java in
Code Fragment 7.5, for computing the height of a nonempty tree T based on the
proposition above and the algorithm depth from Code Fragment 7.2.

385

Code Fragment 7.4: Algorithm heightl for
computing the height of a nonempty tree T. Note that
this algorithm calls algorithm depth (Code Fragment
1.2).

Code Fragment 7.5: Method heightl written in

Java. Note the use of the max method of class
jJava.lang. Math.

Unfortunately, algorithm height1 is not very efficient. Since heightl calls
algorithm depth (v) on each external node v of T, the running time of heightl is
given by O(n + X, (1 + dy)), where n is the number of nodes of T, d, is the depth
of node v, and E is the set of external nodes of T. In the worst case, the sumX, (1 +
d) is proportional to n®. (See Exercise C-7.6.) Thus, algorithm height1 runs in
O(n?) time.

Algorithm height2, shown in Code Fragment 7.6 and implemented in Java in
Code Fragment 7.7, computes the height of tree T in a more efficient manner by
using the recursive definition of height.

386

Code Fragment 7.6: Algorithm height2 for

computing the height of the subtree of tree T rooted
at a node v.

Code Fragment 7.7: Method height2 written in
Java.

Algorithm height2 is more efficient than heightl (from Code Fragment 7.4).
The algorithm is recursive, and, if it is initially called on the root of T, it will
eventually be called on each node of T. Thus, we can determine the running time
of this method by summing, over all the nodes, the amount of time spent at each
node (on the nonrecursive part). Processing each node in children(v) takes O(cy)
time, where ¢, denotes the number of children of node v. Also, the whi e loop
has c, iterations and each iteration of the loop takes O(1) time plus the time for
the recursive call on a child of v. Thus, algorithm height2 spends O(1 + c,)
time at each node v, and its running time is O(2,(1 + c¢y)). In order to complete the
analysis, we make use of the following property.

Proposition 7.5: LetT be a tree with n nodes, and let ¢, denote the

number of children of a node v of T. Then, summing over the vertices in T, 2\,c,=
n—1.

387

Justification: Each node of T, with the exception of the root, is a child of
another node, and thus contributes one unit to the above sum.

By Proposition 7.5, the running time of algorithm he 1ght2, when called on the
root of T, is O(n), where n is the number of nodes of T.

7.2.2 Preorder Traversal

A traversal of a tree T is a systematic way of accessing, or "visiting," all the nodes
of T. In this section, we present a basic traversal scheme for trees, called preorder
traversal. In the next section, we will study another basic traversal scheme, called
postorder traversal.

In a preorder traversal of a tree T, the root of T is visited first and then the subtrees
rooted at its children are traversed recursively. If the tree is ordered, then the
subtrees are traversed according to the order of the children. The specific action
associated with the "visit" of a node v depends on the application of this traversal,
and could involve anything from incrementing a counter to performing some
complex computation for v. The pseudo-code for the preorder traversal of the
subtree rooted at a node v is shown in Code Fragment 7.8. We initially call this
algorithm with preorder(T, T.root()).

Code Fragment 7.8: Algorithm preorder for
performing the preorder traversal of the subtree of a
tree T rooted at a node v.

The preorder traversal algorithm is useful for producing a linear ordering of the
nodes of a tree where parents must always come before their children in the
ordering. Such orderings have several different applications. We explore a simple
instance of such an application in the next example.

Figure 7.6: Preorder traversal of an ordered tree,
where the children of each node are ordered from left
to right.

388

Example 7.6: The preorder traversal of the tree associated with a document, as
in Example 7.3, examines an entire document sequentially, from beginning to end.
If the external nodes are removed before the traversal, then the traversal examines

the table of contents of the document. (See Figure 7.6.)

The preorder traversal is also an efficient way to access all the nodes of a tree. To
justify this, let us consider the running time of the preorder traversal of a tree T with
n nodes under the assumption that visiting a node takes O(1) time. The analysis of
the preorder traversal algorithm is actually similar to that of algorithm height2
(Code Fragment 7.7), given in Section 7.2.1. At each node v, the nonrecursive part
of the preorder traversal algorithm requires time O(1 + ¢,), where c, is the number
of children of v. Thus, by Proposition 7.5, the overall running time of the preorder
traversal of T is O(n).

Algorithm toStringPreorder (T, V), implemented in Java in Code
Fragment 7.9, performs a preorder printing of the subtree of a node v of T, that is, it
performs the preorder traversal of the subtree rooted at v and prints the element
stored at a node when the node is visited. Recall that, for an ordered tree T, method
T.children(Vv) returns an iterable collection that accesses the children of v in
order.

Code Fragment 7.9: Method toStringPreorder(T, v)
that performs a preorder printing of the elements in the
subtree of node v of T.

389

There is an interesting application of the preorder traversal algorithm that produces
a string representation of an entire tree. Let us assume again that for each element e
stored in tree T, calling e . toString() returns a string associated with e. The
parenthetic string representation P(T) of tree T is recursively defined as follows. If
T consists of a single node v, then

P(T) =v.element().toString().
Otherwise,
P(T)=v.element().toString(Q) +" ("+P(Ty) +"" + - +", "+ P(Ty) +")",

where v is the root of T and T4, T»,..., T« are the subtrees rooted at the children of v,
which are given in order if T is an ordered tree.

Note that the above definition of P(T) is recursive. Also, we are using "+" here to
denote string concatenation. The parenthetic representation of the tree of Figure 7.2
is shown in Figure 7.7.

Figure 7.7: Parenthetic representation of the tree of
Figure 7.2. Indentation, line breaks and spaces have
been added for clarity.

Note that, technically speaking, there are some computations that occur between
and after the recursive calls at a node's children in the above algorithm. We still
consider this algorithm to be a preorder traversal, however, since the primary action
of printing a node's contents occurs prior to the recursive calls.

The Java method parentheticRepresentation, shown in Code Fragment
7.10, is a variation of method toStringPreorder (Code Fragment 7.9). It
implements the definition given above to output a parenthetic string representation
of a tree T. As with the method toStringPreorder, the method
parentheticRepresentation makes use of the toString method that
is defined for every Java object. In fact, we can view this method as a kind of
toString() method for tree objects.

390

Code Fragment 7.10: Algorithm
parentheticRepresentation. Note the use of the +
operator to concatenate two strings.

We explore a modification to Code Fragment 7.10 in Exercise R-7.9, to display a
tree in a fashion more closely matching that given in Figure 7.7.

7.2.3 Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. This
algorithm can be viewed as the opposite of the preorder traversal, because it
recursively traverses the subtrees rooted at the children of the root first, and then
visits the root. It is similar to the preorder traversal, however, in that we use it to
solve a particular problem by specializing an action associated with the "visit" of a
node v. Still, as with the preorder traversal, if the tree is ordered, we make recursive
calls for the children of a node v according to their specified order. Pseudo-code for
the postorder traversal is given in Code Fragment 7.11.

Code Fragment 7.11: Algorithm postorder for
performing the postorder traversal of the subtree of a
tree T rooted at a node v.

391

The name of the postorder traversal comes from the fact that this traversal method
will visit a node v after it has visited all the other nodes in the subtree rooted at v.

(See Figure 7.8.)
Figure 7.8: Postorder traversal of the ordered tree

of Figure 7.6.

The analysis of the running time of a postorder traversal is analogous to that of a
preorder traversal. (See Section 7.2.2.) The total time spent in the nonrecursive
portions of the algorithm is proportional to the time spent visiting the children of
each node in the tree. Thus, a postorder traversal of a tree T with n nodes takes O(n)
time, assuming that visiting each node takes O(1) time. That is, the postorder
traversal runs in linear time.

As an example of postorder traversal, we show a Java method
toStringPostorder in Code Fragment 7.12, which performs a postorder
traversal of a tree T. This method prints the element stored at a node when it is
visited.

Code Fragment 7.12: Method
toStringPostorder (T, V) that performs a
postorder printing of the elements in the subtree of
node v of T. The method implicitly calls toString on
elements, when they are involved in a string
concatenation operation.

392

The postorder traversal method is useful for solving problems where we wish to
compute some property for each node v in a tree, but computing that property for v
requires that we have already computed that same property for v's children. Such an
application is illustrated in the following example.

Example 7.7: Consider a file system tree T, where external nodes represent
files and internal nodes represent directories (Example 7.1). Suppose we want to
compute the disk space used by a directory, which is recursively given by the sum
of:

. The size of the directory itself
. The sizes of the files in the directory
. The space used by the children directories.

(See Figure 7.9.) This computation can be done with apostorder traversal of tree T.
After the subtrees of an internal node v have been traversed, we compute the space
used by v by adding the sizes of the directory v itself and of the files contained in v

to the space used by each internal child of v, which was computed by the recursive

postorder traversals of the children of v.

A Recursive Java Method for Computing Disk Space

Motivated by Example 7.7, Java method diskSpace, shown in Code Fragment 7.13,
performs a postorder traversal of a file-system tree T, printing the name and disk
space used by the directory associated with each internal node of T. When called on
the root of tree T, diskSpace runs in time O(n), where n is the number of nodes of T,
provided the auxiliary methods name and size take O(1) time.

Figure 7.9: The tree of Figure 7.3 representing a file
system, showing the name and size of the associated
file/directory inside each node, and the disk space used
by the associated directory above each internal node.

393

Code Fragment 7.13: Method diskSpace prints
the name and disk space used by the directory
associated with each internal node of a file-system tree.
This method calls the auxiliary methods name and size,
which should be defined to return the name and size of
the file/directory associated with a node.

Other Kinds of Traversals

394

Although the preorder and postorder traversals are common ways of visiting the
nodes of a tree, we can also imagine other traversals. For example, we could
traverse a tree so that we visit all the nodes at depth d before we visit the nodes at
depth d + 1. Consecutively numbering the nodes of a tree T as we visit them in
this traversal is called the level numbering of the nodes of T (see Section 7.3.5).

7.3 Binary Trees

A binary tree is an ordered tree with the following properties:

1. Every node has at most two children.
2. Each child node is labeled as being either a left child or a right child.
3. A left child precedes a right child in the ordering of children of a node.

The subtree rooted at a left or right child of an internal node v is called a left subtree
or right subtree, respectively, of v. A binary tree is proper if each node has either
zero or two children. Some people also refer to such trees as being full binary trees.
Thus, in a proper binary tree, every internal node has exactly two children. A binary
tree that is not proper is improper.

Example 7.8: Animportant class of binary trees arises in contexts where we wish
to represent a number of different outcomes that can result from answering a series of
yes-or-no questions. Each internal node is associated with a question. Starting at the
root, we go to the left or right child of the current node, depending on whether the
answer to the question is "Yes" or "No." With each decision, we follow an edge from
a parent to a child, eventually tracing a path in the tree from the root to an external
node. Such binary trees are known as decision trees, because each external node v in
such a tree represents a decision of what to do if the questions associated with v's
ancestors are answered in a way that leads to v. A decision tree is a proper binary
tree. Figure 7.10 illustrates a decision tree that provides recommendations to a
prospective investor.

Figure 7.10: A decision tree providing investment
advice.

395

Example 7.9: An arithmetic expression can be represented by a binary tree
whose external nodes are associated with variables or constants, and whose internal
nodes are associated with one of the operators +, —, %, and /. (See Figure 7.11.)
Each node in such a tree has a value associated with it.

« |f a node is external, then its value is that of its variable or constant.

« If a node is internal, then its value is defined by applying its operation to the
values of its children.

An arithmetic expression tree is a proper binary tree, since each operator +, —, x, and /
takes exactly two operands. Of course, if we were to allow for unary operators, like
negation (-), as in "—x," then we could have an improper binary tree.

Figure 7.11: A binary tree representing an arithmetic
expression. This tree represents the expression ((((3 + 1)
x 3)/((9 =5) +2)) - ((3 x (7 —=4)) + 6)). The value
associated with the internal node labeled "/" is 2.

396

A Recursive Binary Tree Definition

Incidentally, we can also define a binary tree in a recursive way such that a binary
tree is either empty or consists of:

. A node r, called the root of T and storing an element
. A binary tree, called the left subtree of T
. A binary tree, called the right subtree of T.

We discuss some of the specialized topics for binary trees below.

7.3.1 The Binary Tree ADT

As an abstract data type, a binary tree is a specialization of a tree that supports three
additional accessor methods:

left(v):

Return the left child of v; an error condition occurs if v has no left child.
right(v):

Return the right child of v; an error condition occurs if v has no right child.
hasLeft(v):

Test whether v has a left child.

397

hasRight(v):
Test whether v has a right child.

Just as in Section 7.1.2 for the tree ADT, we do not define specialized update
methods for binary trees here. Instead, we will consider some possible update
methods when we describe specific implementations and applications of binary
trees.

7.3.2 A Binary Tree Interface in Java

We model a binary tree as an abstract data type that extends the tree ADT and adds
the three specialized methods for a binary tree. In Code Fragment 7.14, we show the
simple Java interface we can define using this approach. By the way, since binary
trees are ordered trees, the iterable collection returned by method children(v)
(inherited from the Tree interface) stores the left child of v before the right child of
v

Code Fragment 7.14: Java interface Binary Tree
for the binary tree ADT. Interface Binary Tree
extends interface Tree (Code Fragment 7.1).

7.3.3 Properties of Binary Trees

Binary trees have several interesting properties dealing with relationships between
their heights and number of nodes. We denote the set of all nodes of a tree T at the

398

same depth d as the level dof T. In a binary tree, level 0 has at most one node (the
root), level 1 has at most two nodes (the children of the root), level 2 has at most
four nodes, and so on. (See Figure 7.12.) In general, level d has at most 2° nodes.

Figure 7.12: Maximum number of nodes in the levels
of a binary tree.

We can see that the maximum number of nodes on the levels of a binary tree grows
exponentially as we go down the tree. From this simple observation, we can derive
the following properties relating the height of a binary T with its number of nodes.
A detailed justification of these properties is left as an exercise (R-7.15).

Proposition 7.10: Let T be a nonempty binary tree, and let n, ng, n; and h
denote the number of nodes, number of external nodes, number of internal nodes,
and height of T, respectively. Then T has the following properties:

1. h+#l<n<2™-1
2. 1<ng<2"

3. h<n<2,—1

4, log(n+1)-1 <h<n-1.

Also, if T is proper, then T has the following properties:

399

1. 2h+1 < n<2Mi-1
2. h+1<ng<2"
3. h<n,<2"-1

4, log(n+1)-1<h<(n-1)/2.

Relating Internal Nodes to External Nodes in a Proper
Binary Tree

In addition to the binary tree properties above, we also have the following
relationship between the number of internal nodes and external nodes in a proper
binary tree.

Proposition 7.11: Inanonempty proper binary tree T, with ng external
nodes and n, internal nodes, we have ne =n; + 1.

Justification: We justify this proposition by removing nodes from T and
dividing them up into two "piles”, an internal-node pile and an external-node pile,
until T becomes empty. The piles are initially empty. At the end, the external-
node pile will have one more node than the internal-node pile. We consider two
cases:

Case 1: If T has only one node v, we remove v and place it on the external-node
pile. Thus, the external-node pile has one node and the internal-node pile is
empty.

Case 2: Otherwise (T has more than one node), we remove from T an (arbitrary)
external node w and its parent v, which is an internal node. We place w on the
external-node pile and v on the internal-node pile. If v has a parent u, then we
reconnect u with the former sibling z of w, as shown in Figure 7.13. This
operation, removes one internal node and one external node, and leaves the tree
being a proper binary tree.

Repeating this operation, we eventually are left with a final tree consisting of a
single node. Note that the same number of external and internal nodes have been
removed and placed on their respective piles by the sequence of operations
leading to this final tree. Now, we remove the node of the final tree and we place
it on the external-node pile. Thus, the the external-node pile has one more node
than the internal-node pile.

400

Figure 7.13: Operation that removes an external
node and its parent node, used in the justification of
Proposition 7.11.

Note that the above relationship does not hold, in general, for improper binary
trees and nonbinary trees, although there are other interesting relationships that
can hold, as we explore in an exercise (C-7.7).

7.3.4 A Linked Structure for Binary
Trees

As with a general tree, a natural way to realize a binary tree T is to use a linked
structure, where we represent each node v of T by a position object (see Figure
7.14a) with fields providing references to the element stored at v and to the position
objects associated with the children and parent of v. If v is the root of T, then the
parent field of v is null. If v has no left child, then the left field of v is null. If v has
no right child, then the right field of v is null. Also, we store the number of nodes of
T in a variable, called size. We show the linked structure representation of a binary

tree in Figure 7.14b.
Figure 7.14: A node (a) and a linked structure (b) for

representing a binary tree.

401

Java Implementation of a Binary Tree Node

402

We use a Java interface BTPos1tion (not shown) to represent a node of a
binary tree. This interfaces extends Position, thus inheriting method element,
and has additional methods for setting the element stored at the node
(setElement) and for setting and returning the left child (setLeft and
getLeft), right child (setRight and getRight), and parent (setParent
and getParent) of the node. Class BTNode (Code Fragment 7.15) implements
interface BTPos1tion by an object with fields element, left, right, and parent,
which, for a node v, reference the element at v, the left child of v, the right child of
v, and the parent of v, respectively.

Code Fragment 7.15: Auxiliary class BTNode for
implementing binary tree nodes.

403

Java Implementation of the Linked Binary Tree Structure

In Code Fragments 7.16-7.18, we show portions of class Linked Binary

Tree that implements the Binary Tree interface (Code Fragment 7.14)
using a linked data structure. This class stores the size of the tree and a reference
to the BTNode object associated with the root of the tree in internal variables. In

404

addition to the Binary Tree interface methods, LinkedBinaryTree has
various other methods, including accessor method sibling(Vv), which returns
the sibling of a node v, and the following update methods:

addRoot(e):

Create and return a new node r storing element e and make r the root of
the tree; an error occurs if the tree is not empty.

insertLeft(v,e):

Create and return a new node w storing element e, add w as the the left
child of v and return w; an error occurs if v already has a left child.

insertRight(v,e):

Create and return a new node z storing element e, add z as the the right
child of v and return z; an error occurs if v already has a right child.

remove(Vv):

Remove node v, replace it with its child, if any, and return the element
stored at v; an error occurs if v has two children.

attach(v,T1,T2):

Attach T, and T, respectively, as the left and right subtrees of the
external node v; an error condition occurs if v is not external.

Class LinkedBinaryTree has a constructor with no arguments that returns an
empty binary tree. Starting from this empty tree, we can build any binary tree by
creating the first node with method addRoot and repeatedly applying the
insertLeft and insertRight methods and/or the attach method. Likewise,
we can dismantle any binary tree T using the remove operation, ultimately
reducing such a tree T to an empty binary tree.

When a position v is passed as an argument to one of the methods of class
LinkedBinaryTree, its validity is checked by calling an auxiliary helper
method, checkPosition(Vv). A list of the nodes visited in a preorder traversal
of the tree is constructed by recursive method preorderPositions. Error

conditions are indicated by throwing exceptions Invalid Position
Exception, BoundaryViolation Exception,
EmptyTreeException, and NonEmptyTreeException.

Code Fragment 7.16: Portions of the Linked
Binary Tree class, which implements the Binary
Tree interface. (Continues in Code Fragment 7.17.)

405

406

Code Fragment 7.17: Portions of the Linked
Binary Tree class, which implements the Binary
Tree interface. (Continues in Code Fragment 7.18))

407

408

Code Fragment 7.18: Portions of the Linked
Binary Tree class, which implements the Binary
Tree interface. (Continues in Code Fragment 7.19))

409

Code Fragment 7.19: Portions of the
LinkedBinaryTree class, which implements the

410

Binary Tree interface. (Continues in Code Fragment
7.20.)

Code Fragment 7.20: Portions of the Linked
Binary Tree class, which implements the Binary
Tree interface. (Continued from Code Fragment 7.19.)

411

Performance of the Linked Binary Tree Implementation

Let us now analyze the running times of the methods of class Linked Binary
Tree, which uses a linked structure representation:

412

. Methods size() and 1sEmpty () use an instance variable storing the
number of nodes of T, and each take O(1) time.

. The accessor methods root, left, right, sibling and parent take O(1) time.
. Method replace(v,e) takes O(1) time.

. Methods iterator() and positions() are implemented by performing a pre-
order traversal of the tree (using the auxiliary method preorderPositions). The
nodes visited by the traversal are stored in a position list implemented by class
NodePositionList (Section 6.2.4) and the output iterator is generated with
method 1terator () of class NodePositionList. Methods
1terator () and positions() take O(n) time and methods hasNext() and
next() of the returned iterators run in O(1) time.

. Method children uses a similar approach to construct the returned iterable
collection, but it runs in O(1) time, since there are at most two children for any
node in a binary tree.

. The update methods 1nsertLeft, insertRight, attach, and
remove all run in O(1) time, as they involve constant-time manipulation of a
constant number of nodes.

Considering the space required by this data structure for a tree with n nodes, note
that there is an object of class BTNode (Code Fragment 7.15) for every node of
tree T. Thus, the overall space requirement is O(n). Table 7.2 summarizes the
performance of the linked structure implementation of a binary tree.

Table 7.2: Running times for the methods of an n-
node binary tree implemented with a linked structure.
Methods hasNext() and next() of the iterators returned
by 1terator(), positions().iterator(), and
children(v).iterator() runin O(1) time. The
space usage is O(n).

Operation

Time

size, iIsEmpty

0(1)

iterator, positions

413

O(n)

replace

O(1)

root, parent, children, left, right, sibling
0(1)

hasLeft, hasRight, islInternal, i1sExternal,
isRoot

O(1)
insertLeft, insertRight, attach, remove
O(1)

7.3.5 An Array-List Representation of a
Binary Tree

An alternative representation of a binary tree T is based on a way of numbering the
nodes of T. For every node v of T, let p(v) be the integer defined as follows.

. If v is the root of T, then p(v) = 1.
. If v is the left child of node u, then p(v) = 2p(u).
. If v is the right child of node u, then p(v) = 2p(u) + 1.

The numbering function p is known as a level numbering of the nodes in a binary
tree T, for it numbers the nodes on each level of T in increasing order from left to
right, although it may skip some numbers. (See Figure 7.15.)

Figure 7.15: Binary tree level numbering: (a) general
scheme; (b) an example.

414

The level numbering function p suggests a representation of a binary tree T by
means of an array list S such that node v of T is the element of S at index p(v). As
mentioned in the previous chapter, we realize the array list S by means of an
extendable array. (See Section 6.1.4.) Such an implementation is simple and
efficient, for we can use it to easily perform the methods root, parent,
left, right, hasLeft, hasRight, islnternal, isExternal,
and 1sRoot by using simple arithmetic operations on the numbers p(v) associated
with each node v involved in the operation. We leave the details of this
implementation as an exercise (R-7.26).

We show an example array-list representation of a binary tree in Figure 7.16.
Figure 7.16: Representation of a binary tree T by
means of an array list S.

415

Let n be the number of nodes of T, and let pM be the maximum value of p(v) over
all the nodes of T. The array list S has size N = pM + 1 since the element of S at
index O is not associated with any node of T. Also, S will have, in general, a number
of empty elements that do not refer to existing nodes of T. In fact, in the worst case,
N = 2", the justification of which is left as an exercise (R-7.23). In Section 8.3, we
will see a class of binary trees, called "heaps"” for which N = n + 1. Thus, in spite of
the worst-case space usage, there are applications for which the array-list
representation of a binary tree is space efficient. Still, for general binary trees, the
exponential worst-case space requirement of this representation is prohibitive.

Table 7.3 summarizes running times of the methods of a binary tree implemented
with an array list. We do not include any tree update methods here.

Table 7.3: Running times for a binary tree T
implemented with an array list S. We denote the
number of nodes of T with n, and N denotes the size of
S. The space usage is O(N), which is O(2") in the worst
case.

Operation

416

Time

size, IsSEmpty

0(1)

iterator, positions

O(n)

replace

0O(1)

root, parent, children, left, right

O(1)

hasLeft, hasRight, islnternal, i1sExternal, i1sRoot

O(1)

7.3.6 Traversals of Binary Trees

As with general trees, binary tree computations often involve traversals.

Building an Expression Tree

Consider the problem of constructing an expression tree from a fully
parenthesized arithmetic expression of size n. (Recall Example 7.9 and Code
Fragment 7.24.) In Code Fragment 7.21, we give algorithm bui ldExpression
for building such an expression tree, assuming all arithmetic operations are binary
and variables are not parenthesized. Thus, every parenthesized subexpression
contains an operator in the middle. The algorithm uses a stack S while scanning
the input expression E looking for variables, operators, and right parentheses.

. When we see a variable or operator x, we create a single-node binary tree
T, whose root stores x and we push T on the stack.

. When we see a right parenthesis, ")", we pop the top three trees from the
stack S, which represent a subexpression (E; 0 E;). We then attach the trees for
E1 and E; to the one for o, and push the resulting tree back on S.

We repeat this until the expression E has been processed, at which time the top
element on the stack is the expression tree for E. The total running time is O(n).

417

Code Fragment 7.21: Algorithm
bui ldExpression.

Preorder Traversal of a Binary Tree

Since any binary tree can also be viewed as a general tree, the preorder traversal
for general trees (Code Fragment 7.8) can be applied to any binary tree. We can
simplify the algorithm in the case of a binary tree traversal, however, as we show

in Code Fragment 7.22.
Code Fragment 7.22: Algorithm binaryPreorder

for performing the preorder traversal of the subtree of
a binary tree T rooted at a node v.

418

As is the case for general trees, there are many applications of the preorder
traversal for binary trees.

Postorder Traversal of a Binary Tree

Analogously, the postorder traversal for general trees (Code Fragment 7.11) can
be specialized for binary trees, as shown in Code Fragment 7.23.

Code Fragment 7.23: Algorithm
binaryPostorder for performing the postorder

traversal of the subtree of a binary tree T rooted at
node v.

Expression Tree Evaluation

The postorder traversal of a binary tree can be used to solve the expression tree
evaluation problem. In this problem, we are given an arithmetic expression tree,
that is, a binary tree where each external node has a value associated with it and
each internal node has an arithmetic operation associated with it (see Example
7.9), and we want to compute the value of the arithmetic expression represented
by the tree.

Algorithm evaluateExpression, given in Code Fragment 7.24, evaluates
the expression associated with the subtree rooted at a node v of an arithmetic
expression tree T by performing a postorder traversal of T starting at v. In this

419

case, the "visit" action consists of performing a single arithmetic operation. Note
that we use the fact that an arithmetic expression tree is a proper binary tree.

Code Fragment 7.24: Algorithm
evaluateExpression for evaluating the expression
represented by the subtree of an arithmetic expression
tree T rooted at node v.

The expression-tree evaluation application of the postorder traversal provides an
O(n)-time algorithm for evaluating an arithmetic expression represented by a
binary tree with n nodes. Indeed, like the general postorder traversal, the
postorder traversal for binary trees can be applied to other "bottom-up™ evaluation
problems (such as the size computation given in Example 7.7) as well.

Inorder Traversal of a Binary Tree

An additional traversal method for a binary tree is the inorder traversal. In this
traversal, we visit a node between the recursive traversals of its left and right
subtrees. The inorder traversal of the subtree rooted at a node v in a binary tree T
is given in Code Fragment 7.25.

Code Fragment 7.25: Algorithm inorder for
performing the inorder traversal of the subtree of a
binary tree T rooted at a node v.

420

The inorder traversal of a binary tree T can be informally viewed as visiting the
nodes of T "from left to right." Indeed, for every node v, the inorder traversal
visits v after all the nodes in the left subtree of v and before all the nodes in the
right subtree of v. (See Figure 7.17.)

Figure 7.17: Inorder traversal of a binary tree.

Binary Search Trees

Let S be a set whose elements have an order relation. For example, S could be a
set of integers. A binary search tree for S is a proper binary tree T such that

. Each internal node v of T stores an element of S, denoted with x(v).

. For each internal node v of T, the elements stored in the left subtree of v
are less than or equal to x(v) and the elements stored in the right subtree of v are
greater than or equal to x(v).

. The external nodes of T do not store any element.

An inorder traversal of the internal nodes of a binary search tree T visits the
elements in nondecreasing order. (See Figure 7.18.)

421

Figure 7.18: A binary search tree storing integers.
The blue solid path is traversed when searching
(successfully) for 36. The blue dashed path is traversed
when searching (unsuccessfully) for 70.

We can use a binary search tree T for set S to find whether a given search value y
isin S, by traversing a path down the tree T, starting at the root. (See Figure 7.18.)
At each internal node v encountered, we compare our search value y with the
element x(v) stored at v. If y = x(v), then the search continues in the left subtree of
v. If y = x(v), then the search terminates successfully. I1f y > x(v), then the search
continues in the right subtree of v. Finally, if we reach an external node, the
search terminates unsuccessfully. In other words, a binary search tree can be
viewed as a binary decision tree (recall Example 7.8), where the question asked at
each internal node is whether the element at that node is less than, equal to, or
larger than the element being searched for. Indeed, it is exactly this
correspondence to a binary decision tree that motivates restricting binary search
trees to be proper binary trees (with "place-holder"” external nodes).

Note that the running time of searching in a binary search tree T is proportional to
the height of T. Recall from Proposition 7.10 that the height of a proper binary
tree with n nodes can be as small as log(n + 1) — 1 or as large as (n — 1)/2. Thus,
binary search trees are most efficient when they have small height. We illustrate
an example search operation in a binary search tree in Figure 7.18, and we study
binary search trees in more detail in Section 10.1.

Using Inorder Traversal for Tree Drawing

422

The inorder traversal can also be applied to the problem of computing a drawing
of a binary tree. We can draw a binary tree T with an algorithm that assigns x- and
y-coordinates to a node v of T using the following two rules (see Figure 7.19):

. X(v) is the number of nodes visited before v in the inorder traversal of T
. y(v) is the depth of vin T.

In this application, we take the convention common in computer graphics that x-
coordinates increase left to right and y-coordinates increase top to bottom. So the
origin is in the upper left corner of the computer screen.

Figure 7.19: An inorder drawing of a binary tree.

The Euler Tour Traversal of a Binary Tree

The tree-traversal algorithms we have discussed so far are all forms of iterators.
Each traversal visits the nodes of a tree in a certain order, and is guaranteed to
visit each node exactly once. We can unify the tree-traversal algorithms given
above into a single framework, however, by relaxing the requirement that each
node be visited exactly once. The resulting traversal method is called the Euler
tour traversal, which we study next. The advantage of this traversal is that it
allows for more general kinds of algorithms to be expressed easily.

The Euler tour traversal of a binary tree T can be informally defined as a "walk"
around T, where we start by going from the root toward its left child, viewing the
edges of T as being "walls" that we always keep to our left. (See Figure 7.20.)
Each node v of T is encountered three times by the Euler tour:

. "On the left" (before the Euler tour of v's left subtree)
. "From below" (between the Euler tours of v's two subtrees)

. "On the right" (after the Euler tour of v's right subtree).

423

if v is external, then these three "visits" actually all happen at the same time. We
describe the Euler tour of the subtree rooted at v in Code Fragment 7.26.

Figure 7.20: Euler tour traversal of a binary tree.

Code Fragment 7.26: The Euler tour of the subtree
of a binary tree T rooted at v.

The running time of the Euler tour traversal of an n-node tree is easy to analyze,
assuming each visit action takes O(1) time. Since we spend a constant amount of
time at each node of the tree during the traversal, the overall running time is O(n).

The preorder traversal of a binary tree is equivalent to an Euler tour traversal such
that each node has an associated "visit™" action occur only when it is encountered
on the left. Likewise, the inorder and postorder traversals of a binary tree are
equivalent to an Euler tour such that each node has an associated "visit" action
occur only when it is encountered from below or on the right, respectively. The
Euler tour traversal extends the preorder, inorder, and postorder traversals, but it
can also perform other kinds of traversals. For example, suppose we wish to
compute the number of descendents of each node v in an n-node binary tree. We

424

start an Euler tour by initializing a counter to 0, and then increment the counter
each time we visit a node on the left. To determine the number of descendents of
a node v, we compute the difference between the values of the counter when v is
visited on the left and when it is visited on the right, and add 1. This simple rule
gives us the number of descendents of v, because each node in the subtree rooted
at v is counted between v's visit on the left and v's visit on the right. Therefore, we
have an O(n)-time method for computing the number of descendents of each
node.

Another application of the Euler tour traversal is to print a fully parenthesized
arithmetic expression from its expression tree (Example 7.9). Algorithm printEx-
pression, shown in Code Fragment 7.27, accomplishes this task by performing the
following actions in an Euler tour:

. "On the left" action: if the node is internal, print "("
. "From below" action: print the value or operator stored at the node
. "On the right" action: if the node is internal, print ")".

Code Fragment 7.27: An algorithm for printing the
arithmetic expression associated with the subtree of
an arithmetic expression tree T rooted at v.

7.3.7 The Template Method Pattern

425

The tree traversal methods described above are actually examples of an interesting
object-oriented software design pattern, the template method pattern. The template
method pattern describes a generic computation mechanism that can be specialized
for a particular application by redefining certain steps. Following the template
method pattern, we design an algorithm that implements a generic Euler tour
traversal of a binary tree. This algorithm, called templateEulerTour, is shown
in Code Fragment 7.28.

Code Fragment 7.28: An Euler tour traversal of the
subtree of a binary tree T rooted at a node v, following
the template method pattern.

When called on a node v, method templateEulerTour calls several other
auxiliary methods at different phases of the traversal. Namely, it

. Creates a local variable r of type TourResul t, which is used to store
intermediate results of the computation and has fields left, right and out

. Calls auxiliary method visitLeft(T,v,r), which performs the
computations associated with encountering the node on the left

. If v has a left child, recursively calls itself on the left child of v and stores
the returned value inr.left

. Calls auxiliary method visitBelow(T, v, r), which performs the
computations associated with encountering the node from below

. If v has a right child, recursively calls itself on the right child and stores
the returned value in r.right

426

. Calls auxiliary method visitRight(T, v, r), which performs the
computations associated with encountering the node on the right

. Returns r.out.

Method templateEulerTour can be viewed as a template or "skeleton™ of an
Euler tour. (See Code Fragment 7.28.)

Java Implementation

Java class EulerTour, shown in Code Fragment 7.29, implements an Euler tour
traversal using the template method pattern. The recursive traversal is performed
by method eulerTour. The auxiliary methods called by eulerTour are
empty place holders. That is, they have an empty body or they just return nul I,
Class EulerTour is abstract and thus cannot be instantiated. It contains an
abstract method, called execute, which needs to be specified in the concrete
subclass of EulerTour. Class TourResul t, with fields left, right, and
out, is not shown.

Code Fragment 7.29: Java class EulerTour
defining a generic Euler tour of a binary tree. This class
realizes the template method pattern and must be
specialized in order to get an interesting computation.

427

The class, EulerTour, itself does not perform any useful computation.
Nevertheless, we can extend it and override the empty auxiliary methods to do
useful tasks. We illustrate this concept using arithmetic expression trees (see
Example 7.9). We assume that an arithmetic expression tree has objects of type

428

ExpressionTerm at each node. Class ExpressionTerm has subclasses
ExpressionVariable (for variables) and ExpressionOperator (for
operators). In turn, class ExpressionOperator has subclasses for the
arithmetic operators, such as AdditionOperator and
MultiplicationOperator. Method value of ExpressionTerm is
overridden by its subclasses. For a variable, it returns the value of the variable.
For an operator, it returns the result of applying the operator to its operands. The
operands of an operator are set by method setOperands of
ExpressionOperator. In Code Fragment 7.30, we show the classes
ExpressionTerm, ExpressionVariable, ExpressionOperator and
AdditionOperator.

Code Fragment 7.30: Classes for a variable, generic
operator, and addition operator of an arithmetic
expression.

429

In Code Fragments 7.31 and 7.32, we show classes
EvaluateExpressionTour and PrintExpressionTour, specializing

EulerTour, that evaluate and print the arithmetic expression stored in a binary
tree, respectively. Class EvaluateExpressionTour overrides auxiliary
method visitRight(T, v, r) with the following computation:

If v is an external node, set r.out equal to the value of the variable stored

atv

. Else (v is an internal node), combine r.left and r.r ight with the
operator stored at v, and set r.out equal to the result of the operation.

Class PrintExpressionTour overrides methods visitLeft,
visitBelow, and visitRight following the approach of pseudo-code

version shown in Code Fragment 7.27.

430

Code Fragment 7.31: Class EvaluateExpressionTour
that specializes EulerTour to evaluate the expression
associated with an arithmetic expression tree.

Code Fragment 7.32: Class PrintExpressionTour that
specializes EulerTour to print the expression
associated with an arithmetic expression tree.

7.4 Exercises

431

For source code and help with exercises, please visit
jJava.datastructures.net.

Reinforcement

R-7.1

The following questions refer to the tree of Figure 7.3.
a.
Which node is the root?
b.
What are the internal nodes?
C.
How many descendents does node cs016/ have?
d.
How many ancestors does node cs016/ have?
e.
What are the siblings of node homeworks/?
f.
Which nodes are in the subtree rooted at node projects/?
g.
What is the depth of node papers/?
h.
What is the height of the tree?

R-7.2

Find the value of the arithmetic expression associated with each subtree of the
binary tree of Figure 7.11.

R-7.3

432

Let T be an n-node binary tree that may be improper. Describe how to represent
T by means of a proper binary tree T’ with O(n) nodes.

R-7.4

What are the minimum and maximum number of internal and external nodes in
an improper binary tree with n nodes?

R-7.5
Show a tree achieving the worst-case running time for algorithm depth.
R-7.6

Give a justification of Proposition 7.4.

R-7.7

What is the running time of algorithm height2(T, v) (Code Fragment 7.6)
when called on a node v distinct from the root of T?

R-7.8

Let T be the tree of Figure 7.3, and refer to Code Fragments 7.9 and 7.10.

a.
Give the output of toStringPostorder (T, T.root()).
b.
Give the output of parentheticRepresentation(T, T.root()).
R-7.9

Describe a modification to parentheticRepresentation, from Code
Fragment 7.10, so that it uses the length() method for String objects to
output the parenthetic representation of a tree with line breaks and spaces added
to display the tree in a text window that is 80 characters wide.

R-7.10

Draw an arithmetic expression tree that has four external nodes, storing the
numbers 1, 5, 6, and 7 (with each number stored in a distinct external node, but
not necessarily in this order), and has three internal nodes, each storing an
operator from the set { +, —, x, /}, so that the value of the root is 21. The
operators may return and act on fractions, and an operator may be used more
than once.

433

R-7.11

Let T be an ordered tree with more than one node. Is it possible that the preorder
traversal of T visits the nodes in the same order as the postorder traversal of T?
If so, give an example; otherwise, argue why this cannot occur. Likewise, is it
possible that the preorder traversal of T visits the nodes in the reverse order of
the postorder traversal of T? If so, give an example; otherwise, argue why this
cannot occur.

R-7.12

Answer the previous question for the case when T is a proper binary tree with
more than one node.

R-7.13

What is the running time of parentheticRepresentation(T, T